高中数学-2.5《平面向量应用举例》教学设计

合集下载

高中数学教案《平面向量及其应用》

高中数学教案《平面向量及其应用》

教学设计:《平面向量及其应用》一、教学目标1.知识与技能:使学生理解平面向量的基本概念,包括向量的定义、表示方法(有向线段、坐标表示)、向量的模、方向角等;掌握向量的加法、减法、数乘及数量积的运算法则和几何意义;能运用向量知识解决简单的几何与物理问题。

2.过程与方法:通过观察、实验、推理等数学活动,培养学生的空间想象能力和逻辑推理能力;引导学生运用数形结合的思想,理解向量运算的几何背景,提高解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和勇于探索的精神;通过团队合作解决问题,增强学生的沟通能力和团队协作能力。

二、教学重点和难点●重点:平面向量的基本概念、向量的基本运算(加法、减法、数乘、数量积)及其几何意义。

●难点:理解向量数量积的概念、性质及其在解决实际问题中的应用;向量运算的坐标表示法及其应用。

三、教学过程1.导入新课o情境创设:通过展示风力发电机叶片的运动、航海中的航向与速度变化等实例,引出向量的概念,说明向量在现实生活中的应用价值。

o问题引入:提问学生如何描述这些运动中的方向和大小,引导学生思考向量的必要性。

o概念引入:正式给出平面向量的定义,强调其作为“有方向的量”的特性。

2.新知讲授o基本概念讲解:详细解释向量的表示方法(有向线段、坐标表示)、模长、方向角等概念,并通过图示加深理解。

o向量运算教学:●加法与减法:通过“平行四边形法则”和“三角形法则”演示向量的加法与减法,强调其几何意义。

●数乘:讲解数乘的定义,通过伸缩变换的直观演示,理解数乘对向量方向和大小的影响。

●数量积:引入数量积的概念,通过投影长度的计算,讲解其计算公式和性质,强调其在度量角度、判断方向等方面的应用。

3.例题解析o选取典型例题,覆盖向量运算的所有类型,逐步引导学生分析、解题,重点讲解解题思路和方法。

o强调解题过程中向量运算的几何背景,促进学生数形结合思维的发展。

4.学生活动o小组讨论:分组讨论向量在日常生活或专业领域的应用实例,每组选代表分享,增强课堂互动性。

《平面向量应用举例》高一年级下册PPT课件

《平面向量应用举例》高一年级下册PPT课件

第二章 平面向量
[解析] 以 B 为原点,BC 所在直线为 x 轴,建立如图所示的平面直角坐标
系.
∵AB=AC=5,BC=6, ∴B(0,0),A(3,4),C(6,0), 则A→C=(3,-4). ∵点 M 是边 AC 上靠近点 A 的一个三等分点, ∴A→M=31A→C=(1,-43),
8
∴M(4,3),
第二章 平面向量
(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线 段)是否垂直等,常运用向量垂直的条件:a⊥b⇔a· b=0(或 x1x2+y1y2=0)
_______________________________.
a· b cosθ=|a ||b|
(4)求与夹角相关的问题,往往利用向量的夹角公式________________.
第二章 平面向量
∴B→M=(4,8).
3
假设在 BM 上存在点 P 使得 PC⊥BM, 设B→P=λB→M,且 0<λ<1, 即B→P=λB→M=λ(4,83)=(4λ,83λ), ∴C→P=C→B+B→P=(-6,0)+(4λ,83λ)=(4λ-6,83λ). ∵PC⊥BM,∴C→P· B→M=0,
第二章 平面向量
[解析] A→B=(7-20)i+(0-15)j=-13i-15j, (1)F1所做的功 W1=F1· s=F1· A→B =(i+j)· (-13i-15j)=-28; F2 所做的功 W2=F2· s=F2· A→B =(4i-5j)· (-13i-15j)=23. (2)因为 F=F1+F2=5i-4j, 所以 F 所做的功 W=F· s=F· A→B =(5i-4j)· (-13i-15j)=-5.
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.

高三数学平面向量教学设计

高三数学平面向量教学设计

高三数学平面向量教学设计一、教学目标通过本节课的学习,学生应能够:1. 掌握平面向量的定义和基本性质;2. 理解平面向量的加法和减法运算法则;3. 熟练掌握平面向量的数量积定义和运算法则;4. 运用平面向量解决实际问题。

二、教学重点与难点2.1 教学重点:1. 平面向量的定义和基本性质;2. 平面向量的加法和减法运算法则;3. 平面向量的数量积的定义和运算法则。

2.2 教学难点:1. 平面向量的数量积的概念理解与应用;2. 运用平面向量解决实际问题。

三、教学准备1. 教学工具:黑板、彩色粉笔;2. 教材:高中数学教材;3. 教学辅助材料:练习题、习题讲解参考答案。

四、教学过程4.1 导入与复习(5分钟)通过简短的复习回顾上节课所学内容,激活学生对平面向量概念的知识和运算方法。

4.2 新知讲解(30分钟)Step 1: 平面向量的定义和基本性质(10分钟)1. 讲解平面向量的定义和向量的表示方法;2. 引导学生理解向量的模和方向以及零向量的概念;3. 进一步讲解平面向量的共线与共面的概念;4. 通过例题引导学生掌握向量的基本性质。

Step 2: 平面向量的加法和减法运算法则(10分钟)1. 介绍平面向量的加法和减法的运算定义;2. 引导学生运用向量三角形法则和平行四边形法则,解决相关的向量加法和减法问题;3. 通过例题讲解和练习让学生熟练掌握向量的加法和减法运算。

Step 3: 平面向量的数量积(10分钟)1. 讲解平面向量的数量积的概念和定义;2. 引导学生掌握数量积的运算法则和性质;3. 通过例题和练习巩固学生对数量积的理解和应用。

4.3 练习与巩固(40分钟)通过一系列的练习题让学生独立或小组合作完成,包括平面向量的加法、减法和数量积的计算和实际问题的应用。

教师可以布置一些难度适中和拓展性强的练习题,以提高学生的思维能力和解决问题的能力。

4.4 拓展与应用(10分钟)引导学生运用所学的平面向量知识解决实际问题,如力的合成、平面几何的证明等。

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用高中数学备课教案:向量的平面向量几何应用一、引言在高中数学中,向量是一个重要的概念,它具有广泛的应用。

其中,平面向量几何应用是向量的一个重要应用领域。

本篇教案将重点介绍向量的平面向量几何应用,并针对备课内容进行详细讲解。

二、向量的概念回顾在开始讲解向量的平面向量几何应用之前,我们首先回顾一下向量的概念。

向量是由大小和方向共同决定的有向线段,通常用有向线段的起点和终点表示。

向量的大小可以通过向量的模、长度或大小来表示,向量的方向可以用角度、单位向量或方向角来表示。

三、平面向量几何应用1. 向量的共线与共面判定向量的平面向量几何应用中,一个重要的问题是如何判断向量的共线与共面关系。

对于两个向量,如果它们的方向相同或相反,则称这两个向量共线;如果三个向量在同一个平面内,则称这三个向量共面。

2. 向量的数量积向量的数量积是向量的一种重要运算。

通过计算两个向量的数量积,我们可以求得它们的夹角、判定两个向量是否垂直、求解平面向量的几何问题等。

通过具体的例题,我们将详细介绍向量的数量积的计算方法及其应用。

3. 平面向量的线性组合平面向量的线性组合是指将若干个向量按照一定的比例相加得到的向量。

线性组合在平面向量几何中具有重要的意义,可以用来表示平面上的任意向量。

4. 平面向量与几何图形的关系在平面向量几何中,向量和几何图形之间有着密切的联系。

例如,可以通过向量的平移、旋转、反射等操作来描述几何图形的变换关系。

通过分析几何图形的性质,我们可以通过向量解决一些与几何图形相关的问题。

5. 平面向量的共面条件在平面向量几何应用中,我们常常需要判断若干个向量是否共面。

通过理论推导和实例演示,我们将介绍平面向量的共面条件以及解决问题的方法。

四、结语通过本教案的学习和讲解,我们详细介绍了向量的平面向量几何应用。

平面向量几何应用是高中数学中一个重要的应用领域,它为我们解决几何问题提供了强有力的工具和方法。

人教版高中数学必修二《第六章 平面向量及其应用》单元教学设计

人教版高中数学必修二《第六章 平面向量及其应用》单元教学设计

人教A版必修二《第六章平面向量及其应用》教学设计6.1 平面向量的概念【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第六章《平面向量及其应用》,本节课是第1课时,本节课内容包括向量的实际背景与概念、向量的几何表示、相等向量与共线向量。

本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。

在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等【教学目标与核心素养】【教学重点】:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.【教学难点】:平行向量、相等向量和共线向量的区别和联系.【教学过程】4.向量的模向量AB的大小,就是向量AB的长度(或模),记作||AB或记作||a。

思考:向量的模可以为0吗?可以为1吗?可以为负数吗?【答案】可以为0,1,不能为负数。

5.零向量:长度为0的向量,记作0.单位向量:长度等于1个单位的向量.说明:(1)零向量、单位向量的定义都是只限制大小,不确定方向.故零向量的方向是任意的,单位向量的方向具体而定. (2)注意:向量是不能比较大小的,但向量的模(是正数或零)是可以进行大小比较的.例1.在图中,分别用向量表示A地至B、C两地的位移,并根据图中的比例尺,并求出A地至B、C两地的实际距离(精确到1km)(三).相等向量与共线向量思考1:向量由其模和方向所确定.对于两个向量ba,,就其模等与不等,方向同与不同而言,有哪几种可能情形?【答案】模相等,方向相同;模相等,方向不相同;模不相等,方向相同;模不相等,方向不相同;1.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥提高思考,引入特殊的向量,增强对概念的理解,提高学生分析问题的能力。

必修四2-5-1~2平面向量应用举例

必修四2-5-1~2平面向量应用举例

课前探究学习
课堂讲练互动
活页规范训练
→ =a,AD → =b,由 E、F 分别为对应边的三等分点,得 解 设AB 1 1→ → → → FO=FA+AO=- a+ AC 3 2 1 1 1 1 =-3a+2(a+b)=6a+2b. 1→ 1 → 1 1 1 1 → → → OE=OC+CE=2AC+3CD=2(a+b)-3a=6a+2b. → =OE → ,又 O 为其公共点,故 E、O、F 在同一直线上. ∴FO
2.5 平面向量应用举例
2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例
课前探究学习
课堂讲练互动
活页规范训练
【课标要求】 1. 经历用向量方法解决某些简单的平面几何问题、 力学问题及 其他一些实际问题的过程. 2.体会向量是一种处理几何问题、物理问题等的工具,提高运 算能力和解决实际问题的能力. 3. 掌握用向量方法解决实际问题的基本方法; 向量方法解决几 何问题的“三步曲”. 【核心扫描】 1.用向量方法解决简单的几何问题、力学问题等一些实际问 题.(重点) 2.用向量方法解决实际问题的基本方法.(难点)
课前探究学习
课堂讲练互动
活页规范训练
名师点睛 1.用向量解决平面几何问题的步骤及方法 (1)用向量方法解决平面几何问题的“三步曲”:
可简述为:图形到向量→向量的运算→向量和数到图形.
课前探究学习
课堂讲练互动
活页规范训练
(2)一般可选择以下两种方法: ①基底法(基向量法):选择两个不共线的向量作为基底,用基 底表示相关向量,把问题转化为只含有基底向量的运算. ②坐标法:建立适当的坐标系,用坐标表示向量,把问题转化 为向量的坐标运算.
课前探究学习
课堂讲练互动

高中数学2.5平面向量应用举例2.5.1平面几何中的向量方法学案新人教A版必修4

高中数学2.5平面向量应用举例2.5.1平面几何中的向量方法学案新人教A版必修4

2.5 平面向量应用举例2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例学习目标:1.掌握用向量方法解决简单的几何问题、力学问题等一些实际问题.( 重点 )2.体会向量是一种处理几何问题、物理问题的重要工具.( 重点 )3.培养运用向量知识解决实际问题和物理问题的能力.( 难点 )[自 主 预 习·探 新 知]1.用向量方法解决平面几何问题的“三步曲”:( 1 )建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;( 2 )通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ( 3 )把运算结果“翻译”成几何关系. 2.向量在物理中的应用:( 1 )物理问题中常见的向量有力,速度,加速度,位移等.( 2 )向量的加减法运算体现在力,速度,加速度,位移的合成与分解. ( 3 )动量m v 是向量的数乘运算.( 4 )功是力F 与所产生的位移s 的数量积.[基础自测]1.思考辨析( 1 )若△ABC 是直角三角形,则有AB →·BC →=0.( ) ( 2 )若AB →∥CD →,则直线AB 与CD 平行.( )( 3 )用力F 推动一物体水平运动s m,则力F 对物体所做的功为|F ||s |.( ) [详细解析] ( 1 )错误.因为△ABC 为直角三角形,∠B 并不一定是直角,有可能是∠A 或∠C 为直角.( 2 )错误.向量AB →∥CD →时,直线AB ∥CD 或AB 与CD 重合. ( 3 )错误.力F 对物体所做的功为F ·s . [正确答案] ( 1 )× ( 2 )× ( 3 )×2.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m,且F 与s 的夹角为60°,则力F 所做的功W =________J.300 [W =F ·s =6×100×cos 60°=300( J ).]3.设M 是线段BC 的中点,点A 在直线BC 外,|BC 2→|=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.2 [∵|AB →+AC →|=|AB →-AC →|, ∴AB →·AC →=0,AB →⊥AC →,∴△ABC 是直角三角形,BC 为斜边, ∴|AM →|=12|BC →|=12×4=2.][合 作 探 究·攻 重 难]向量在平面几何中的应用( 1 )已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·CA →|AC →|=12,则△ABC 的形状是( )A .三边均不相等的三角形B .直角三角形C .等腰三角形D .等边三角形( 2 )已知四边形ABCD 是边长为6的正方形,E 为AB 的中点,点F 在BC 上,且BF ∶FC =2∶1,AF 与EC 相交于点P ,求四边形APCD 的面积.[思路探究] ( 1 )先由平行四边形法则分析AB→|AB →|+AC→|AC →|的几何意义,由数量积为0推出垂直关系,再由AB→|AB →|·CA →|AC →|=12求∠BAC ,最后判断△ABC 的形状. ( 2 )先建系设点P 坐标,再根据A ,P ,F 和C ,P ,E 分别共线求点P 坐标,最后求四边形APCD 的面积.( 1 )C [( 1 )由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,得∠A 的平分线垂直于BC ,所以AB =AC ,设AB →,CA →的夹角为θ,而AB→|AB →|·CA →|AC →|=cos θ=12, 又θ∈[0,π],所以∠BAC =π-π3=23π,故△ABC 为等腰三角形.( 2 )以A 为坐标原点,AB 为x 轴AD 为y 轴建立直角坐标系,如图所示,∴A ( 0,0 ),B ( 6,0 ),C ( 6,6 ),D ( 0,6 ),F ( 6,4 ),E ( 3,0 ),设P ( x ,y ),AP →=( x ,y ), AF →=( 6,4 ),EP →=( x -3,y ),EC →=( 3,6 ).由点A ,P ,F 和点C ,P ,E 分别共线,得⎩⎪⎨⎪⎧4x -6y =0,6x -3-3y =0,∴⎩⎪⎨⎪⎧x =92,y =3,∴S 四边形APCD =S 正方形ABCD -S △AEP -S △CEB =36-12×3×3-12×3×6=452.]母题探究:1.将本例1( 1 )的条件改为( OB →-OC → )·( OB →+OC →-2OA →)=0,试判断△ABC 的形状.[详细解析] ∵( OB →-OC → )·( OB →+OC →-2OA →)=0, ∴( OB →-OC → )·( OB →-OA →+OC →-OA →)=0, ∴CB →·( AB →+AC →)=0, ∴( AB →-AC → )·( AB →+AC →)=0, ∴AB 2→-AC 2→=0,即|AB →|2-|AC →|2=0, 所以|AB →|=|AC →|, ∴△ABC 是等腰三角形.2.将本例1( 2 )的条件“BF ∶FC =2∶1”改为“BF ∶FC =1∶1”,求证:AF ⊥DE .[证明] 建立如图所示的平面直角坐标系, 则A ( 0,0 ),B ( 6,0 ),C ( 6,6 ),D ( 0,6 ),则中点E ( 3,0 ),F ( 6,3 ),∴AF →=( 6,3 ),DE →=( 3,-6 ), ∴AF →·DE →=6×3+3×( -6 )=0, ∴AF →⊥DE →,∴AF ⊥DE . [规律方法]1向量法证明平面几何中AB ⊥CD 的方法:法一:①选择一组向量作基底;②用基底表示AB →和CD →;③证明AB →·CD →的值为0;④给出几何结论AB ⊥CD .法二:先求AB →,CD →的坐标,AB →=x 1,y 1,CD →=x 2,y 2,再计算AB →·CD →的值为0,从而得到几何结论AB ⊥CD .2用向量法证明平面几何中AB ∥CD 的方法:法一:①选择一组向量作基底;②用基底表示AB →和CD → );③寻找实数λ,使AB →=λCD →,即AB →∥CD →;④给出几何结论AB ∥CD .法二:先求AB →,CD →的坐标,AB →=x 1,y 1,CD →=x 2,y 2.利用向量共线的坐标关系x 1y 2-x 2y 1=0得到AB →∥CD →,再给出几何结论AB ∥CD .,以上两种方法,都是建立在A ,B ,C ,D 中任意三点都不共线的基础上,才有AB →∥CD →得到AB ∥CD .向量在详细解析几何中的应用已知点A ( 1,0 ),直线l :y =2x -6,点R 是直线l 上的一点,若RA →=2AP →,求点P的轨迹方程.【2265】[思路探究] 设Px ,y ,R x 0,y 0→依据 RA →=2AP →找x ,y 与x 0,y 0的关系→由点R 在直线l 得y 0=2x 0-6→消x 0,y 0得x 与y的关系即为所求[详细解析] 设P ( x ,y ),R ( x 0,y 0 ), 则RA →=( 1,0 )-( x 0,y 0 )=( 1-x 0,-y 0 ), AP →=( x ,y )-( 1,0 )=( x -1,y ).由RA →=2AP →,得⎩⎪⎨⎪⎧1-x 0=2x -1,-y 0=2y .又∵点R 在直线l :y =2x -6上,∴y 0=2x 0-6,∴⎩⎪⎨⎪⎧1-x 0=2x -2, ①6-2x 0=2y , ②由①得x 0=3-2x ,代入②得6-2( 3-2x )=2y ,整理得y =2x ,即为点P 的轨迹方程. [规律方法] 用向量方法解决详细解析几何问题的步骤:一是把详细解析几何问题中的相关量用向量表示;二是转化为向量模型,通过向量运算解决问题;三是将结果还原为详细解析几何问题.[跟踪训练]1.已知△ABC 的三个顶点A ( 0,-4 ),B ( 4,0 ),C ( -6,2 ),点D ,E ,F 分别为边BC ,CA ,AB 的中点.( 1 )求直线DE 的方程;( 2 )求AB 边上的高线CH 所在直线的方程.[详细解析] ( 1 )设M ( x ,y )是直线DE 上任意一点, 则DM →∥DE →,因为点D ,E 分别为边BC ,CA 的中点,所以点D ,E 的坐标分别为D ( -1,1 ),E ( -3,-1 ), DM →=( x +1,y -1 ),DE →=( -2,-2 ),所以( -2 )( x +1 )-( -2 )( y -1 )=0, 即x -y +2=0为直线DE 的方程.( 2 )设点N ( x ,y )是CH 所在直线上任意一点,则CN →⊥AB →,所以CN →·AB →=0, 又CN →=( x +6,y -2 ),AB →=( 4,4 ), 所以4( x +6 )+4( y -2 )=0, 即x +y +4=0为所求直线CH 的方程.平面向量在物理中的应用[探究问题]1.向量的数量积与功有什么联系?提示:物理上力作功的实质是力在物体前进方向上的分力与物体位移距离的乘积,它的实质是向量的数量积.2.用向量方法解决物理问题的一般步骤是什么?提示:用向量方法解决物理学中的相关问题,一般来说分为四个步骤:①问题转化,即把物理问题转化为数学问题;②建立模型,即建立以向量为载体的数学模型;③求解参数,即求向量的模、夹角、数量积等;④回答问题,即把所得的数学结论回归到物理问题中.( 1 )一物体在力F 1=( 3,-4 ),F 2=( 2,-5 ),F 3=( 3,1 )的共同作用下从点A ( 1,1 )移动到点B ( 0,5 ).在这个过程中三个力的合力所做的功等于________.( 2 )设作用于同一点的三个力F 1,F 2,F 3处于平衡状态,若|F 1|=1,|F 2|=2,且F 1与F 2的夹角为23π,如图2­5­1所示.图2­5­1①求F 3的大小. ②求F 2与F 3的夹角.【2266】[思路探究] ( 1 )求出合力、位移的坐标表示 →利用数量积求功( 2 )①由三个力处于平衡状态用F 1,F 2表示F 3 →用向量模的计算公式求F 3的大小②用F 1,F 2表示F 3→构造F 2·F 3→利用夹角公式求解( 1 )-40 [因为F 1=( 3,-4 ),F 2=( 2,-5 ),F 3=( 3,1 ),所以合力F =F 1+F 2+F 3=( 8,-8 ),AB →=( -1,4 ),则F ·AB →=-1×8-8×4=-40, 即三个力的合力所做的功为-40.] ( 2 )①由题意|F 3|=|F 1+F 2|,因为|F 1|=1,|F 2|=2,且F 1与F 2的夹角为23π,所以|F 3|=|F 1+F 2|=1+4+2×1×2×⎝ ⎛⎭⎪⎫-12= 3. ②设F 2与F 3的夹角为θ, 因为F 3=-( F 1+F 2 ), 所以F 3·F 2=-F 1·F 2-F 2·F 2, 所以3·2·cos θ=-1×2×⎝ ⎛⎭⎪⎫-12-4, 所以cos θ=-32, 所以θ=56π.[规律方法] 向量在物理中的应用: 1求力向量,速度向量常用的方法:一般是向量几何化,借助于向量求和的平行四边形法则求解.2用向量方法解决物理问题的步骤:①把物理问题中的相关量用向量表示;②转化为向量问题的模型,通过向量运算使问题解决; ③结果还原为物理问题. [跟踪训练]2.在静水中划船速度的大小是每分钟40 m,水流速度的大小是每分钟20 m,如果一小船从岸边O 处出发,沿着垂直于水流的航线到达对岸,则小船的行进方向应指向哪里?[详细解析] 如图所示,设向量OA →的长度和方向表示水流速度的大小和方向,向量OB →的长度和方向表示船在静水中速度的大小和方向,以OA →,OB →为邻边作平行四边形OACB ,连接OC .依题意OC ⊥OA ,BC =OA =20,OB =40, ∴∠BOC =30°.故船应向上游( 左 )与河岸夹角为60°的方向行进.[当 堂 达 标·固 双 基]1.过点M ( 2,3 ),且垂直于向量u =( 2,1 )的直线方程为( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0D .x -2y -4=0A [设P ( x ,y )是所求直线上任一点,则MP →⊥u .又MP →=( x -2,y -3 ),所以2( x -2 )+( y -3 )=0,即2x +y -7=0.]2.已知点A ( 2,3 ),B ( -2,6 ),C ( 6,6 ),D ( 10,3 ),则以ABCD 为顶点的四边形是( )【2267】A .梯形B .邻边不相等的平行四边形C .菱形D .两组对边均不平行的四边形B [因为AD →=( 8,0 ),BC →=( 8,0 ),所以AD →=BC →,因为BA →=( 4,-3 ),所以|BA →|=5,而|BC →|=8,故为邻边不相等的平行四边形.]3.已知作用在点A 的三个力f 1=( 3,4 ),f 2=( 2,-5 ),f 3=( 3,1 ),且A ( 1,1 ),则合力f =f 1+f 2+f 3的终点坐标为( )A .( 9,1 )B .( 1,9 )C .( 9,0 )D .( 0,9 )A [f =f 1+f 2+f 3=( 3,4 )+( 2,-5 )+( 3,1 )=( 8,0 ),设终点为B ( x ,y ),则( x -1,y -1 )=( 8,0 ),所以⎩⎪⎨⎪⎧x -1=8,y -1=0,所以⎩⎪⎨⎪⎧x =9,y =1,所以终点坐标为( 9,1 ).]4.坐标平面内一只小蚂蚁以速度v =( 1,2 )从点A ( 4,6 )处移动到点B ( 7,12 )处,其所用时间长短为________.3 [设所用时间长短为t ,则 AB →=t v ,即( 3,6 )=t ( 1,2 ),所以t =3.]5.已知△ABC 是直角三角形,CA =CB ,D 是CB 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .【2268】[证明] 以C 为原点,CA 所在直线为x 轴,CB 所在直线为y 轴,建立平面直角坐标系( 略 ).设AC =a ,则A ( a,0 ),B ( 0,a ),D ⎝⎛⎭⎪⎫0,a 2,C ( 0,0 ),E ⎝ ⎛⎭⎪⎫13a ,23a . 因为AD →=⎝ ⎛⎭⎪⎫-a ,a 2,CE →=⎝ ⎛⎭⎪⎫13a ,23a ,所以AD →·CE →=-a ·13a +a 2·23a =0,所以AD →⊥CE →,即AD ⊥CE .。

高中数学必修四《平面几何中的向量方法》优秀教学设计

高中数学必修四《平面几何中的向量方法》优秀教学设计

2.5.1平面几何中的向量方法一、教学目标1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”;2.了解平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示;3.通过对新方法的探求,渗透教学内容中普遍存在的相互联系、相互转化的观点学情分析高一学生的应用意识和应用能力比较弱,而运用向量知识解决几何问题,需要有一定的知识迁移、语言转换能力,这些要求对学生的学习造成了一定的困难。

在思维层面上,学生往往难以想到平面几何与向量之间的密切联系,或是不善于将几何实际问题转化为向量问题来解决。

因此,在本节应用实例课的教学过程中,重点将放在向量的几何背景知识上,着重引导学生怎样将几何实际问题转化为向量问题。

二、教学重、难点重点:用向量方法解决几何问题的基本方法和基本步骤 难点:如何构建向量模型将平面几何问题化归为向量问题 三、教学过程: (一)直接引入向量概念和运算,都有明确的物理背景和几何背景。

当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。

(二)探究新知 【情境引入】长方形对角线的长度与两条邻边长度之间有何关系?答:222222AB BC CD DA AC BD +++=+【师生活动】教师设问,学生画图,【设计意图】长方形是特殊的平行四边形,公式结论是学生已知的,为研究平行四边形这个一般问题奠定了基础,体现了由特殊到一般的数学思想.例1.平行四边形是表示向量加法与减法的几何模型.如图,AC AB AD DB AB AD =+=-, 类比长方形对角线的长度与两条邻边长度之间的上述关系,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?思考1:题中的几何问题可转化为向量问题吗? 【师生活动】分析:不妨设,AB a AD b ==, (选择这组基底,其它线段对应向量用它们表示.) 则,AC a b DB a b =+=-,2222,AB a AD b ==.涉及长度问题常常考虑向量的数量积,为此,我们计算22,AC DB . 解:222()()2AC AC AC a b a b a a a b b a b b a a b b==++=+++=++(1)同理2DB =222.a a b b -+(2)观察(1),(2)两式的特点,我们发现,(1)(2)+得2222222()2()AC DB a b AB AD +=+=+即平行四边形对角线的平方和等于两条邻边平方和的两倍.【设计说明】教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系,利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和,并运用向量方法进行证明.【设计意图】借助平行四边形这个向量加法与减法的几何模型,引导学生用向量的数量积证明与长度有关的几何问题,加强向量方法的“三步曲”的应用.思考2:向量也可以坐标运算,那么本题可以如何建立直角坐标系,设点的坐标转化为向量的坐标进行运算呢?解:如图建立平面直角坐标系,设(,0),(,)B a D b c ,则(,)C a b c +(,0),(,),AB a AD b c ==(,),(,)AC a b c DB a b c =+=--22||,||,AB a AD b c ==+22||(),||()AC a b c DB a b c =++=-+2222AB BC CD DA +++=222222(||||)2(),AB AD a b c +=++22AC BD +=22222||||2()AC DB a b c +=++222AB BD +=|222AD AB += 2222||||||||AD DC BC AB +++【师生活动】教师可引导学生思考探究,利用向量的几何法简捷地解决了平面几何问题,可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标,如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢? 教师引导学生建系、找点的坐标,然后让学生独立完成.【设计意图】进一步调动学生的思维,引导学生应用不同的向量方法解决典型问题,有利于培养学生的发散思维能力.思考3:如果不用向量方法,你能用其他方法证明上述结论吗? 证明:作CF AB ⊥于F ,DE AB ⊥于E ,则RT ADE RT BCF ∆≅∆,,AD BC AE BF ∴==, 由于22222()AC AF CF AB BF CF =+=++2222222AB BF AB BF CF AB BC AB BF=+++=++22222222()2BD BE DE AB AE DE AB AB AE AE DE =+=-+=-++222AB AB AE AD =-+222AB AB AE BC =-+22222()AC BD AB AD ∴+=+.【师生活动】教师可引导学生思考探究,学生作辅助线,利用平面几何勾股定理解决问题.【设计意图】教师充分让学生对以上各种方法进行分析比较,在培养学生发散思维的同时,让学生体会向量法解决几何问题的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.方法四:证明:由余弦定理得2222cos AC DA DC DA DC CDA =+-⋅⋅∠ ① 2222cos BD AD AB AD AB DAB =+-⋅⋅∠ ②DC AB =且CDA DAB π∠=-∠cos cos()cos CDA DAB DAB π∴∠=-∠=-∠ ∴①+②得222222AC BD AB AD +=+(三)理解新知【师生活动】师:通过以上问题的解决,我们总结一下运用向量方法解决平面几何问题可以分哪几个步骤?生:运用向量方法解决平面几何问题“三步曲”: (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系.师生共同简述:形到向量 ⇒ 向量的运算⇒向量和数到形.【设计意图】总结解题方法,加深对用向量方法处理平面几何问题的一般步骤的理解,突破重难点.(四)运用新知例2.如图,平行四边形ABCD 中,点,E F 分别是,AD DC 边的中点,,BE BF 分别与AC 交于,R T 两点,你能发现,,AR RT TC 之间的关系吗?猜想:AR RT TC ==【师生活动】分析:由于,R T 是对角线AC 上的两点,要判断,,AR RT TC 之间的关系,只需分别判断,,AR RT TC 与AC 的关系即可解:第一步, 建立平面几何与向量的关系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题:设,,,AB a AD b AR r AC a b ====+则. 第二步, 通过向量运算,研究几何元素之间的关系: 由于AR 与AC 共线,所以我们设又因为12EB AB AE a b =-=-ER 与EB 共线,所以我们设1()2ER mEB m a b ==-因为(),AR r nAC n a b n R ===+∈A R A E E R=+所以11()22r b m a b =+- 因此11()()22n a b b m a b +=+-, 即1()()02m n m a n b --++=. 由于向量,a b 不共线,要使上式为0,必须0102n m m n -=⎧⎪⎨-+=⎪⎩. 解得13n m ==. 所以13AR AC =. 同理13TC AC =. 于是13RT AC =. 第三步,把运算结果“翻译”成几何关系AR RT TC ==.【设计说明】此题对学生而言有一定难度,先用几何画板动态演示并展示测量的数据,让学生观察猜想出结论,师生共同分析,指导学生如何将几何问题化归为向量问题,突破本题难点,引导学生用待定系数法表示两平行向量,进而解答出此题. 通过“举一反三”,让学生熟练应用此题中的数学思想和方法.【设计意图】通过此题进一步熟悉向量法的“三步曲”的应用,同样重要的是此题应用到了平行向量基本定理和平面向量基本定理,用向量的数乘表示其平行向量的重要数学思想,和待定系数法这个重要的数学方法.通过此题启发学生灵活运用向量工具解几何问题.变式练习1. 已知AC 为圆O 的一条直径,ABC ∠为圆周角.求证:90ABC ∠=. 证明:设,,AO a OC OB b a b ====,AB AO OB a b =+=+BC a b =-,22()()0AB BC a b a b a b =+-=-=AB BC ∴⊥,90ABC ∴∠=.【设计意图】让学生学会灵活的利用圆的特性、线段垂直的关系等知识巧妙地将几何问题化归为向量问题.变式练习2. 已知在等腰ABC ∆中,,BB CC ''是两腰上的中线,且BB CC ''⊥,求顶角A 的余弦值.解:建立如图所示的平面直角坐标系,取(0,),(,0)A a C c 则(,0)B c -,(0,),(,),(,0),(2,0)OA a BA c a OC c BC c ====.因为,BB CC ''′都是中线,所以'BB =21()BC BA += 3(,)22c a, 同理CC =3(,)22c a-.因为BB CC ''⊥,所以229044ac -+=,229a c =. 所以cos A =542992222222=+-=+-=c c c c ca c a . 【设计说明】教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?教师引导学生建系、找点的坐标,然后让学生独立完成.【设计意图】本例利用的方法与探究2有所不同,但其本质是一致的,比较两种解法的异同,找出其内在的联系,以达融会贯通,灵活运用. 课堂练习:1.向量,,b OB a OA ==且不共线, 则AOB ∠的平分线OM 可表示为( D ).,.,a b a b A B aba b+++..()b a a b a b C D a babλ+++2.如图,已知,,AD BE CF 是ABC ∆三条高.求证:,,AD BE CF 交于一点. 分析:设AD 与BE 交于H ,只须证⊥由此可设=,=,=如何证⊥?如何证0=⋅?利用AH ⊥CB ,BH ⊥CA .(解答过程由学生完成) (五)课堂小结1.用向量法解平面几何问题的基本思路 用向量方法解决平面几何的“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系.简述:形到向量 ⇒向量的运算⇒向量和数到形. 2.本节课用到了哪些思想方法? 平面向量的基本定理ABC D EFH如果12,e e 是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+.说明:(1)作为基底的两个向量必须不共线(2)用基底可以表示平面内任意一个向量 (3)基底给定时,分解形式唯一.当要表示同一平面内的多个向量时,要想到“向量基底化”思想.【设计意图】使学生把解题过程中的思想方法总结出来,达到思维能力的提升,从而更广泛的应用于以后的学习中. (六)布置作业 1.必做题:课本P113 A 组1、2 2.选做题: 设过AOB ∆的重心G 的直线与边,OA OB 分别交于点,P Q ,设,OP xOA OQ yOB ==,AOB ∆ 与OPQ ∆的面积分别是,S T ,证明:(1)311=+y x ; (2)S T S 2191≤≤. 【设计意图】巩固基础知识,设置分层作业,满足每一位学生,增强学生学习数学的愿望和信心.3. 课后练习 自主学习丛书2.5ABO PQG。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5《平面向量应用举例》教学设计【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题;2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神.【导入新课】回顾提问:(1)若O 为ABC ∆重心,则OA +OB +OC =0. (2)水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3)两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来.新授课阶段探究一:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来: 例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+(平移),DB AB AD a b =-=-,222||AD b AD ==(长度).向量AD ,AB 的夹角为DAB ∠.因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果 “翻译”成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用例1 证明:平行四边形两条对角线的平方和等于四条边的平方和.已知:平行四边形ABCD .求证:222222AC BD AB BC CD DA +=+++.分析:用向量方法解决涉及长度、夹角的问题时,我们常常要考虑向量的数量积.注意到AC AB AD =+, DB AB AD =-,我们计算2||AC 和2||BD . 证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -b ,2||AB =|a |2,2||AD =|b |2.得2||AC AC AC =⋅=( a +b )·( a +b )= a ·a+ a ·b +b ·a+b ·b = |a |2+2a ·b +|b |2. ①同理,2||DB =|a |2-2a ·b +|b |2. ② ①+②得 2||AC +2||DB =2(|a |2+|b |2)=2(2||AB +2||AD ). 所以,平行四边形两条对角线的平方和等于四条边的平方和.师:你能用几何方法解决这个问题吗?让学生体会几何方法与向量方法的区别与难易情况.师:由于向量能够运算,因此它在解决某些几何问题时具有优越性,他把一个思辨过程变成了一个算法过程,可以按照一定的程序进行运算操作,从而降低了思考问题的难度.用向量方法解决平面几何问题,主要是下面三个步骤:⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;⑶把运算结果“翻译”成几何关系.变式训练:ABC ∆中,D 、E 、F 分别是AB 、BC 、CA 的中点,BF 与CD 交于点O ,设,.AB a AC b ==(1)证明A 、O 、E 三点共线;(2)用,a b 表示向量AO .例2 如图,平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?分析:由于R 、T 是对角线AC 上两点,所以要判断AR 、RT 、TC 之间的关系,只需要分别判断AR 、RT 、TC 与AC 之间的关系即可.解:设AB =a ,AD =b ,则AC =a +b .因为AR 与AC 共线,因此,存在实数m ,使得AR =m (a +b ).又因为BR 与BE 共线,因此存在实数n ,使得BR =n BE = n (12b - a ). 由AR AB BR =+=AB + n BE ,得m (a +b )= a + n (12b - a ). 整理得(1)m n +-a +1()2m n -b =0. 由于向量a 、b 不共线,所以有 10,10,2m n m n +-=⎧⎪⎨-=⎪⎩解得1,32.3m n ⎧=⎪⎪⎨⎪=⎪⎩所以13AR AC =. 同理 13TC AC =. 于是 13RT AC =. 所以 AR =RT =TC .说明:本例通过向量之间的关系阐述了平面几何中的方法,待定系数法使用向量方法证明平面几何问题的常用方法.探究二:(1)两个人提一个旅行包,夹角越大越费力.为什么?(2)在单杠上做引体向上运动,两臂夹角越小越省力.为什么?师:向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用所获得的结果解释物理现象.例3 在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?分析:上面的问题可以抽象为如右图所示的数学模型.只要分析清楚F 、G 、θ三者之间的关系(其中F 为F 1、F 2的合力),就得到了问题的数学解释.解:不妨设|F 1|=|F 2|, 由向量加法的平行四边形法则,物理的平衡原理以及直角三角形的指示,可以得到|F 1|=||2cos 2G θ.通过上面的式子我们发现,当θ由0~180逐渐变大时,2θ由0~90逐渐变大,cos 2θ的值由大逐渐变小,因此,|F 1|有小逐渐变大,即F 1、F 2之间的夹角越大越费力,夹角越小越省力.师:请同学们结合刚才这个问题,思考下面的问题:⑴θ为何值时,|F 1|最小,最小值是多少?⑵|F 1|能等于|G |吗?为什么?例4 如图,一条河的两岸平行,河的宽度500d =m ,一艘船从A 处出发到河对岸.已知船的速度|v 1|=10km/h ,水流的速度|v 2|=2km/h ,问行驶航程最短时,所用的时间是多少(精确到0.1min)?分析:如果水是静止的,则船只要取垂直于对岸的方向行驶,就能使行驶航程最短,所用时间最短.考虑到水的流速,要使船的行驶航程最短,那么船的速度与水流速度的合速度v 必须垂直于对岸.(用《几何画板》演示水流速度对船的实际航行的影响)解:||v =2212||||96v v -=(km/h),所以, 60 3.1||96d t v ==⨯≈(min). 答:行驶航程最短时,所用的时间是3.1 min .本例关键在于对“行驶最短航程”的意义的解释,即“分析”中给出的船必须垂直于河岸行驶,这是船的速度与水流速度的合速度应当垂直于河岸,分析清楚这种关系后,本例就容易解决了.例5 已知2||=a 3||=b ,b a 与的夹角为60o ,b a c 35+=,b k a d +=3,当实数k 为何值时,⑴c ∥d ?⑵d c ⊥?解:⑴若c ∥d ,得59=k ;⑵若d c ⊥,得29.14k =- 例6 如图,ABCD 为正方形,P 是对角线DB 上一点,PECF 为矩形,求证:①PA=EF ; ②PA ⊥EF.解:以D 为原点,DC 为x 轴正方向建立直角坐标系,则A(0,1), C:(1,0), B:(1,1).)22,22(,r r P r DP 则设=. 22(,1).PA r r ∴=-- 22(1,),:(,0),E r F r 点为 22(1,).EF r r ∴=-- 2222||()(1).22PA r r ∴=-+- 2222||(1)().22EF r r ∴=-+- 故.PA EF =0.PA EF PA EF ⋅=⇒⊥而例7 如图,矩形ABCD 接于半径为r 的圆O ,点P 是圆周上任意一点, 求证:PA 2+PB 2+PC 2+PD 2=8r 2.证明:,,BD PD PB AC PC PA =-=-22222222||()||2||,||()||2||.BD PD PB PD PBPD PB AC PC PA PC PCPA PA ∴=-=-+=-=-+,,,0.BD AC PD PB PA PC PD PB PA PC ⊥⊥⇒⋅=⋅=为直径故222222||||||||||||,BD AC PA PB PC PD ∴+=+++即2222222448.r r PA PB PC PD r +=+++=例8 已知P 为△ABC 一点,且3AP +4BP +5CP =0.延长AP 交BC 于点D ,若AB =a ,AC =b ,用a 、b 表示向量AP 、AD .解:∵BP =AP -AB =AP -a , CP =AP -AC =AP -b ,又 3AP +4BP +5CP =0,∴ 3AP +4(AP -a )+5(AP -b )=0,化简,得AP =31a +125b . 设AD =t AP (t ∈R ),则 AD =31t +125t . ① 又设 =k (k ∈R ),由 BC =AC -=b -,得 =k (b -). 而 AD =AB +BD =a +BD ,∴ =+k (-)=(1-k )+k . ②由①②,得⎪⎪⎩⎪⎪⎨⎧=-=.k t k t 125131解得 t =34. 将之代入①,有 AD =94a +95b . 课堂小结利用向量的方法解决平面几何问题的“三步曲”?(1) 建立平面几何与向量的联系,(2) 通过向量运算,研究几何元素之间的关系,(3) 把运算结果“翻译”成几何关系.作业见同步练习拓展提升一、 选择题1.给出下面四个结论:① 若线段AC=AB+BC ,则向量AC AB BC =+;② 若向量AC AB BC =+,则线段AC=AB+BC ;③ 若向量AB 与BC 共线,则线段AC=AB+BC;④ 若向量AB 与BC反向共线,则BC AB +=+. 其中正确的结论有 ( )A. 0个B.1个C.2个D.3个2.河水的流速为2m /s ,一艘小船想以垂直于河岸方向10m /s 的速度驶向对岸,则小船的静止速度大小为 ( )A.10m /sB. 262m /sC. 64m /sD.12m /s3.在ABC ∆中,若)()(-•+=0,则ABC ∆为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定二、填空题4.已知ABC ∆两边的向量21,e e ==,则BC 边上的中线向量用1e 、2e 表示为 .参考答案 1.B 2.B 3.C 4.)(2121e e +=。

相关文档
最新文档