浅谈电动机的发热与冷却
浅谈电动机常见故障的分析与检修

浅谈电动机常见故障的分析与检修摘要:交流电动机作为现代工业生产中不可或缺的设备之一,其出现故障会对生产效率和设备运行造成极大影响。
本文主要从电动机电气和机械两个方面,对交流电动机常见故障进行分析和处理,探讨如何有效进行检修和维护。
关键词:电动机;常见故障;检修引言交流电动机作为现代工业生产的基础设备之一,具有广泛的应用场景。
然而,由于电动机长时间的运转或者受到不良的运行环境影响,会导致电动机出现各种故障。
交流电动机的故障主要分为电气故障和机械故障两种类型。
在电气方面,常见的故障包括绕组短路、接线错误、绕组过热和绕组绝缘损坏等[1]。
这些故障可能会导致电动机无法正常启动或者运行,或者导致电动机产生异常噪音、振动和过热等问题,从而严重影响生产效率和设备运行。
因此,如何有效分析和处理交流电动机的故障,是维护和保养交流电动机的重要问题。
1 电动机电气常见故障的处理1.1 绕组短路故障绕组短路是指电动机绕组内的绝缘被破坏或老化,导致电流在绕组内形成不正常的通路,进而导致电动机无法正常运转。
这是交流电动机最常见的电气故障之一,其产生的原因主要包括以下几个方面:(1)绝缘老化:电动机绕组绝缘随着使用时间的增加,会逐渐老化,从而导致绝缘性能下降。
如果绝缘老化严重,就会出现短路现象。
(2)绝缘材料损坏:电动机绕组绝缘材料可能因为过度使用或外力损坏而破裂,进而导致电动机出现绕组短路问题。
(3)湿度和污染:如果电动机长期处于潮湿或污染环境下,其绕组绝缘可能会因此而受到损害,导致短路问题。
(4)过电压:电动机在运行过程中,如果突然遭受过大的电压,也可能导致绕组短路。
当电动机出现绕组短路时,会出现一些明显的症状,例如电动机发热、噪音大、启动困难、甚至无法启动等。
为了解决这个问题,我们需要进行以下步骤:(1)拆开电动机:首先需要将电动机拆开,检查绕组的状况。
(2)清洗绕组:如果绕组内有污物或灰尘,需要将其清除[2],避免对绕组的损坏。
第08章 电机的发热与冷却

电机的发热与冷却
• 电机的额定容量还与使用环境有关,若环境温度、冷却介质、 海拔和相对湿度等与规定的不同,则要对额定容量进行修正。 如在高海拔地区使用,空气稀薄,冷却能力差,则应该降低 电机的额定容量。
• 冷却方式对电机的额定容量影响很大,冷却能力越强,电机 各部件的温度越低,额定容量越大。
• 电机的额定容量还与工作制有关,同一台电机,若运行在不 同的工作制下,其额定容量不同。例如,长期运行时的温升 要高于短时运行,其额定容量要小于后者。
电机的发热与冷却
温度测量方法的不同,会造成测量结果的不同。在规定温升限
度的同时,还应规定相应的温度测量方法。
• 温度计法
该方法直接测量温度,非常简便,但只能测量电机各部分的 表面温度,无法得到内部的最高温度和平均温度。
• 电阻法
绕组的电阻R随温度t的升高而增大,满足以下规律
R
R0
T0 t T0 t0
电机的发热与冷却
在电机中,电机的底座和电机周围的空气通常都是不良导热 体,因此热传导主要发生在电机内部。 电机内的热源主要是绕组损耗和铁心损耗,绕组损耗所产生的 热量借助于热传导作用从绕组穿过绝缘传递到铁心中,与铁心 产生的热量一起被传导到电机表面。 可以看出,绕组热量的传导比铁心中热量的传导经过的材料 多,故绕组温度通常高于铁心温度。 将温度场中温度相同的点连接起来,就得到等温线或等温面。 各点热量传导的方向总是与该点温度的空间变化率最大的方向 一致,也就是与通过该点的等温线或等温面的法线方向一致。
是制造厂对电机在相应的变速范围内的变动负载(包括过载) 和各种条件的规定。 • 离散恒定负载工作制定额 • 等效负载定额 一种为试验目的而规定的定额。
电机的发热与冷却
浅谈电动机发热的原因及解决的方法

浅谈电动机发热的原因及解决的方法摘要:本文主要针对电动机在实际运行时经常会出现因某些自身或外部故障而引起温升过高或是出现冒烟现象,造成电动机的损坏,要找到原因才能及时解决和处理,才能防止电动机的烧毁,针对这一现象,主要从电动机自身结构和外部干扰等方面的故障对电动机发热原因进行了分析并提出了相应的解决方法。
关键字:电动机发热解决方法0.引言电动机是一种将电能转化成机械能,用来驱动其他装置的电气设备。
广泛应用于水泵、风机、运输机械、搅拌机、农业机械、食品机械等行业领域。
但是由于各种原因,电动机烧毁的情况时有发生,严重影响了我们的生产、生活的安全与稳定。
本文主要结合实际生产过程,从电动机自身结构和外部干扰等方面讨论影响电动机发热的原因、现象以及解决和处理方法,对电动机发热问题进行分析和说明。
1.实际运行中电动机发热的原因及解决方法在实际运行中引起电动机温升过高或是出现冒烟现象的外界原因有很多,因此选择电动机时应考虑电动机的发热、允许过载能力和启动能力。
1.1 电动机正常运行时内部结构引起的发热:电机线圈有电阻R1/R2,当电流流过时电阻发热产生热功率损耗;铁芯的磁场有“磁滞回线”,电能转变的磁能有一部分继续转变为热能了产生热功率损耗;铁芯还有涡流,电能转变的磁能有一部分又变成电流进而又变成热能产生涡流损耗;由于机械转动部件之间有摩擦,电能转变的动能有一部分继续转变为热能了热功率损耗。
解决方法:电机要注意保持通风,及时排出的内部热量,避免造成电动机温度升高,一般情况下电动机都自带冷却风扇来散热(一般电机的冷却风扇套在电机后轴承上和电机一体,随着电机的旋转一起转动;变频电机的冷却风机是独立的,固定在电机后端盖上;大型电机配有自己的冷却风管更深层次的冷却),当运行环境温度较高时,冷却风扇不能满足散热条件时可额外增加轴流风机来帮助散热。
1.2 长期过负荷:电动机在长时间过负荷运行时,容易引起电机绕组发热,严重时会烧毁电动机:解决方法:应调整负荷,适当的降低负荷运行,尽量不要长期过负荷运行。
电机的发热和冷却

10.3 电机的冷却方式
电机的冷却情况决定了电机的温升,温升又直接 影响电机的使用寿命和额定容量,由此可见,冷却问 题对电机具有重要意义。 1、电机的冷却介质 指能够直接或间接地把电机热量带走的物质。如 空气、氢气、水和油等。 2、分类 (1)按冷却介质的不同,一般电机的冷却可分为两类: 气体冷却和液体冷却。 中小型电机一般都利用空气来进行通风冷却。按 其冷却方式可分为自然冷却、自通风冷却、强迫通风 冷却以及管道通风冷却等数种方式。
2、电机的工作方式
电机工作时,其温升不仅决定于负载的大小,而且
与负载的持续时间有关系,同一台电机,如果工作时
间长短不同,则能够承担的负载功率也不同。为了适 应不同负载的需要,电机制造时,按负载持续时间的
不同,把电机分成为三种工作方式或三种工作制。
(1)连续(长期)工作制
电机连续工作时间长,其工作时间ton >(3~4)T,
如水闸闸门的起闭机械等。
电机在短时工作时,其容量往往只受过载能力和起动
能力的限制,因此专门为短时工作制设计的电机,其
过载能力和起动转矩都较大。我国生产的短时工作制 电机,其工作时间有15min 、30min、60min、 90min四种定额。
三、重复短时(断续周期)工作制 重复短时工作制又称为断续周期工作制。其特点 是:工作和停止周期性地交替进行,但工作时间和停 止时间都较短,ton<(3~4)T,toff <(3~4)T,且规定工 作周期 。工作时温升增加,但达不到稳定值 ;停止时 温升下降,但降不到零。每个周期结束时的温升都比 开始时的温升高,这样经过若干个周期后,就会出现 一个周期内温升的增长和降落相等的情况,这时温升 就达到一个稳定的波动状态,即在最高温升 与最低温 升 之间波动,平均温升不变。属于此类工作制的生产 机械有起重机、电梯、轧钢辅助机械、某些自动机床 的工作机构等。
电机的发热与冷却

对流和辐射 在电机中,通过热传导作用传递到电机表面的热量通常通过两 种方式散发到周围介质中,一是热对流,二是热辐射。 • 热对流是液体或气体中较热部分和较冷部分之间通过循环流
动使温度趋于均匀的过程,是液体和气体中热传递的主要方 式。 • 物体因自身的温度而具有向外发射能量的能力,这种热传递 的方式叫做热辐射。
• 要将电机各部件的温度控制在允许范围内,一方面要降低损 耗,减少电机的发热量,另一方面要提高电机的冷却散热能 力。
绝缘材料的绝缘等级
绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级, 其极限工作温度分别为90、105、120、130、155、180℃、 及180℃以上。
所谓绝缘材料的极限工作温度,系指电机在设计预期寿命 内,运行时绕组绝缘中最热点的温度。根据经验,A级材料 在105℃、B级材料在130℃的情况下寿命可达10年,但在实 际情况下环境温度和温升均不会长期达设计值,因此一般寿 命在15~20年。如果运行温度长期超过材料的极限工作温度, 则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温 度是影响绕组使用寿命的主要因素之一。
(1) 温度计法 其测量结果反映的是绕组绝缘的局部表面温度。 这个数字平均比绕组绝缘的实际最高温度即“最热点”低15℃ 左右。该法最简单,在中、小电机现场应用最广。
(2) 电阻法 其测量结果反映的是整个绕组铜线温度的平均值。 该数比实际最高温度按不同的绝缘等级降低5~15℃。该法是 测出导体的冷态及热态电阻,按有关公式算出平均温升。
所谓内部冷却,就是采用空心导体将冷却介质通入导体内部直 接带走热量的冷却方式。采用内部冷却,导体的热量不再经过 绝缘层,而是直接被冷却介质带走,大大提高了冷却效果,改 善了绝缘材料的工作条件。根据冷却介质的不同,内部冷却方 式又分为氢内冷、水内冷和空气内冷。
浅析三相异步电机发热原因及其处理方法

浅析三相异步电机发热原因及其处理方法摘要:工厂中常用的拖动设备是三相异步电动机,在实际的操作过程中,电动机常会出现因为某些故障而引起温升过高或是冒烟现象,造成电动机的损坏或是损毁。
针对这种情况,文章基于电气工作的实践经验对电动机发热原因进行了分析并提出解决方法。
关键词:三相异步电动机发热处理文章主要从以下几个方面,即发热原因、发热因素、处理方法等,对在生产过程中出现的发热问题进行分析说明并提出解决对策,保护电机。
1 发热原因分析1.1 电机发热原因主要有频繁启动造成过电流发热,过载造成的过电流发热,散热不畅引起的发热等。
因此,选择电机的功率时,应考虑电机的发热、允许过载和启动能力三方面因素。
电机里也有线圈,有电阻,通电时会发热,因此大功率电机要注意通风。
电机中绕组的绝缘材料的耐热最差,所用绝缘材料都有自身允许的最高温度,当工作过程中的温度能够长期控制在其允许的范围之内的话,绝缘材料的寿命最多可达20年以上;从另一方面来讲,绝缘材料很难一直保持最初的良好性能,会慢慢变脆,使电机寿命减短,如果再严重一些就会导致绝缘材料碳化、变质,甚至不再具有绝缘性能,烧毁电机。
由此可知,温升不协调是导致电机发生故障的主要原因。
下表列出电机绝缘等级对应电机的极限温度。
电机温度与周围环境温度之差称为“温升”。
我国规定的环境温度为:40℃。
1.2 电机定子绕组在发热开始时,由于温升较小、散发热量较少,大部分热量被电机吸收,导致温升τ增长较快。
随温度升高,散发热量不断增长,电机散发热量由于负载不变而维持不变,电机吸收热量不断减少,温升曲线趋于平缓。
最后电机温度不再升高,温升达到稳定值tw,电机发热过程与输出功率如下式:pn=twahn/(1-hn)。
对同样规格的电机欲提高额定功率pn,有3种方法:①可以提高额定效率hn,即采取措施降低电机损耗;②提高散热系数,即加大流通和散热面积;③提高绝缘材料温升。
选定使用的电机,意味着以上三项因素也已经被选定,这就需要在日常的工作中必须要时刻监视电机各部分的温升。
浅析电动机运行中发热的原因及处理

4 结
语
水 导轴 承系 统结 构复 杂 ,安装 工作 量大 ,且 安 装 质量 对机 组稳 定运行 有 很大 的影 响 。糯扎 渡水 电 站 投产 发 电 的 7—9号机 组 运行 状 况 良好 ,瓦温 稳 定 ,且 各 瓦温温 差较 小 ( 见表 1 ) 。
2 ) 实例 2 。该厂磨煤机 电动机原设计 I P 5 4 、电
动机 转速 5 9 3 r / m i n 。 电动 机运 行 温 升 平 均 2 2℃ , 最
的通风 ,进行 自循环的冷却方式 。优点是环境温度
直接 作 用 于 电动 机 定 子 铁 芯 ,冷 却 效 果 较 为 理想 ; 缺点 是 防 护 等 级 较 低 ,易 造 成 粉 尘 进 入 电动 机 内
水 电厂运行管理 工作 。
E ma i l :l i s h u x i a 8 8 @1 6 3. c o n r
I P 5 4电动机增 加 了防护 等级 , ( 下 转第 8 2页)
・
7 3 ・
工程 施工 位 。合格 后安 装 组 合 螺 栓并 把 紧 ,用 0 . 0 5 n l l n 塞 尺
某 电厂汽 机厂 房 内的设 备油雾 加 粉尘形 成 了油 泥状 堵塞 物 ,对 电动机 运行 温升 影响 较大 ;锅 炉厂
动设备 中所 占比重是第一位的。电动机发热问题的
研 究则 是 电动机 研发 过程 的重点 ,所 以电动机 在设 计 制 造过 程 中 ,采用 了许 多 冷却 方式 。例 如 ,水冷
发热 。在环境温度较高的状态下 ,甚至危及到电动
机 的安 全运 行 。
高值 3 7℃。 夏 季 炉侧 现 场 环境 温 度 最高 值 3 0~
电动机发热与冷却

浅谈电动机的发热与冷却摘要:简要介绍电动机热量产生和传递的过程、对电动机正常运行产生的影响和电动机的冷却方式。
关键词:电动机发热热传导冷却电动机(简称电机)在能量转换过程中,其内部将同时产生损耗。
由于损耗的存在,一方面将直接影响到电机的效率和运行的经济性;另一方面,由于损耗的能量最终转化为热能,从而使电机各部分的温度升高。
这将直接影响到电机所用的绝缘材料的寿命,并限制电机的输出,严重时能够将电机烧毁。
因此,一要在设计时注意合理减少电机的损耗;二要努力改善冷却条件,使热量能有效地、尽快地散发出去。
1.电机热量的产生、传导与散出电机中的热源主要是绕组及其铁芯中的损耗。
绕组和铁芯内部均会产生热量,绕组中的损耗与电流的平方成正比。
铁芯内部的热量是由涡流而产生的。
绕组中所产生的热量借传导作用,从铜线穿过绝缘层传到铁芯上,再加上铁芯中产生的热量,一起由铁芯传到电枢的表面,然后借助于对流及辐射作用,把热量散发到周围的空气中。
根据热传导知识可知,热量都是从高温部位传向相对低温部位。
从这样的热传导途径中,可以得出这样的结论:绕组的温度通常总是高于铁芯的温度。
若想降低绕组的温升,一方面要增强电机内部的传热能力,另一方面应该增强部件表面的散热能力。
为了使电机绕组内部热量比较容易地传导到散热表面,应该设法选择导热性能好、耐压强度高、绝缘性能好的绝缘材料。
要求在保证绝缘性能的情况下,降低绝缘层的厚度。
同时,还应设法清除线槽内的导热性能不佳的空气层,如:用油漆等来充填导线与铁芯的间隙。
这样做不仅可以改善导热性能,又可以增强电机的绝缘性能以及机械性能。
电机表面的散热能力与散热表面的面积、空气对冷却表面的速度等因素有关。
一般是采用增大散热面积、改善表面散热性能、增加冷却介质的流动速度以及降低冷却介质的温度等措施来增加散热能力。
电动机在运行时,若温度超过一定的值,首先损坏的是绕组的绝缘。
因为电机中的绝缘材料是耐热性能最差的部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈电动机的发热与冷却
摘要:简要介绍电动机热量产生和传递的过程、对电动机正常运行产生的影响和电动机的冷却方式。
关键词:电动机发热热传导冷却
电动机(简称电机)在能量转换过程中,其内部将同时产生损耗。
由于损耗的存在,一方面将直接影响到电机的效率和运行的经济性;另一方面,由于损耗的能量最终转化为热能,从而使电机各部分的温度升高。
这将直接影响到电机所用的绝缘材料的寿命,并限制电机的输出,严重时能够将电机烧毁。
因此,一要在设计时注意合理减少电机的损耗;二要努力改善冷却条件,使热量能有效地、尽快地散发出去。
1.电机热量的产生、传导与散出
电机中的热源主要是绕组及其铁芯中的损耗。
绕组和铁芯内部均会产生热量,绕组中的损耗与电流的平方成正比。
铁芯内部的热量是由涡流而产生的。
绕组中所产生的热量借传导作用,从铜线穿过绝缘层传到铁芯上,再加上铁芯中产生的热量,一起由铁芯传到电枢的表面,然后借助于对流及辐射作用,把热量散发到周围的空气中。
根据热传导知识可知,热量都是从高温部位传向相对低温部位。
从这样的热传导途径中,可以得出这样的结论:绕组的温度通常总是高于铁芯的温度。
若想降低绕组的温升,一方面要增强电机内部的传热能力,另一方面应该增强部件表面的散热能力。
为了使电机绕组内部热量比较容易地传导到散热表面,应该设法选择导热性能好、耐压强度高、绝缘性能好的绝缘材料。
要求在保证绝缘性能的情况下,降低绝缘层的厚度。
同时,还应设法清除线槽内的导热性能不佳的空气层,如:用油漆等来充填导线与铁芯的间隙。
这样做不仅可以改善导热性能,又可以增强电机的绝缘性能以及机械性能。
电机表面的散热能力与散热表面的面积、空气对冷却表面的速度等因素有关。
一般是采用增大散热面积、改善表面散热性能、增加冷却介质的流动速度以及降低冷却介质的温度等措施来增加散热能力。
电动机在运行时,若温度超过一定的值,首先损坏的是绕组的绝缘。
因为电机中的绝缘材料是耐热性能最差的部分。
如果电机运行时工作温度超过绝缘材料允许的最高温度,轻则加速绝缘层的老化过程,缩短电机的使用寿命;重则绝缘层碳化变质,也就损坏了电机。
所以,据此规定电动机的额定容量,电动机长期在此容量下运行时,不会超过绝缘材料所允许的最高温度。
所以,“电机的工作温度低于绝缘材料允许的最高温度”是保证电机长期安全运行的必要条件,
这也是按照发热条件选择电动机功率的最基本的依据。
2.电机发热对其运行方式的影响
电动机的温度是发热与冷却综合作用的结果,温升和冷却需要一个过程,其温升不仅取决于负载的大小,而且也和负载的持续时间有关。
一般来说,电机的运行方式按发热情况(工作制)分为三类,即连续工作制、短时工作制和断续工作制。
不同的工作制代表了不同的发热和散热的时间比例。
实际上,不管电机运行采用哪种工作制,不管如何发热和散热,只要能够保证工作温度低于允许温度,电机就不会被烧毁。
如果电机常年运行在严寒地区,散热条件比较好,在功率选择的环节上,可以适当带动比较大一点的负载;如果电机运行在海拔高于1000米的高原地区,由于空气稀薄、散热条件差,电机在工作时应该降低使用负载。
3.电机的冷却方式
电机的冷却直接影响其使用寿命和额定容量。
所以,改善电机的冷却条件就显得尤为重要。
目前的电机均采用较高的电磁负荷,以提高材料的利用率。
同时,电机的单机容量也日益增大。
因此,必须改进电机的冷却系统,以提高其散热能力。
工程中对电机的冷却要求是:冷却效果要好,各部分不产生局部过热,冷却系统的结构要尽可能简单,消耗功率要少,成本要尽可能低。
冷却方式分为表面冷却和内部冷却两种:
(1)表面冷却。
表面冷却时,冷却介质仅仅通过绕组的绝缘表面、铁芯和机壳的表面间接地把热量带走。
所以,表面冷却也叫间接冷却。
此冷却系统结构简单,多在中、小型电机中采用,冷却介质为空气。
表面冷却系统按结构可以分为自冷式、自扇冷式和它扇冷式三种。
自冷式电机不需要装设任何的冷却装置,仅仅依靠部件表面的辐射和冷却介质的自然对流,把电机内部产生的热量带走。
此方法的缺点是散热能力差,仅仅应用于低功率的小型电机中。
自扇冷式电机的转子上装有风扇,当电机转动时利用风扇产生的风压强迫空气流动,吹拂散热表面,大大增强了散热能力。
它扇冷式的风扇不由电机本身驱动,而是由另外的动力装置独立驱动。
不论是自扇冷式电机还是它扇冷式电机,如果冷却空气直接从外界空气中获得,通过电机内部把热量带走后,又释放到周围的大气中,则此电机为开启式通风系统,多为小型电机所使用。
为保证电机内部的清洁,吸入的空气最好过滤。
若气体在密封的系统内循环,该循环气体依次通过电机和冷却器,把电机内部的热量带到冷却器,在由冷却器把热量带走,则为封闭循环式通风系统。
此系统多用于大型电机中。
(2)内部冷却。
此方法是采用空心导体,把冷却介质通入导体内部后直接带走热量的冷却方式。
随着线性尺寸和电机容量的增大,发热和冷却问题越来越严重。
在大型电机中,发热和冷却问题往往成为限制电机极限容量的主要因素之一。
为解决这一难题,通常采用内部冷却方式。
内部冷却方式对于大型电机来讲,是一个发展方向。
4.结语
电动机运行时,由于绕组和铁芯都会发热,如果不及时把热量散发走,会导致电动机的温度升高,进而烧毁电动机中耐热性能最差的绕组绝缘层。
所以,电动机的发热与冷却问题将直接影响到电动机的选择和运行方式。
为切实解决好这一问题,我们可以考虑电机的冷却环节,改善散热条件,以保证电动机运行的可靠性。
参考文献:
[1]陈世昆.《电机设计》,机械工业出版社,2000.
[2]魏永田、孟大伟、温嘉斌.《电机内热交换》,机械工业出版社,1998.。