1.2.4 平面与平面的位置关系

合集下载

平面与平面的位置关系导学案(3)

平面与平面的位置关系导学案(3)

1.2.4平面与平面的位置关系(3)一、温故知新1.下列命题:①两个相交平面组成的图形叫做二面角;②异面直线a、b分别和一个二面角的两个面垂直,则a、b组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是________.(填序号)2.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD=32,则二面角B-AC-D的大小为________.3.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP所成的二面角的度数是________.4.如图所示,已知PA⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.二、知能提升例题1.如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA= 3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.例题2. 如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,平面PAB ⊥平面PBC .求证:BC ⊥AB .例题3(备选例题).如图所示,P 是四边形ABCD 所在平面外的一点,四边形ABCD 是∠DAB =60°且边长为a 的菱形.侧面PAD 为正三角形,其所在平面垂直于底面ABCD .(1)若G 为AD 边的中点,求证:BG ⊥平面PAD ;(2)求证:AD ⊥PB .三、巩固训练1. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′=________.2. α、β、γ是两两垂直的三个平面,它们交于点O ,空间一点P 到α、β、γ的距离分别是2 cm 、3 cm 、6 cm ,则点P 到O 的距离为________ cm.二、。

1.2.4平面与平面的位置关系(韩)-----两平面平行

1.2.4平面与平面的位置关系(韩)-----两平面平行

图1
图2
怎样判定两个平面平行:
探究:


( )若内有一条直线a与 平行, 1 则 与 平行吗?
a


a


(两平面平行) (两平面相交)
探究:
(2)若内有两条直线a、b分别与 平行, 则 与 平行吗?
1 若a // b时,则 与 平行吗?

a
b

a
b

(两平面平行)

(两平面相交)
4) 若两个平面分别经 过两条平行直线,则 这两个平面平行。 ×

反 例
选做题
C1 E
在三棱柱ABC-A1B1C1中, 点E,D分别是B1C1与BC的 中点,求证: 平面A1EB∥平面C1AD
A1
B1
C D A B
我们今天有哪些收获?
1、两平面的位置关系: ①两平面相交 ②两平面平行 2、两平面平行: ①定义 ②判定定理(线面平行证面面平行,将空间问 是否正确,错的举反例。 (1)已知平面, 和直线m,n, 若m ,n ,m// ,n// 则 //
m n
×

反 例
(2)一个平面内两条不平行的直线 都平行于另一个平面 , 则 //
3)平行于同一条直线的 两个平面平行. ×

a


反 例
平面与平面的位置关系
(第一课时)
乳源高级中学
韩众
回忆

1)空间两条直线的位置关系有哪几种?
平行直线 相交直线 异面直线
它们是按什么标准分类?
2)直线与平面的位置关系有哪几种?
线在面内 线面平行 线面相交
它们又是按什么标准分类?

1.2.4 平面与平面的夹角------二面角

1.2.4 平面与平面的夹角------二面角

1.2.4 平面与平面的夹角------二面角【课时目标】 1.掌握二面角和二面角的平面角的概念.2.会求简单的二面角的大小.【知识疏理】1.二面角:从一条直线出发的________________所组成的图形叫做二面角.________________叫做二面角的棱.________________________叫做二面角的面.2.二面角的平面角如图:在二面角α-l -β的棱l 上任取一点O ,以点O 为________,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的________叫做二面角的平面角.注: (1)二面角的平面角与点的位置无关,只与二面角的张角大小有关。

(2)二面角是用它的平面角来度量的,一个二面角的平面角多大,就说这个二面角是多少度的二面角。

(3)平面角是直角的二面角叫做直二面角。

(4)二面角的取值范围一般规定为(0,π)。

3.二面角的画法(1)平卧式 (2)直立式4.二面角的记法(1)以直线 为棱,以 为半平面的二面角记为:___________________; (2)以直线AB 为棱,以为半平面的二面角记为:___________________ 。

5.二面角的平面角的作法:注意:二面角的平面角必须满足:(1)角的顶点在棱上。

(2)角的两边分别在两个面内。

(3)角的边都要垂直于二面角的棱。

【例题学习】例1.在正方体ABCD -A 1B 1C 1D 1中 求①二面角A 1-AB -D 的大小;②二面角D 1-AB -D 的大小.归纳小结:求二面角大小的步骤。

简称为“一作二证三求”.作平面角时,一定要注意顶点的选择.l βα,βα,例2.如图,在正方体ABCD-A1B1C1D1中,求二面角B-A1C1-B1的正切值.例3.如图所示AF,DE、分别是圆O、圆O1的直径,AD与两圆所在的平面均垂直,AD=8,BC是圆O的直径,AB=AC=6,OE // AD。

平面与平面的位置关系导学案(4)

平面与平面的位置关系导学案(4)

1.2.4平面与平面的位置关系(4)
一、温故知新
1.已知平面α⊥平面β,直线a⊥β,则a与α的位置关系是________.
2.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;
③l∥m⇒α⊥β,④l⊥m⇒α∥β.其中正确的命题是________.
3.如图所示,在三棱锥D—ABC中,若AB=BC,AD=CD,E是AC的中点,则平面ADC 与平面BDE的关系是________.
4.已知直线a,b与平面α,β,γ,能使α⊥β的条件是________.
①α⊥γ,β⊥γ;②α∩β=a,b⊥a,b⊂β;③a∥β,a∥α;④a∥α,a⊥β.
二、知能提升
例题1.若α⊥β,α∩β=AB,a∥α,a⊥AB,则a与β的关系为________.
例题2.如图所示,在四面体ABCD中,△BDA,△CDA,△DBC,△ABC都全等,且AB=AC=3,BC=2,求以BC为棱,以△BCD和△B CA为面的二面角的大小.
例题3..已知△ABC为正三角形,EC⊥平面ABC,BD∥EC且EC=CA=2BD,M为EA的中点.求证:
(1)平面BDM⊥平面ACE;
(2)平面DEA⊥平面ECA.
备选例题.(2012·扬州模拟)如图,将两块三角板拼成直二面角A—CB—D,其中DB⊥CB,∠DCB=30°,AB⊥AC,E、F分别是AB、CB的中点.
(1)求证:EF∥平面ACD;(2)求证:平面DEF⊥平面ABD.。

平面与平面的位置关系导学案(2)

平面与平面的位置关系导学案(2)

1.2.4平面与平面的位置关系(2)一、温故知新1. α和β是两个不重合的平面,在下列条件中,可判定α∥β的是________.(填序号)①α内有无数条直线平行于β;②α内不共线三点到β的距离相等;③l 、m 是平面α内的直线,且l ∥α,m ∥β;④l 、m 是异面直线且l ∥α,m ∥α,l ∥β,m ∥β.2. α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是________(填序号).① ⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b ; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③ ⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β; ⑤ ⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. 3.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且PA =6,AC =9,PD =8,则BD 的长为_____二、知能提升例题1.如图所示,已知在正方体ABCD —A 1B 1C 1D 1中,M ,E ,F ,N分别是A 1B 1,B 1C 1,C 1D 1,D 1A 1的中点.求证:平面AMN ∥平面EFDB .例题2.如图,在直四棱柱(侧棱与底面垂直的四棱柱)ABCD —A1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点,证明直线EE 1∥平面FCC 1.例题3.(备选例题)如图所示,在底面是平行四边形的四棱锥P —ABCD 中,点E 在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥平面AEC?并证明你的结论.三、巩固训练1.若一条直线与两个平行平面中的一个平面平行,则这条直线与另一个平面的关系是________.2.设直线l,m,平面α,β,则由l⊥α,m⊥β,且l∥m能得出,α与β的位置关系是________.3.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③若m,n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β.④α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是________.4.若不共线的三点到平面α的距离相等,则这三点确定的平面β与α之间的关系是________.5.(2012·济南高一检测)过两平行平面α,β外的点P作两条直线AB与CD,它们分别交α于A,C两点,交β于B,D两点,若PA=6,AC=9,PB=8,则BD的长为________.。

最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)

最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)

最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC ­A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C ­A ′B ′C ′=13V 柱=13,所以V C ­AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ­ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ­ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。

人教版高一数学必修二《平面与平面之间的位置关系》教案及教学反思

人教版高一数学必修二《平面与平面之间的位置关系》教案及教学反思

人教版高一数学必修二《平面与平面之间的位置关系》教案及教学反思一、教案设计1.1 教学目标1.知道两个平面之间的位置关系;2.能够利用平面的特征来确定平面之间的位置关系;3.能够利用解析几何的方法确定平面之间的位置关系;4.能够应用平面之间的位置关系解决实际问题。

1.2 教学重难点1.理解平面之间的位置关系;2.能够利用平面的特征来确定平面之间的位置关系;3.能够利用解析几何的方法确定平面之间的位置关系。

1.3 教学内容和课时安排本节课将主要讲解平面与平面之间的位置关系,包括垂直、平行、相交等关系。

一共2个课时。

课时内容时间安排第一课时垂直与平行的定义30分钟平面特征与判断30分钟解析几何求位置关系30分钟第二课时平面之间的位置关系30分钟综合练习30分钟1.4 教学方法本节课主要采用讲授和练习相结合的教学方法。

首先对平面的特征进行讲解,并以例题和练习来帮助学生理解和掌握平面的特征。

然后教师介绍平面之间的位置关系及其特征,并利用具体案例来演示。

最后通过综合练习来检测学生的掌握情况。

1.5 教具和教材准备教具:黑板、彩笔、幻灯片等。

教材:人教版高一数学必修二。

1.6 教学过程第一课时1. 学生一:垂直与平行的定义(1)请同学们定义两条直线之间的垂直关系和平行关系。

(2)请举一个生活中垂直或平行关系的例子。

2. 教师讲授:平面特征与判断(1)根据点的位置可以确定直线的位置,请问根据什么可以确定平面的位置?(2)利用平面的特征,我们可以判断平面之间的关系。

请说出以下平面特征:•三点共线;•两条直线平行;•一条直线垂直于另一条直线;•一条直线与一个点垂直;•两条互相垂直的直线。

(3)通过例题演示如何利用平面的特征来判断平面之间的关系。

3. 学生二:解析几何求位置关系请同学们回顾一下解析几何中关于平面的基本知识,并思考如何利用解析几何的方法求平面之间的位置关系。

4. 教师讲授:解析几何求位置关系(1)回顾解析几何中平面的常见表示方法。

原创1:1.2.2 空间中的平行关系(三)(讲授式)

原创1:1.2.2 空间中的平行关系(三)(讲授式)
一个平面的位置关系是什么? 答:平行(二者没有公共点).
C'
观察:观察右边的长方体,平面B′D′与平面BD
平行,平面ABCD内的直线BD与平面B′D′内的直线
有哪些位置关系呢?它们满足什么条件时平行?
D'
A'
B'
C
B
D
A
观察猜想:平面B′D′与平面BD内的直线只有两种位置关系:平行或异面.
平面B′D′∩平面CD′ = C′D′ ,平面BD∩平面CD′=CD,由长方体的性质可知,
平面相交.
④夹在两个平行平面间的所有平行线段相等.










例2 如图,在长方体 − ′′′′中,
求证:平面′//平面’’.
分析:只要证明一个平面内有两条相交直线
和另一个平面平行即可.
− ′ ′ ′ ′ 是正方体,
证明: ∵
∴AB//DC//D’C’且AB=DC=D’C’.
⟹ 是平行四边形.
⟹ BC′//AD′.
线平行的转化策略.
课堂练习
一.判断下列命题的真假;
1.如果两个平面不相交,那么它们就没有共公点;
2.如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;
3.如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行;
4.已知两个平行平面中的一个平面内有一条直线,
则在另一个平面内有且只有一条直线与已知直线平行;
面面平行⇌线线平行
典例精讲
平面与平面平行判定定理的应用
例5 已知三个平行平面α、β、γ与两条异面直线l,m分别交于
A、B、C 和D、E、F.求证:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.4 平面与平面的位置关系
重难点:了解直线与平面的位置关系,在判定和证明直线与平面的位置关系时,除了能熟练运用判定定理和性质定理外,还要充分利用定义;线面关系的判定和证明,要注意线线关系、线面关系的转化.
经典例题:如图,在四面体S-ABC中, SA⊥底面ABC,AB⊥BC.DE垂直平分SC, 且分别交AC、SC于D、E. 又SA=AB,SB=BC.求以BD为棱, 以BDE与BDC为面的二面角的度数.
当堂练习:
1.下列命题中正确的命题是()
①平行于同一直线的两平面平行; ②平行于同一平面的两平面平行;
③垂直于同一直线的两平面平行; ④与同一直线成等角的两平面平行.
A.①和②B.②和③C.③和④D.②和③和④
2.设直线,m,平面,下列条件能得出的是()
A.,且B.,且
C.,且 D.,且
3.命题:①与三角形两边平行的平面平行于是三角形的第三边; ②与三角形两边垂直的直线垂直于第三边;③与三角形三顶点等距离的平面平行这三角形所在平面.其中假命题的个数为()
A.0 B.1 C.2 D.3
4.已知a,b是异面直线,且a平面,b平面,则与的关系是()
A.相交 B.重合 C.平行 D.不能确定
5.下列四个命题:①分别在两个平面内的两直线平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行另一个平面,则这两个平面平行. 其中正确命题是()
A.①、② B.②、④ C.①、③ D.②、③
6.设平面,A,C是AB的中点,当A、B分别在内运动时,那么
所有的动点C ()
A.不共面B.当且仅当A、B分别在两条直线上移动时才共面
C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面
7.是两个相交平面,a,a与b之间的距离为d1,与之间的距离为d2,
则() A.d1=d2 B.d1>d2 C.d1<d2 D.d1d2 8.下列命题正确的是()
A.过平面外一点作与这个平面垂直的平面是唯一的
B.过直线外一点作这条直线的垂线是唯一的
C.过平面外的一条斜线作与这个平面垂直的平面是唯一的
D.过直线外一点作与这条直线平行的平面是唯一的
9.对于直线m、n和平面α、β, 下列能判断α⊥β的一个条件是()
A.B.
C.D.
10.已知直线l⊥平面α,直线m平面β,有下面四个命题: ①
②③④其中正确的两个命题是()
A.①与② B.③与④ C.②与④ D.①与③
11.设是直二面角,直线且a不与垂直,b不与垂直,则()
A.a与b可能垂直,但不可能平行B.a与b可能垂直也可能平行
C.a与b不可能垂直,但可能平行D.a与b不可能垂直,也不可能平行
12.如果直线、m与平面α、β、γ满足:=β∩γ, //α,mα和m⊥γ那么必有()A.α⊥γ且⊥m B.α⊥γ且m∥βC.m∥β且⊥m D.α∥β且α⊥γ
13.如图,正方体ABCD—A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,则动点P的轨迹是()
A.线段B1C B.线段BC1
C.BB1中点与CC1中点连成的线段
D.BC中点与B1C1中点连成的线段
14.平面, ABC和A/B/C/分别在平面和平面内, 若对应顶点的
连线共点,则这两个三角形_______________.
15.夹在两个平行平面间的两条线段AB、CD交于点O,已知AO=4,BO=2,CD=9,则线段CO、DO的长分别为_________________.
16.把直角三角形ABC沿斜边上的高CD折成直二面角A-CD-B后, 互相垂直的平面有______对.
17.是两两垂直的三个平面, 它们交于点O, 空间一点P到平面的距离分别是
2cm , 3cm , 6cm , 则点P到点O的距离为__________________.
18.已知a和b是两条异面直线,求证过a而平行于b的平面必与过b而平行于a的平面
平行.
19.如图,平面,线段AB分别交于M、N,线段AD分别交于C、D,线段BF分别交于F、E,若AM=9,MN=11,NB=15,S=78.求END的面积.
20.如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.
求证:平面PAC垂直于平面PBC.
21.如果两个相交平面都和第三个平面垂直,那么它们的交线也和第三个平面垂直.
参考答案:
经典例题:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知SC⊥DE,BE∩DE=E, ∴SC⊥面BDE, ∴SC⊥BD.
又∵SA⊥底面ABC,BD在底面ABC上, ∴SA⊥BD. 而SC∩SA=S, ∴BD⊥面SAC.
∵DE=面SAC∩面BDE, DC=面SAC∩面BDC, ∴BD⊥DE,BD⊥DC.
∴∠EDC是所求的二面角的平面角. ∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC.
设SA=a, 则AB=a , BC=SB=又因为AB⊥BC,所以AC=在中,
tan∴∠ACS=30°.又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于600.
当堂练习:
1.B;
2.C;
3.B;
4.D;
5.B;
6.D;
7.D;
8.C;
9.C; 10.D; 11.C; 12.A; 13.A; 14. 相似; 15. 6、3; 16. 3; 17. 7cm;
18.过a作平面M交于c,则a||c,则c||,又b||,b、c是相交直线(否则a||b),所以.
19.解:,平面AND分别与交于MC、ND,MC||ND,同理MF||NE,
==
又,,BN=15,BM=15+11=26,AN=9+11=20,AM=9,
S=100.
20. 证明: 设圆O所在平面为α. 由已知条件,PA⊥平面α, 又BC在平面α内, 因此PA⊥BC.
因此∠BCA是直角, 因此BC⊥AC. 而PA与AC是△PAC所在平面内的相交直线, 因此BC ⊥△PAC所在平面. 从而证得△PBC所在平面与△PAC所在平面垂直.
21. 已知:. 求证:
证法一(同一法):在上取点P作
又,
而与垂直,
证法二:设分别在内作且a,b 都过所在平面内外一点,
又又
证法三:设在内取一点P,并在内过点P分别作m、n的垂线a、b,
又。

相关文档
最新文档