随机过程期末考试试题

合集下载

随机过程试题

随机过程试题

一、填空题(每小题3分,共15分)1、设随机变量X 的特征函数为 ()(1)itnX t p pe ϕ=-+,则EX = 。

2、设{((),()),}X t Y t t T ∈为二维实值随机过程,则它们的互协方差函数为12(,)XY C t t = 。

3、设{()X n ,1,2,n = }是独立同分布的随机变量序列,{}()1P X n p ==,{}()01P X n p ==-,则对m n ≠,X 的自相关函数(),X R m n = 。

4、全期望公式为 ()E E Y X ⎡⎤⎣⎦= 。

5、非齐次泊松过程{(),0}N t t ≥,其中强度函数为()sin (0)t t at a λ=+≠,则[()]E N t =。

二、选择题(每小题3分,共15分)1、下面的随机过程中不一定是二阶矩过程的是( )(A )严平稳过程 (B )宽平稳过程 (C )正态过程 (D )泊松过程2、关于齐次马氏链的遍历性与平稳分布,下面说法正确的是( ) (A )平稳分布即为稳态概率(B )平稳分布存在,则齐次马氏链具有遍历性 (C )马氏链不具有遍历性时,其平稳分布也可能存在 (D )平稳分布是唯一的3、已知标准正态分布随机变量的特征函数为22()e υϕυ-=,则2(2,)X N μσ 的特征函数为 ()X ϕυ=( ) (A ){}222exp i συμυ-+(B ){}222exp i συμυ-(C ){}222exp i συμυ-2+(D ){}222exp i συμυ-24、下面的随机过程中不一定是马尔可夫过程的是( ) (A )宽平稳过程 (B )非齐次泊松过程 (C )维纳过程 (D )泊松过程5、设()1()()N t n Y t X n ==∑是复合泊松过程,2(|()|),1,2,E X n n <+∞= ,则下面说法错误的是( )(A )()((1))Y m t tE X λ= (B )()((1))Y D t tD X λ= (C )()(())Y m t tE X n λ= (D )2()(())Y D t tE X n λ= 三、计算题1、(20分)设齐次马氏链{(),1,2,3}X n n = 的状态空间{1,2,3}E =,状态转移概率矩阵110221203323055P ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭(1) 画出概率转移图; (2)讨论其遍历性,并求平稳分布; (3)求概率{(4)3|(1)1,(2)2}P X X X ===; (4)若已知(1)X 的分布律如下表所示:分别计算{(1)1,(2)2,(3)3}P X X X ===以及(3)X 的分布律。

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程期末复习题

随机过程期末复习题

,转移概率矩阵为:
则该链的状态分类为( A ). A. 1 和 2 都是遍历状态,3 和 4 是非常返状态; B. 1 和 2 都是遍历状态,3 和 4 是零返状态 ; C. 1 和 2 都是零常返状态,3 和 4 是正常返状态; D. 1 和 2 都是非常返状态,3 和 4 是遍历状态.
53. 如果状态 是常返的,则
0.
54. 如果状态 是零常返的,则从 出发再回到 的平均回转时间
55. 如果状态 是正常返的,则从 出发再回到 的平均回转时间
0.
. .
56. 马尔可夫链
从 出发到达 的平均次数为
.
57. 状态 是常返的充要条件是
.
58. 状态 是非常返的充要条件是
.
59. 为从状态 出发经有限步返回 的概率.如果
的矩母函数
,设 与 分别是以 ( B ).
A.
B.
C.
D.
7. 已知
是维纳过程,则下面错误的是(
B
).
A.Leabharlann 是独立增量过程B.
是平稳过程
C.
是平稳增量过程
D.
是正态过程
8. (
A
)的有限维分布关于时间是平移不变的.
A. 严平稳过程 B. 宽平稳过程 C. 平稳增量过程 D. 独立增量过程
9. 设
是泊松过程,下述结论不正确的是( B ).
元.
解题思路:索赔次数为一速率为 (次 月)泊松过程 ,总索赔金额为一复合泊松过程
赔付额为
,每次的赔付金额 ,故一年中保险公司的平均
39. 设顾客以每分钟 6 人的平均速率进入某商场,这一过程可以用泊松过程来描述.又设
表示进入该商场的第 位顾客在该商场所花费的金额(单位:元),且有

西安邮电大学研究生随机过程期末试题

西安邮电大学研究生随机过程期末试题

西安邮电大学研究生随机过程期末试题1单选(2分)随机过程的数学期望,是随机过程的( )平均,而非( )平均。

[单选题] *A.时间平均,统计平均B.集合平均,统计平均C.统计平均,集合平均D.统计平均,时间平均(正确答案)2单选(2分)随机过程X(t)的互相关函数,描述了( )个随机过程任意( )个不同时刻状态之间的相互关系(相关程度) [单选题] *A.1,2B.2,1C.2,2(正确答案)D.1,13单选(2分)如果两个随机过程相互独立,则这两个随机过程之间没有( )关系。

如果两个随机过程互不相关,则这两个随机过程之间没有( )关系 [单选题] *A.任何,任何B.任何,线性(正确答案)C.线性,线性D.线性,任何4单选(2分)实现遍历过程时间自相关的三部曲正确的顺序是( ),( )和( ) [单选题] *A.平移、点对点相乘、相加2.00/2.00(正确答案)B.相加、点对点相乘,平移C.相加、平移、点对点相乘D.点对点相乘、平移、相加5单选(2分)实现卷积运算的的四部曲( ),( ),( )和( ) [单选题] *A.点对点相乘、平移、反转、相加B.点对点相乘、平移、相加、反转C.反转、相加、点对点相乘,平移D.反转、平移、点对点相乘、相加(正确答案)6单选(2分)若平稳随机过程含有一个周期分量,则其自相关函数则含有一个( )的周期分量。

[单选题] *A.0.5倍周期B.1倍周期(正确答案)C.3倍周期D.2倍周期7单选(2分)。

[单选题] *A.20.00/2.00B.5C.0(正确答案)D.18单选(2分)。

[单选题] *A.(正确答案)B.C.D.9单选(2分)。

[单选题] *A.5(正确答案)B.0C.1D.20.00/2.0010单选[单选题] *A.B.(正确答案)C.D.11单选[单选题] *A.1B.00.00/2.00C.3D.2(正确答案)12单选[单选题] *A.无法判断B.不遍历(正确答案)C.可能遍历也可能不遍历D.遍历13单选[单选题] *A.是的B.无法判断0.00/2.00C.不是(正确答案)D.可能是也可能不是14多选(3分)确定随机试验的3个基本要素是什么? *A.试验之前却不能断言它出现哪个结果1.00/3.00(正确答案)B.不同条件下可以重复C.相同条件下可以重复;(正确答案)D.结果不止一个;1.00/3.00(正确答案)15多选(3分)随机过程宽平稳的判据有? *A.数学期望是一常数(正确答案)B.自相关函数只与时间间隔有关,(正确答案)C.均方值是常数D.均方值有限(正确答案)16判断(2分)某次试验的随机变量,可以描述该次随机试验的所有结果,对吗?[单选题] *A.对(正确答案)B.错17判断随机过程是把以时间t作为参数的随机函数的统称,对吗? [单选题] *A.错B.对(正确答案)18判断(2分)随机过程的一维概率密度,描述的是随机过程在任一特定时刻对应的随机变量的一维概率密度。

西安邮电大学研究生随机过程期末试题

西安邮电大学研究生随机过程期末试题

西安邮电大学研究生随机过程期末试题考试时间:120分钟,总分100分。

一、选择题(每题4分,共24题,选择一个正确答案)1.下列哪项是随机过程的基本要素?()A.偏微分方程组 B.随机事件C.协方差函数 D.重复试验2.已知随机过程X(t)的均值函数为μ(t) =2t,方差函数为σ2(t) =t,它是__常数均值过程,__广义平稳过程。

()A.非 B.非C.是 D.是3.设离散时间随机过程X(n),其自相关函数为R(k) =α|k|,其中α为一实常数,则该过程是__平稳过程,__宽平稳过程。

()A.弱 B.弱C.强 D.强4.设离散时间随机过程X(n),其自相关函数为R(k) =αne|k|,其中αn为与n有关的正实常数,则该过程是__平稳过程,__宽平稳过程。

()A.弱 B.弱C.强 D.强5.连续时间白噪声B(t)的自相关函数为()A.0 B.tC.δ(t) D.cos(t)6.设离散时间随机过程X(n),其平均能量为2,则它的能量谱密度为()A.1 B.exp(-2πf)C.2 D.-2lnf二、计算题(每题16分,共6题)1.已知随机过程X(t)的均值函数为μ(t) = t,方差函数为σ2(t) = t2,试求出其自协方差函数R(τ)。

()2.已知连续时间随机过程X(t)的自相关函数R(τ) = 4e-2τ,试判断它是否是广义平稳过程,并求出其平均功率。

()3.连续时间平稳随机过程X(t)的光谱密度为S(f) = 2exp(-2|f|),试求出其自协方差函数R(τ)。

()4.离散时间随机过程X(n)的均值函数为μ(n) = n,方差函数为σ2(n) = n(n+1),试求出其自协方差函数R(k)。

()5.已知离散时间随机过程X(n)的自相关函数为R(k) =α|k|,其中α是一正实常数,试求出其能量谱密度。

()6.已知随机过程X(t)的自相关函数R(τ) = Ae-2|τ|,其中A是一个实常数,试求出其所有阶的矩和功率谱密度。

概率统计随机过程-期末试卷-参考答案

概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4

152
2 15 S 2 (15) 知 D 2 2 15

D S 2 2 15
2

得 D S

2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}

最新-期末随机过程试题及答案资料

最新-期末随机过程试题及答案资料

《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

(完整版)应用随机过程试卷

(完整版)应用随机过程试卷

湖南科技学院二○一 年 学期期末考试数学与应用数学 专业 年级 应用随机过程试题考试类型:闭卷 试卷类型:C 卷 考试时量: 120分钟F一 、填空题(每空4分共24分)1、过程12{()cos sin ;0}X t Z at Z at t =+≥,其中1Z ,2Z 独立同分布,其共同分布为2(0,)N σ,a 为常数,则均值函数(())E X t = ,方差函数(())Var X t = ,协方差函数(,)s t γ= .2、计数过程{}(),0N t t ≥为参数为2的泊松过程,则{}(20)(18)2P N N -== ,((3))=E N .3、()1()N t i i S t Y ==∑是复合Poisson 过程,其中{}(),0N t t ≥为参数为3的泊松过程,1Y 服从正态分布(1,4)N ,则[(5)]E S = .二 、判断题(小题2分,共16分)1、 设{}(),0N t t ≥是强度为λ的Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则{}{}()n N t n T t <⇔>. ( ) 2、{}(),0N t t ≥是更新过程,则对0t≤<+∞,有()EN t <+∞. ( )3、Poisson 过程具有独立增量性. ( )4、{}n Z 是马尔可夫链,则202(,)()n n n n P X j X i X k P X j X i ++======.题 号 一二三四五总分 统分人得 分 阅卷人复查人( )5、Brown 运动的样本路径()B t ,0t T ≤≤具有连续性. ( )6、{}n Z 是有限状态的马尔可夫链,其一步转移矩阵为P ,则其n 步转移矩阵()n n PP =.( )7、Brown 运动不是平稳增量过程. ( ) 8、{}(),0N t t ≥是Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则当t →+∞时,()1()N t r t T t +=-与()()N t s t t T =-有相同的极限分布. ( )三 、计算题(共46分)1、(12分)设{}(),0N t t ≥是强度为3的Poisson 过程, 求(1){}(1)2,(3)4,(5)6P N N N ===; (2){}(5)6(3)4P N N ==;(3)求协方差函数(),s t γ,写出推导过程.2、(10分)设{}(),0N t t ≥是更新过程,第k 次更新与第1k -次更新的时间间隔k X 服从分布2(2)3k P X ==,1(3)3k P X ==.计算((1))P N n =,((2))P N n =,((3))P N n =,0,1,2,n =.3、(12分)设1{(),0}N t t≥,2{(),0}N t t ≥是强度分别为1λ,2λ 且相互独立的Poisson 过程,记k T 为1{(),0}N t t≥的第k 次事件发生的等待时间,1V 为2{(),0}N t t ≥第1次事件发生的等待时间.求1()k P T V <.4、(12分){,1,2,}n X n =为独立同分布的随机变量序列,具有如下分布1(1)(1)2n n P X P X ===-=1,2,n =令1nni i S X ==∑.(1)求随机过程{,1,2,}n S n =的均值函数和自相关函数;(2)判断{,1,2,}n S n =是否为宽平稳过程.四 、证明题(共14分)1、设{}(),0i N t t ≥,1,2,,in =是n 个相互独立的Poisson 过程,参数分别为i λ,1,2,,i n =,试证{}1()=(),0ni i N t N t t =≥∑是Poisson 过程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档