时间序列季节性分析spss教学资料

合集下载

SPSS时间序列分析-spss操作步骤讲述

SPSS时间序列分析-spss操作步骤讲述

Time Serises Modeler 对话框Variables选项卡
返回
专家建模标准模型选项卡
返回
判断异常值选项卡
指数平滑标准模型选项卡
返回
ARIMA Criteria Model选项卡
返回
侦查异常值的选项卡
返回
自变量转换选项卡
Байду номын сангаас
返回
时间序列模型Statistics选项卡
返回
Time Serises Modler Plots选项卡
第17章
时间序列分析
Time Series
返回
目 录
各种时间序列分析过程 修补缺失值与创建时间序列
序列图
操作 实例
季节分解法
操作 实例
频谱分析法
频谱分析操作 实例
建立时间序列模型
操作 实例
互相关
操作 实例
应用时间序列模型
操作
自相关
操作 实例
习题17及参考答案
结束
返回
各种时间序列分析过程
返回
修补缺失值过程与对话框
返回
时间序列习题参考答案(5)
三、自相关分析
返回
时间序列习题参考答案(6)
表中显示的是自相关计算结果,从左向右,依次列出的是:滞后数、自相关系数 值值、标准误差、Box-ljung统计量(值、自由度、原假设成立的概率值)。由于原假 设(假设基本过程是独立的,也即假定时间序列所反映的随机过程是白噪声)成立的 概率值都小于0.05,所以全部自相关均有显著性意义。
返回
时间序列习题参考答案(17)
六、数据转换
返回
时间序列习题参考答案(18)
返回

SPSS随机时间序列分析技巧教材

SPSS随机时间序列分析技巧教材

SPSS随机时间序列分析技巧教材SPSS(Statistical Package for the Social Sciences)是一款用于统计分析和数据挖掘的软件工具。

它提供了丰富的功能和功能,可以用于各种统计分析任务。

其中一个强大的功能是随机时间序列分析,它可以帮助用户了解和解释时间序列数据的模式和趋势。

本文将介绍一些SPSS中常用的随机时间序列分析技巧。

1. 数据导入:首先,将时间序列数据导入SPSS中。

确保数据以适当的格式存储,并正确地标识时间变量。

SPSS支持多种数据格式,如CSV、Excel等。

2. 数据检查:在进行时间序列分析之前,需要对数据进行一些基本的检查。

可以使用SPSS中的描述性统计量来检查数据的一般概况,比如数据的均值、方差、最大值和最小值等。

如果数据存在缺失值、异常值或离群值,需要进行适当的数据清洗。

3. 时间序列图:时间序列图可以帮助用户直观地了解数据的模式和趋势。

SPSS提供了绘制时间序列图的功能,用户可以选择不同的图形类型,如折线图、散点图等。

通过观察时间序列图,用户可以判断数据是否存在趋势、季节性或周期性等特征。

4. 时间序列分解:时间序列分解是将时间序列数据分解为趋势、周期和随机成分的过程。

SPSS提供了用于时间序列分解的函数和工具,用户可以根据需要选择不同的分解方法,如移动平均法、指数平滑法等。

分解后的时间序列可以帮助用户更好地理解数据的结构和组成。

5. 自相关分析:自相关分析是研究时间序列数据自身相关性的一种方法。

SPSS提供了自相关分析的功能,用户可以计算自相关系数,并绘制自相关图。

自相关分析可以帮助用户判断时间序列数据是否具有持续性,即当前的值是否与以前的值相关。

6. 平稳性检验:平稳性是时间序列分析的一个重要概念,它指的是时间序列数据的均值和方差在时间上保持稳定。

SPSS提供了多种平稳性检验方法,如ADF检验、KPSS检验等。

通过进行平稳性检验,用户可以判断时间序列数据是否适合进行随机时间序列分析。

第十四章 SPSS的时间序列分析

第十四章 SPSS的时间序列分析

第十四章SPSS 的时间序列分析14.9 季节调整法一、时间序列的趋势分解:长期趋势(Trend ): 现象在较长时期内持续发展变化的一种趋向或状态由影响时间序列的基本因素作用形成是时间序列中最基本的构成要素可分为上升趋势、下降趋势、水平趋势或分为:线性趋势和非线性趋势。

周期变动(Periodicity) :这种因素的影响使现象呈现出以若干年为一周期、涨落相间、扩张与紧缩、波峰与波谷相交替的波动。

不同于长期趋势T 表现为单一方向的持续变动,P 表现为波浪式的涨落交替的变动。

季节变动(Seasonal Fluctuation ) :是一种使现象以一定时期(如一年、一月、一周等)为一周期呈现较有规律的上升、下降交替运动的影响因素通常表现为现象在一年内随着自然季节的更替而发生的较有规律的增减变化,有旺季和淡季之分是一种周期性的变化周期长度小于一年形成原因:有自然因素,也有人为因素不规则变动(Irregular Variations) :包括随机变动和突然变动。

随机变动――现象受到各种偶然因素影响而呈现出方向不定、时起时伏、时大时小的变动。

突然变动――战争、自然灾害或其它社会因素等意外事件引起的变动。

影响作用无法相互抵消,影响幅度很大。

一般只讨论有随机波动而不含突然异常变动的情况。

二、时间序列的分解模型Y= T×S×P×I 在加法模型中各种影响因素是相互独立的,均为与Y 同计量单位的绝对量。

季节变动和循环变动的数值在各自的周期时间范围内总和为零;不规则变动的数值从长时间来看,其总和也应为零。

加法模型中,各因素的分解是根据减法进行(如:Y。

spss时间序列分析教程

spss时间序列分析教程

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk=γk/γ0其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

应用SPSS进行季节预测

应用SPSS进行季节预测

摘要:对一定时期的游客人数进行预测,是发展旅游业必不可少的科学分析阶段。

运用比较通用的应用软件——电子表格程序(Microsoft Excel )来进行旅游人数处理,结合SPSS 对游客人数预测进行分析,在一定程度上可以反映游客人数变动的趋势。

本文以2010~2012年各月份外国入境人数为例,探讨游客人数预测的方法。

关键词:Excel ;SPSS ;游客人数预测季节预测属于时间序列分析中的一种。

时间序列,也叫时间数列或动态数列,是要素(变量)的数据按照时间顺序变动排列而形成的一种数列,它反映了要素(变量)随时间变化的发展过程。

地理过程的时间序列分析,就是通过分析地理要素(变量)随时间变化的历史过程,揭示其发展变化规律,并对其未来状态进行预测。

1 时间序列分析的基本原理1.1 时间序列的组合成分一般来说,时间序列由4种成分所构成,即长期趋势(一般用T 表示)、季节变动(一般用S 表示)、循环变动(C )和不规则变动(一般用I 表示)。

1.2 时间序列的组合模型1、加法模型:Y=T+S+C+I (1.2.1)2、乘法模型:Y=T*C*S*I (1.2.2) 2 趋势拟合方法1、移动平均法:如果某时间序列为y 1,y 2,…,y t ,则该序列在t+1时刻的移动平均预测值为:(2.1.1) 式中: 为t 点的移动平均值;n 称为移动时距(点数)。

2、滑动平均法:其计算公式为:)(1ˆ1ˆ11101n t t t n t t t n j j t t y y n y n y y y y n y -+---=-+-+=+++==∑ t y ˆ)(121ˆ11)1(l t t t t l t l t t y y y y y y l y ++----++++++++= (2.2.1) 式中: 为t 点的滑动平均值;l 为单侧滑动时距(点数)。

3、高次指数平滑法:另S t (1)为一次指数平滑值,即S t (1)=αy t +(1-α) S t-1(1) (2.3.1)对一次指数平滑值,再作一次指数平滑,可得二次指数平滑值(S t (2)):S t (2)=αS t (1)+(1-α) S t-1(2) (2.3.2)式中:α为平滑系数。

SPSS时间序列分析spss操作步骤

SPSS时间序列分析spss操作步骤
返回
17 习题
1、 时间序列的基本概念。 时间序列分析过程中有哪几种常用的方法?2、 对数据用时间序列模型进行拟合处理前,应做哪些准备工作?3、 在哪个过程中可进行缺失值的修补?修补缺失值的方法共有几种?4、 在哪个过程中可定义时间变量?5、 时间序列分析是建立在序列的平稳的条件上的,怎样判断序列是否平稳?6、为什么要建一个时间序列的新变量?在SPSS的哪个过程中来建时间序列的新变量?7、光盘中Data17-07.sav(Data17-07a.sav是Data17-07.sav使用中文标签名的同一个文件)记录了一个邮购公司在1989年1月至1998年12月间男、女服装产品的销售量情况以及一些可能影响服装销售的宣传、服务方面的变量。试用学过的时间序列方法对其进行分析,并预测1999年4月的男装的销售量。
返回
时间序列习题参考答案(5)
三、自相关分析
返回
时间序列习题参考答案(6)
表中显示的是自相关计算结果,从左向右,依次列出的是:滞后数、自相关系数值值、标准误差、Box-ljung统计量(值、自由度、原假设成立的概率值)。由于原假设(假设基本过程是独立的,也即假定时间序列所反映的随机过程是白噪声)成立的概率值都小于0.05,所以全部自相关均有显著性意义。
返回
时间序列分析实例输出(2)
模型统计数据
返回
时间序列分析实例输出(3)
预测部分结果
数据编辑器中的新变量
返回
应用时间序列模型
(Applies models对话框
返回
自相关
(Autocorrelations )
返回
Autocorrelations对话框
感谢您的下载观看
返回
时间序列习题参考答案(17)

spss时间序列分析教程

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk=γk/γ0其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

统计学教程含spss十时间序列

蔬菜营业额时间序列增长量计算表
累积增减量等于相应逐期增减量之和
平均增长量
时间序列速度分析
发展速度
与增长速度
平均发展速度
与平均增长速度
发展速度与增长速度
某蔬菜公司3年12个季度蔬菜营业额(万元) 发展速度和增长速度用以描述时间序列波动的相对程度
季度
1
2
3
4
5
6
7
8
9
10
11
12
符号
y0
y1
y2
y3
时间序列分析
长期趋 势分析
季节波 动分析
循环波 动分析
时间序列的对比分析
时间序列的对比分析
01
时间序列及其分类
02
时间序列
03
水平分析
04
时间序列
05
速度分析
时间序列及其分类
季度
1
2
3
4
5
6
7
8
9
10
11
12
营业额
250
320
370
340
270
335
410
360
290
365
435
395
某蔬菜公司3年12个季度蔬菜营业额(万元) 将某种现象的观察值按照时间的先后顺序排成一列就形成时间序列。一个完整的时间序列包含时间和观察值两个要素
0
0.28
0.48
0.36
0.08
0.34
0.64
0.44
0.16
0.46
0.74
0.58
增长1%绝对值
-
2.50
3.20
3.70

季节分解模型实例分析_SPSS 统计分析从入门到精通_[共3页]

时间序列分析 第 15 章分析,再将分析结果综合起来组成一个对原始时间序列的总模型。

1.时间序列的4种成分(1)长期趋势(Long term trend),记为T。

表示序列取值随时间逐渐增加、减少或不变的长期发展趋势。

例如:全球人口总数随着时间推移,正在逐步增长;人口死亡率,由于医疗技术的进步及生活水平的提高,出现了长期向下的趋势。

另外,同一序列在不同时期可能表现出不同的长期趋势,例如:某商品的销量,在产品初期具有向上趋势;在产品成长期有加速向上的趋势;在产品成熟期表现出缓慢增长的趋势;在产品末期呈向下的趋势。

(2)季节趋势(Seasonal component),记为S。

表示由于受到季节因素或某些习俗的影响,而出现的有规则的变化规律。

例如:电风扇和空调的销售量,在夏季多而冬季少;每一天的交通流量,在上下班时间出现高峰,其余时间则较为稳定;圣诞节之前,玩具的销售量总会增加等。

(3)循环趋势(Cyclical component),记为C。

表示序列取值沿着趋势线有如钟摆般循环变动的规律。

循环趋势的周期长短和波动幅度是主要的研究对象。

有时一个时间序列的循环是由多个小循环组合而成的,例如:总体经济指标的循环,就是由各个产业的循环组合而成。

(4)不规则趋势(Irregular component),记为I。

表示把时间序列中的长期趋势、季节趋势和循环趋势都去除后余下的部分。

一般而言,长期趋势、季节趋势和循环趋势都受到规则性因素的影响,只有不规则趋势是随机性的,它发生的原因有自然灾害、天气突变、人为的意外因素等。

2.季节分解模型的种类对于时间序列中各变动因素之间的关系,通常有两种不同的假设:加法关系假设和乘法关系假设,相应地就有了时间序列季节分解的加法模型和乘法模型。

(1)加法模型。

加法模型假设:时间序列是由4种成分相加而成的;各成分之间彼此独立,没有交互影响。

如果以Y表示某个时间序列,它的加法模型就为:Y=T+C+S+R。

SPSS的时间序列分析ppt课件

·自相关函数图和偏自相关函数图〔ACF&PACF〕
所谓自相关是指序列与其本身经过某些阶数滞后构成的序列之间存 在某种程度的相关性。对自相关的测度往往采用自协方差函数和自相关 函数。偏自相关函数是在其他序列给定情况下的两序列条件相关性的度 量函数。
自相关函数图和偏自相关函数图将时间序列各阶滞后的自相关和偏 自相关函数值以及在一定置信程度下的置信区间直观的展现出来。
各统计量在不同序列之间不应有显著差别。假设差
值大于检验值,那么以为序列具有非平稳性。
• 11.3.4 时间序列的图形化察看和检验的根本操作 • 11.3.4.1 绘制序列图的根本操作 • 〔1〕选择菜单Graph→Sequence。
〔2〕将需绘图的序列变量选入Variables框中。
〔3〕在Time Axis Labels框中指定横轴〔时间轴〕标志变量。该标志 变量默许的是日期型变量。
那么概率空间〔W,F,P〕上随机过程{y〔t〕,t∈T}称为平稳过
程。具有时间上的平稳不变性。实际当中是非常困难甚至是不能够的。

宽平稳:宽平稳是指随机过程的均值函数、方差函数均为常数,自协方 差函数仅是时间间隔的函数。如二阶宽平稳随机过程定义为:E〔yt〕
= E〔yt+h〕为常数,且对 t,t+h∈T都使协方差E[yt- E〔yt〕
第十章
SPSS的时间序列分析
11.1 时间序列分析概述
• 11.1.1时间序列的相关概念

通常研讨时间序列问题时会涉及到以下记号和概念:
• 1.目的集T

目的集T可了解为时间t的取值范围。
• 2.采样间隔△t

采样间隔△t可了解为时间序列中相邻两个数的时间间隔。
• 3.平稳随机过程和平稳时间序列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列季节性分析
s p s s
表1 为某公司连续144个月的月度销售量记录,变量为sales。

试用专家模型、ARIMA模型和季节性分解模型分析此数据。

01/01/1982 183 01/01/1986 318 01/01/1990 472 02/01/1982 218 02/01/1986 374 02/01/1990 535 03/01/1982 230 03/01/1986 413 03/01/1990 622 04/01/1982 242 04/01/1986 405 04/01/1990 606 05/01/1982 209 05/01/1986 355 05/01/1990 508 06/01/1982 191 06/01/1986 306 06/01/1990 461 07/01/1982 172 07/01/1986 271 07/01/1990 390 08/01/1982 194 08/01/1986 306 08/01/1990 432 选定样本期间为1978年9月至1990年5月。

按时间顺序分别设为1至141。

一、画出趋势图,粗略判断一下数据的变动特点。

具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选入“Variables”列表框,时间变量date
选入“Time Axis Labels”,单击“OK”按钮,则生成如图2 所示的sales序列。

图1 “Sequence Chart”对话框
从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加而加大。

二、模型的估计
(一)、季节性分解模型
根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。

1、定义日期
具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的日期格式,在对话框的右侧定义数据的起始年份、月份。

定义完毕后,单击“OK”按钮,在数据集中生成日期变量。

图3 “Define Date”对话框
2、季节分解
具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开
“Seasonal Decomposition”对话框,将待分析的序列变量名选入“Variable”
列表框。

在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组中选择“Endpoints weighted by 0.5”。

单击“OK”按钮,执行季节分解操作。

图4 “Seasonal Decomposition”对话框
3、画出序列图
①原始序列和校正了季节因子作用的序列图
图5为 sales 序列和校正了季节因子作用的序列图。

绿线为原始序列,体现了销售量呈年度周期震荡增长的特征。

蓝线为校正了的月度效应序列,在12年里呈稳步增长的态势。

②季节因子图
图6为季节因子图,呈12个月周期的规则波动:可发现一年中,6-9月间公司
③趋势成分图
图7为趋势成分图。

趋势成分图反映公司销售量在12年里呈增长的态势,前8年基本上稳定增长,后4年虽然在总体上维持了前8年增长的态势,但增长过
④随机波动成分图
图8
4、线性趋势方程估计
5、样本外预测结果
6、模型的预测能力评价指标
采用平均相对误差MAPE(Mean Absolute percentage Error)、泰尔不等系数TIC(Theil Inequality Coefficient) 来评价预测的效果。

这两个统计量总是处于O 和1之间,其中 O 表示与真实值完全吻合。

统计量的具体定义如下:
1ˆ1||1T
m t t t T t
y
y MAPE m y +=+-=+∑ TIC =
表4模型预测绩效
7、预测值。

相关文档
最新文档