城市轨道交通用能与节能的思考

合集下载

86. 如何通过轨道交通促进节能减排?

86. 如何通过轨道交通促进节能减排?

86. 如何通过轨道交通促进节能减排?86、如何通过轨道交通促进节能减排?在当今全球气候变化和环境压力日益严峻的背景下,节能减排成为了人类社会可持续发展的关键任务。

而轨道交通作为一种高效、大运量的公共交通方式,在促进节能减排方面具有显著的优势和潜力。

轨道交通的能源利用效率相对较高。

与私人汽车相比,地铁、轻轨等轨道交通工具在单位运输量上所消耗的能源要少得多。

这是因为轨道交通通常采用电力驱动,且在运行过程中能够充分利用惯性和再生制动技术,将车辆制动时产生的能量回收并重新利用,从而有效地降低了能源的消耗。

从规划和设计的角度来看,合理的轨道交通线路布局对于节能减排至关重要。

在规划时,应充分考虑城市的人口分布、就业中心、商业区域等因素,使线路能够最大程度地覆盖出行需求集中的区域,减少不必要的出行距离和换乘次数。

同时,站点的设置也需要精心考量,以提高乘客的便利性和可达性。

通过优化线路和站点布局,可以提高轨道交通的吸引力,引导更多人选择这种绿色出行方式,从而减少私人汽车的使用,降低整体的能源消耗和尾气排放。

轨道交通的车辆技术不断创新和进步,也为节能减排带来了新的机遇。

例如,采用更先进的牵引电机、轻量化的车体材料、高效的空调系统等,都能够降低车辆的能耗。

此外,新型的储能技术如超级电容和电池,也为轨道交通的能源供应提供了更多的选择。

在一些城市,已经开始尝试使用氢燃料电池列车,实现了真正的零排放运行。

智能化的运营管理系统对于轨道交通的节能减排同样具有重要意义。

通过实时监测和分析客流量、列车运行状态等数据,可以实现精准的调度和运力配置。

在客流低谷时段,可以适当减少列车的开行频次,避免能源的浪费;而在高峰时段,则可以增加列车的编组或加密车次,以满足乘客的出行需求。

同时,智能化的信号系统能够优化列车的运行速度和间隔,减少列车的启停次数,进一步降低能耗。

轨道交通与其他交通方式的有效衔接和整合,也是促进节能减排的重要环节。

例如,在地铁站附近设置公交换乘枢纽、自行车停放点和共享单车投放点,方便乘客在轨道交通与其他交通方式之间进行无缝切换。

城市轨道车辆节能运行方式的研究

城市轨道车辆节能运行方式的研究

城市轨道车辆节能运行方式的研究城市轨道车辆作为一种重要的公共交通方式,对于减少交通拥堵、改善城市环境、节约能源等方面具有重要意义。

因此,研究城市轨道车辆的节能运行方式成为了当下的热门课题。

本文将探讨一些节能运行方式,以期为城市轨道车辆的可持续发展提供参考。

一、优化车辆设计城市轨道车辆的设计对其节能运行起着决定性的作用。

在车辆设计中,应考虑轻量化、低阻力等因素。

首先,通过采用轻量化的材料,可以减轻车辆的重量,从而降低能耗。

其次,减小车辆的空气阻力也能有效提高车辆的能效。

通过优化车体外形、减少车辆的空气阻力系数,可以降低车辆在高速运行时所受到的空气阻力,从而减少能源的消耗。

二、改善能源利用效率要实现城市轨道车辆的节能运行,还需要提高能源的利用效率。

一方面,可以通过提高车辆的能量回收利用率来实现。

例如,采用制动能量回收技术,将制动过程中产生的能量回收并储存起来,用于车辆的加速等其他工作。

另一方面,可以采用高效的动力系统,如永磁同步电机等,提高车辆的能源利用效率。

三、优化行车策略行车策略的合理设计对城市轨道车辆的节能运行至关重要。

在行车策略中,应考虑优化车辆的起停、加速和减速等行为,以减少能源的浪费。

例如,合理控制车辆的起停时间,避免频繁的起停操作,可以降低能源的消耗。

此外,通过合理的加速和减速控制,以减少能量的损耗,也能有效提高车辆的能效。

四、改善线路设计城市轨道车辆的线路设计也对其节能运行具有重要影响。

合理的线路设计可以减少车辆的能耗和运行时间。

一方面,线路设计应考虑减少车辆的弯道数量和半径,以降低车辆在转弯过程中受到的摩擦阻力和能量损耗。

另一方面,线路设计中应避免过多的上下坡,以减少车辆在爬坡和下坡过程中的能量消耗。

城市轨道车辆的节能运行方式涉及车辆设计、能源利用效率、行车策略和线路设计等多个方面。

通过优化车辆设计、改善能源利用效率、优化行车策略和改善线路设计等措施,可以有效提高城市轨道车辆的能效,实现节能运行。

轨道交通发展现状及思考

轨道交通发展现状及思考

轨道交通发展现状及思考1.引言1.1 概述轨道交通作为一种重要的城市公共交通方式,其在解决交通压力、减少环境污染、提高交通效率等方面具有独特的优势,受到越来越多城市的青睐。

本文将就轨道交通的发展现状进行分析,并探讨对其发展的思考和展望。

随着城市化进程的加快,人口规模的不断增大,传统的城市交通方式已经难以应对日益增长的交通需求。

而轨道交通由于其高运载能力、快速便捷、环保低碳等特点,成为解决城市交通问题的重要手段。

轨道交通包括城市轨道交通(如地铁、轻轨等)和高铁等。

它们利用铁轨作为运行的基础,在城市内部和城市之间提供快速、高效、安全的交通服务。

在当前轨道交通的发展中,地铁成为城市交通的主力军。

越来越多的城市纷纷投入巨资兴建地铁线路,以缓解城市交通压力。

地铁线路的建设不仅提升了城市的交通运输能力,也改善了人们的出行体验。

此外,随着科技的进步,高铁的发展也在稳步推进,高铁的飞速运行不仅缩短了城市之间的时间距离,也促进了区域经济的发展。

然而,当前轨道交通发展也面临一些挑战和问题。

一方面,城市轨道交通的建设往往需要大量的资金投入,对城市的财政和资源造成一定的压力。

另一方面,现有的轨道交通网络仍然存在一些短板,如线路不够密集、终点站与居民区之间的距离较远等问题,导致部分地区的出行需求得不到满足。

此外,一些城市出现了拥挤的地铁、轻轨换乘站,给乘客带来了不便和不适。

针对这些问题,对于当前轨道交通的发展现状,我们需要进行深入的思考和探讨。

如何在轨道交通建设中注重线路规划的合理性和网络的完善性?如何利用新技术提升轨道交通的运行效率和乘客的体验?如何加大投入,解决资金短缺问题,促进轨道交通的健康发展?这些都是我们亟需思考的问题。

未来,轨道交通的发展前景依然广阔。

随着科技的进步和社会的发展,新兴技术如自动驾驶、超高速磁悬浮等有望应用于轨道交通领域,为城市交通带来更多便利和创新。

同时,城市规划中的轨道交通也将更加注重与其他交通方式的衔接和互联互通,构建多元化、高效便捷的交通网络。

城市轨道交通的电能质量与能源利用优化

城市轨道交通的电能质量与能源利用优化

城市轨道交通的电能质量与能源利用优化随着城市化进程的不断加速,城市轨道交通成为现代城市中不可或缺的交通工具之一。

然而,随着轨道交通规模的扩大和运营的不断发展,电能质量和能源利用问题日益突出。

本文将对城市轨道交通的电能质量与能源利用进行深入探讨,并提出相应的优化方案。

第一部分:城市轨道交通电能质量问题分析在城市轨道交通的电能质量问题方面,主要存在以下几个方面的挑战:1. 电能质量标准的不足:目前,国内尚缺乏针对城市轨道交通电能质量的统一标准,各地区的标准不一,影响了轨道交通电能质量的统一和协调。

2. 故障干扰的频发:城市轨道交通系统中的电力设备较多,尤其是高压电力设备,存在故障发生的概率较高,一旦发生故障会导致电能质量波动,甚至造成停电等严重后果。

3. 供电稳定性不高:城市轨道交通对供电的稳定性要求较高,然而在供电设备老化、维护不及时等情况下,城市轨道交通供电的稳定性无法得到保障,影响了电能质量的稳定性。

第二部分:城市轨道交通能源利用现状分析在城市轨道交通的能源利用方面,存在以下问题:1. 能源的过度消耗:由于城市轨道交通运营的需求,每天需要大量的电力供应,而目前还主要依赖于燃煤发电。

燃煤发电对环境产生负面影响,同时能源消耗较大,不符合可持续发展的要求。

2. 能源回收利用不足:目前城市轨道交通运营过程中,能源回收利用率较低。

例如,制动阻力能量的回收利用仍面临诸多技术和经济问题,使得能源浪费。

第三部分:城市轨道交通的电能质量优化措施为了解决城市轨道交通的电能质量问题,提出以下优化措施:1. 建立统一的电能质量标准:国家应加强对城市轨道交通电能质量的标准制定和监管,确保各地区的电能质量达到统一标准,提高运行效果。

2. 加强设备维护和升级:城市轨道交通系统中的电力设备需要定期维护和升级,以确保设备的正常运行,减少故障率,提高供电稳定性。

3. 推广新能源供电技术:引入新能源技术,如光伏、风力发电等,减少对传统能源的依赖,降低能源消耗和环境污染。

轨道交通运营与城市低碳发展的思考

轨道交通运营与城市低碳发展的思考

轨道交通运营与城市低碳发展的思考摘要:随着城市轨道规模的不断扩大,并获取了明显的经济以及社会效益。

立足于长远层面,城市轨道交通运营管理需要注重规范性,进而促进各项工作的有序展开,实现相应目标,尽可能对管理水平低及标准参差不齐等现象进行有效避免,促进地方交通事业的发展进步。

关键词:轨道交通运营;城市低碳发展;思考引言城市轨道交通运营管理的规范性能够使各项工作的科学性获得充分保障,在管理城市轨道交通运营的同时实现有效运营。

所以城市轨道交通运营管理计划中,需要系统性思考其管理规范性,对此展开更深层次的研究,并对运营管理策略进行探索,在推动城市轨道交通发展的同时提高运营效果。

1安全风险预控管理概述1.1安全风险预控的涵义对于企业而言,风险就是生产目的与劳动结果之间的不确定性,换而言之,就是企业运营中对生产目标、劳动成果产生不利影响的不确定性及造成危害的可能性。

安全风险预控是指在事故发生前,辨识潜在的风险并采取规避措施使其处于安全状态,实现风险规避及化解。

安全风险预控具备以下特点:封闭性。

安全风险预控将计划(Plan)、执行(Do)、检查(Check)、处理(Action)的不同阶段相连,形成PDCA的闭环管理结构。

系统性。

城市轨道交通设备囊括车辆、通信、信号、风、水、电等专业子系统,每个子系统均可依据自身独特的构造进行风险预控,促使整体管理水平提高。

预见性。

风险预控指将事后的补救转变成事先的预防,防患于未然。

时效性。

安全风险预控要求对风险因素进行日常监测,一旦发现有风险因素及时向组织机构汇报,立即响应、迅速处理。

1.2安全风险预控管理的关键点评估风险是基础。

全面分析可能存在的危险因素,量化可能产生的损失,为后续制定出的管控措施奠定基础。

预控风险是核心。

通过预先控制风险,降低风险发生的可能性,从而减少损失。

在此过程中尤其要将控制的重点放在存在重大风险、运营关键时期、重大决策上。

管控风险是重点。

结合城市轨道运营企业的日常管理实际情况,落实管控措施,例如,利用激励机制、人才培养等方式强化管理提供保障。

城市轨道交通列车节能问题及方案研究

城市轨道交通列车节能问题及方案研究

城市轨道交通列车节能问题及方案研究摘要:迄今为止,由于运行环境的复杂性和实际的客流量,计算列车运行过程中的能耗仍然是一项艰巨的工作。

影响列车能耗的因素主要包括列车的牵引和制动性能,列车重量,运行速度,线路状况信号阻塞模式,列车运行模式等。

针对上述因素采取相应措施即可达到节能目的。

关键词:城市轨道;列车能耗;节能1 城市轨道交通系统总能耗城市轨道交通系统的总能耗主要包括电力、燃气、燃油、水等能源的消耗,其中主要的是电力消耗。

火车和电力照明的功耗分别约占总功耗的50%。

目前,火车牵引节能的主要研究方向是制动再生能量的回收,许多轨道交通企业都在试用安装回收装置。

但是,该方法还存在不确定性:首先,能量回收装置投资较大,无法在短时间内确定投资和节能效率比。

其次,回收装置的稳定性及其对供电系统的影响也需要进一步验证。

这项研究从改变火车部分的运行模式开始。

典型的部分是轧制坡道。

一个路段包括几个坡道,然后是几个坡道,其中可能有平坦的道路。

最佳的操作顺序是减少牵引力,增加惯性和减少制动。

通过调整列车牵引,制动和惯性的分布,计算和分析了运行水平与牵引能耗之间的关系,然后优化了时间表,以达到节能的效果。

2 城市轨道交通列车牵引能耗的影响因素在列车运行过程中,牵引能耗主要包括以下四个部分:①牵引供电系统本身消耗的能量。

它主要是由地铁牵引供电网络本身的能耗产生的,可以通过优化供电网络的设计来降低能耗。

②再生制动消耗的能量。

火车使用制动过程中产生的热能发电,并将其上载到电源网络,为其他火车提供电源。

③制动电阻消耗的能量。

主要原因是制动过程中的能量消耗,这是将制动能量转换为再生制动能量过程中的损失部分。

④火车牵引系统消耗的能量。

它是指火车牵引过程中消耗的能量。

根据城市轨道交通系统的实际情况,线路状态和列车牵引系统及列车的运行策略等因素都会对牵引能耗产生影响,具体表现如下。

(1)线路状态。

线路状况对牵引能耗的影响主要体现在线路类型,站距和线路轮廓设计方案上。

城市轨道交通节能技术发展趋势思考

城市轨道交通节能技术发展趋势思考

摘要:相比于城市其它公共交通工具,城市轨道交通具有安全舒适以及快速环保与能源消耗少等优势,所以说轨道交通本身就具有重要的节能减排意义。

因此,为了将城市轨道交通的积极作用充分发挥出来,对于对于城市轨道交通,相关部门应给予足够重视,并积极探索出更加新颖、科学的节能技术,为其赢得更好的发展前景。

关键词:城市轨道交通;节能技术;发展趋势前言:相比于城市其他交通工具来讲,轨道交通还有一个优势就是其主要能耗为电力,而不是燃油。

作为国家核心能源,石油是工业经济发展的命脉所在,当前,世界各国都纷纷将石油视为能源战略的核心位置,其不仅在推动经济可持续发展过程中发挥着重要意义,也直接关系着国家能源安全。

因此,各城市应积极将城市轨道交通作为骨干,不断提升公共交通的出行比例,从而真正构建出建设节约型、环境友好型的社会。

一、注重环保型高架系统技术研发城市轨道交通的高架线路具备建设速度快、风险小,以及运营成本较低等优势,尤其是运营期的能耗上,与地下线相比,高架线的运营能耗仅为其0.45倍,拥有显著的节能效果。

但是就目前来讲,大部分已建高架线通常都应用运量较大的城市轨道交通系统上,由于其采用了轴重较大的A、B型车辆,其高架线实际运营过程中的噪声、震动也的确给沿线的居住环境带来了一定的不利影响。

对此,应不断加强环保型高价系统的研发,并将高架线路桥梁梁式、景观视为一体实行综合研发。

在此过程中,不仅要注重高架线振动噪声、景观协调等问题的解决,还要为高架线路的铺设提供有力的技术支持,也只有这样才能够真正实现城市轨道交通低耗资、高效益的目标。

加强轨道,以及轨旁减振降噪系统技术措施的整合,尽可能的实现部分代替,或者是将其屏障直接消除,当前,对于车辆、轨道的减振降噪技术、产品已经开展了较为系统的研究。

此时,应将研究重点放在结构二次噪声的影响研究上,并同时进行与高架线敷设方式相适应的系统制式方面的研究,积极尝试采用直线电机等低噪声的系统制式。

城市轨道交通用能与节能的思考

城市轨道交通用能与节能的思考

城市轨道交通用能与节能的思考随着城市的快速发展和人口的增加,城市交通问题逐渐凸显出来。

城市轨道交通作为一种高效、快捷、方便的交通方式,越来越成为人们通勤和出行的首选。

然而,城市轨道交通也面临着能源和环保的挑战。

为了实现城市轨道交通的可持续发展,我们需要思考如何提高能源利用效率并节约能源。

首先,城市轨道交通需要优化能源利用。

目前,很多城市轨道交通系统还存在能源利用不高、浪费现象严重的问题。

因此,改善能源利用效率是可行的方式之一、一方面,可以通过提高设备的效能来减少能源消耗。

例如,优化列车车头的设计,减少空气阻力,提高列车的运行速度;改进制动系统,将制动能量回馈到电网中以供其他列车使用。

另一方面,可以采用智能调度和运营管理系统,根据需求预测和实时监控,合理安排列车运行计划和停车时间,避免能源的浪费。

此外,还可以使用更加高效的动力系统,如采用新能源技术替代传统的燃油动力,例如电动动力和氢电混合动力等,减少对传统能源的依赖。

其次,城市轨道交通需要注重节能减排。

作为城市交通的主要组成部分,城市轨道交通的能源消耗和排放量都比较大,对城市空气质量和环境保护造成了一定的影响。

因此,需要采取有效的措施来减少能源消耗和减少排放量。

一方面,可以通过建设更加节能的车辆和设备来实现节能减排。

例如,使用更加高效的照明设备和空调设备,优化列车车厢的隔热隔音性能,减少能源的浪费。

另一方面,可以采用新技术来减少能源的使用和减少排放的污染物。

例如,利用太阳能、风能等可再生能源为轨道交通供电;引入智能化系统,自动调节列车运行速度,减少能源的消耗。

最后,需要加强城市轨道交通的节能意识。

城市轨道交通的节能不仅仅是技术问题,也是一个全社会的共同责任。

政府部门需要加大对城市轨道交通节能工作的投入和支持,推动相关技术的研发和应用。

企业和运营商要树立节能意识,加强能源管理,通过制定和执行节能减排计划,降低运营成本,提高竞争力。

同时,广大乘客也应当提高节能意识,合理利用城市轨道交通,减少不必要的出行次数和距离,选择绿色出行方式,如骑行和步行等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城市轨道交通用能与节能的思考当前,能源短缺和环境污染问题已成为全球性的问题,城市轨道交通虽然已是绿色交通工具,但市场调研显示,1条25公里左右的轨道交通运营线路,1年的耗电量约在1~2亿千瓦时,轨道交通成为各城市的用电大户。

在“2015(第三届)中国城市轨道交通系统性节能研讨会”上,北京城建集团设计发展集团股份有限公司党委书记李国庆,为我们分享了城市轨道交通用能与节能的思考,演讲从城市轨道交通用能现状入手,结合北京地铁节能案例,提出了既有线路的节能改造和新建线路的节能工程建设等工作展望。

一、城市轨道交通用能现状(一)城市轨道交通现状截止2013年末,全国有19个城市的轨道交通已开通运营,总里程达2746公里。

至2020年,全国规划轨道交通的城市达到79个,规划总里程达13385公里。

“十二五”期间中国城市轨道交通投资额超1万亿元。

参考建筑、工业节能产值比例5%计算,轨道交通行业节能的投资可达500亿元,节能潜力非常巨大。

(二)城市轨道交通用能分析北方某市轨道交通运营成本构成中,电力费占运营成本的41%,工资费、运营费、维修费占59%,因此电能的节省对于整个城市轨道交通运营来说,具有重要的现实意义。

(三)北京市轨道交通能源利用现状分析城市轨道交通节能潜力大。

仅2013年北京地铁运营公司综合能耗就达17.7万吨标煤(电能费用占运营费用的50%),十二五末期将达21.6万吨标煤,地铁公司现已成为北京主要用能单位之一。

2006-2015年北京地铁总用电量柱状图轨道交通各系统用电量百分比2006年,北京地铁总用电量为3亿多千瓦时,到2015年达到14亿千瓦时。

其中牵引供电占到50%,通风空调占35%。

从中可以看出,轨道交通系统节能、节电是所需要考虑的主要因素。

二、需重点关注的问题和对象第一,城市轨道交通用能评价标准缺失,急需建立轨道交通节能技术标准及评估、评价体系。

由于技术适应性差,如果轨道交通节能技术标准及评估、评价体系从其他行业引入,实际节能效果有限,无法达到预期效果,因此,城市轨道交通急需建立科学合理的评价标准以及科学合理的评价、评估机制。

不同地域、城市之间,同一指标的数值差别较大。

需通过标准制定,明确节能应用标准和评价、评估标准。

第二,城市轨道交通能耗巨大,主要用能系统相对占比很高。

轨道交通耗能专业多,节能优化技术应用前景广阔,以北京地铁在节能领域进行的多项专题研究为例,北京地铁通过节能创新技术应用,可大幅度地降低轨道交通能耗。

北京地铁曾经就《北京城市轨道交通节能关键技术研究与示范》(北京地铁9号线)进行研究,研究结论表明通风空调的直接蒸发系统应用效果良好,节能效果可达到60%;在北京地铁14号线对《北京地铁高架车站绿色交通建筑技术研究》进行研究,另外北京地铁还研究了很多节能新技术,包括通风空调节能技术、再生电能吸收技术等等。

北京地铁研究的节能新技术节能技术节能创新技术节能效果通风空调节能技术通风空调系统运行模式与自动控制的优化空调系统节能10%~15%新型空气—水通风空调系统的应用直接蒸发式空调系统的应用再生电能吸收技术设置再生电能吸收装置回收车辆制动能量回收25%列车制动能量给排水节水节电技术给水压力控制、车辆段水处理优化组合、冷却水泵变频综合节能15%~25%动力照明节能技术公共区照明采用LED光源车辆段设置太阳能并网光伏发电系统综合节能20%其他节能技术线路节能坡技术、自动扶梯变频调速技术、列车节能运行模式技术等第三,单一节能技术多,缺乏针对城市轨道交通综合和一体化的考虑,未形成系统性、综合性的节能解决方案。

对某一个系统或专业的节能研究只占到一小部分,没有考虑到各个相关专业之间的联系,以及各个专业之间可能会有的互补或者相关的转嫁作用。

将来综合节能、简单节能、技术简化节能可能会成为轨道交通节能研究的必然趋势,下阶段在这一方面应该有所探讨。

通风空调可调通风型站台门系统、智能照明系统、直接蒸发式制冷机组都有综合性节能方案的体现。

通风空调可调通风型站台门系统智能照明系统直接蒸发式制冷机组试验现场第四,目前,能耗基础数据零散,急需建立能耗大数据库和能源管控平台,以提升能源管控水平,降低运营成本。

城市轨道交通数据基本上都掌握在各个地铁公司手中,如果各地铁公司能把数据汇总起来,能够共同研究摸索其中的规律,对轨道交通的节能工作应该是非常有利的。

北京地铁10号线芍药居站节能管理系统第五,缺乏按照城市轨道交通规律,研发节能设备和产品的动力和应用平台。

很多设备供应商对城市轨道交通积极性很大,但是对产品的研发,基本上凭着自己的理解开发新产品。

结合地铁的规律开发出具有地铁特点的专用产品,将会对城市轨道交通业具有很大的推动作用,对国家制造业升级换代具有重要意义。

三、节能工作主要思路(一)建立用能、节能标准体系对于能源管理体系,用能和节能两者是并行不悖的,两者都要涵盖才是完整的节能标准体系。

节能标准体系是节能工作的保证,只有通过建立和完善标准体系,才能规范节能的各项工作。

比如北京地区,建立了《北京市区域(园区)规划节能》、《北京轨道交通用能统计体系》、《城市轨道交通节能评估技术标准体系》等用能、节能标准体系,以规范节能工作。

(二)探索技术创新实现节能的途径技术创新是节能工作的基础,节能工作必须依托于技术的创新进行。

现有创新技术基础包括:基于PWM整流器的牵引供电装置及控制方法、混合式牵引供电装置及控制方法模块化的能量回馈式牵引供电装置及控制方法等等。

如果能够在这些创新技术基础上,包括以后的创新技术,进行综合性研究,融会贯通,一定会对轨道交通节能工作有很大的促进作用。

(三)有针对性的研发节能设备实现节能所谓有针对性,是指节能设备研发过程中结合地铁规律。

随着现代城市轨道交通规模不断扩大,要实现其节能和技术进步,必须结合城市轨道交通特点,要求产品进行轨道交通行业的研发,才能真正实现产品节能和技术节能。

以轨道交通通风空调节能关键技术为例,开启式屏蔽门技术从型式上采用上下固定方式的全高安全门,在门体的适当位置(上部或下部)设置开口,开口采用活动式,根据通风空调系统的需求必要时将开口开启或关闭,则实现屏蔽门的功能。

该技术已应用于上海地铁11号线,经测试后得出结论,基本上在过渡季节可以不开风机可以达到通风条件。

开启式屏蔽门应用效果示例上下部开启案例(四)技术创新实现节能蒸发冷凝与直接蒸发结合空调系统是轨道交通通风空调节能关键技术之一,系统将水冷冷凝器和冷却塔合二为一,布置灵活。

其主要特点:第一,充分利用水的蒸发潜热冷却工艺流体,用水量为水冷式冷凝器的50%,节水效果显著;第二,制冷机组效率提高(蒸发温度提高3℃,制冷系数理论上可提高17%以上,从而可实现节能运行);第三,节省了冷冻水的输送能耗(从整个冷冻站的运行耗电来看,可实现节能15~20%左右),节能效果较好。

蒸发冷凝与直接蒸发结合空调系统此外,再生制动能量回收系统也实现了节能技术创新,轨道交通列车制动能量吸收措施,主要有电阻吸收、电阻加逆变吸收、能馈式吸收、电容吸收、飞轮吸收等方式。

其关键技术包括城轨交通牵引计算仿真及超级电容容量配置软件和超级电容储能系统。

再生制动能量回收系统(五)构建能源管理体系实现节能管理和保障轨道交通能源管理系统由线路中心级能耗系统、接入层设备、平台设计、平台软件等组成。

系统能够实现全网能耗的统计与监测、综合分析,从而为企业节能提供支持,为各级主管部门能耗数据提供了有力保障。

(六)倡导节能评估和评价推进节能机制的建立现有的节能评估工作基础已完成10余项城市轨道交通节能评估项目,并初步建立了节能评估专业人才队伍。

目前正在进行济聊城际济南至长清线(R1线)工程节能评估报告等10余项节能评估项目。

(七)大力研究节能综合解决方案和技术节能技术和方案的研究不应局限于某个专业,而要打破专业界限,实行生命周期全过程的研究,体现综合性节能。

四、对节能工作的展望(一)节能潜力截至2013年末,全国19个城市开通了城市轨道交通,运营里程2746公里。

在建城市40个,里程3892公里。

2020年各地规划设想涉及79个城市,规划总里程1.4万公里。

其中,已建项目里程占总里程19.6%,在建项目里程占27.8%,规划项目里程占52.6%。

2020年全国轨道交通项目规划现状已建、在建、规划项目比例比较均衡,各个阶段均有节能工作参与空间。

2012年北京全年完成市级交通固定资产投资527.1亿元,增长23.2%,占交通行业固定资产投资68.2%。

截至2013年末,北京运营里程465公里,在建里程183公里,规划地铁1083公里,市郊铁路超过1000公里。

轨道交通投资占北京市市级交通固定资产投资的比例最大,达70%以上。

节能潜力巨大。

(二)节能改造(既有线路)北京轨道交通运营车站表线路运营里程/km车站数/座通车年份线路名称运营里程/km车站数/座通车年份1号线3123196913号线40.9162003 2号线2318198414号线27.2172013 4号线28.224200915号线40.8182010 5号线27.6232007机场线2842008 6号线30.4262012八通线19131999 7号线23.7192014亦庄线24142010 8号线27.6172008大兴线21.8112010 9号线16.5132011昌平线2172010 10号线57.1452008房山线24112010北京轨道交通运营车站超过300座,18%的车站建成时间在10年以上,38%的车站建成时间在5年以上。

针对既有线路改造,应用节能技术,提升产品装备的能效。

既有线路节能改造的理念,首先,明确重点节能目标,抓住节能要点。

明确节能改造基本原则及方向。

节能改造涉及多专业的结合与配合,各系统缺一不可;其次,以现场为根据,数据为基础,功能为目标,将专业设计、运营单位的各方优势相结合;再次,结合车站实际情况,制订合理的节能改造方案。

应注意改造后节能系统与原系统的独立与融合,满足运营功能要求。

以新型改造系统模式——合同能源管理模式为例,2011年5月,北京地铁首次引入合同能源管理方式,对1号线国贸站、10号线安贞门站的中央空调系统进行节能改造。

该能源管理模式,拓展了既有线路改造的模式,降低了改造投资成本。

北京地铁合同能源管理方式(三)节能工程(新建线路)对于新建工程,从工程的规划、设计开始就应该贯彻节能的理念和技术,从节能系统、节能专项工程、能源管理系统开展全生命周期的节能措施和服务。

(四)节能规划(线网规划)将节能工作纳入到线网规划及建设规划过程当中,实现节能规划。

通过节能规划实现能源的综合利用规划、资源共享规划,统一节能技术标准。

节能规划可围绕车辆段资源共享、主变电所及外电源资源共享、换乘站资源共享、水资源综合利用、无线通信频点综合利用等几点展开。

相关文档
最新文档