全面认识磁盘阵列柜性能
磁盘阵列 参数解读

磁盘阵列参数解读英文回答:RAID Levels.RAID (Redundant Array of Independent Disks) is a data storage technology that uses multiple physical disk drives to improve performance and reliability. There are several different RAID levels, each with its own advantages and disadvantages.RAID 0 (Striping): RAID 0 does not provide any data redundancy. It simply stripes data across multiple disks, improving performance but not providing any protection against data loss.RAID 1 (Mirroring): RAID 1 mirrors data across two disks. If one disk fails, the data can still be accessed from the other disk. RAID 1 provides excellent data protection, but it is also the most expensive RAID level.RAID 5 (Parity): RAID 5 uses parity to protect data. Data is striped across multiple disks, and a parity block is created that allows the data to be reconstructed if one disk fails. RAID 5 is a good balance of performance and cost.RAID 6 (Dual Parity): RAID 6 uses dual parity to protect data. Data is striped across multiple disks, and two parity blocks are created. This provides even greater data protection than RAID 5, but it also has a higher performance overhead.RAID 10 (Mirrored Striping): RAID 10 combines RAID 0 and RAID 1. It stripes data across multiple mirrored pairs of disks. This provides both high performance and data protection.RAID Parameters.RAID parameters are the settings that control how a RAID array operates. These parameters include:Stripe Size: The stripe size is the size of the data blocks that are striped across the disks. A larger stripe size can improve performance, but it can also increase the risk of data loss if a disk fails.Number of Parity Disks: The number of parity disks is the number of disks that are used to store parity information. A higher number of parity disks provides greater data protection, but it also reduces the amount of usable storage space.Cache Size: The cache size is the amount of memorythat is used to store frequently accessed data. A larger cache size can improve performance, but it can also increase the cost of the RAID array.Write Policy: The write policy determines how data is written to the RAID array. There are two main types ofwrite policies: write-through and write-back. Write-through policies write data to both the cache and the disks at the same time. Write-back policies write data to the cachefirst and then write it to the disks at a later time.Choosing the Right RAID Level and Parameters.The right RAID level and parameters for a particular application depend on several factors, including:Performance requirements.Data protection requirements.Cost.中文回答:磁盘阵列。
RAID磁盘阵列技术全面介绍

RAID磁盘阵列技术全面介绍RAID磁盘阵列技术简述在计算机发展的初期,“大容量”硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。
1987年,Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Redundant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。
这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。
磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。
印象中的磁盘阵列似乎还停留在这样的场景中:在宽阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘,再插入一块块似乎更加沉重的硬盘……终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDE-RAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。
一、RAID技术规范简介RAID技术主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。
RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。
因此,RAID 0不能应用于数据安全性要求高的场合。
RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。
当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。
RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。
最全面的服务器的RAID详解

最全面的服务器的RAID详解磁盘阵列(Redundant Arrays of Independent Disks,RAID),全称独立磁盘冗余阵列。
磁盘阵列是由很多廉价的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。
利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。
利用同位检查(ParityCheck)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。
相同的数据存储在多个硬盘的不同的地方的方法。
通过把数据放在多个硬盘上(冗余),输入输出操作能以平衡的方式交叠,改良性能。
因为多个硬盘增加了平均故障间隔时间(MTBF),储存冗余数据也增加了容错。
分类:一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件实现。
RAID实现的方式:RAID 0,RAID 1,RAID2,RAID 3,RAID 4,RAID 5,RAID 6,RAID 7,RAID 01,RAID 10,RAID50,RAID 53。
常见的有:RAID 0,RAID 1,RAID 5,RAID 6,RAID 01,RAID 10。
原理剖析:RAID 0:RAID 0又称为Stripe或Striping,中文称之为条带化存储,它代表了所有RAID级别中最高的存储性能。
原理:是把连续的数据分散到多个磁盘上存取,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。
这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
磁盘空间= 磁盘总量= 100%需要的磁盘数≥2读写性能= 优秀= 磁盘个数(n)*I/O速度= n*100%块大小= 每次写入的块大小= 2的n次方= 一般为2~512KB优点:1、充分利用I/O总线性能使其带宽翻倍,读/写速度翻倍。
2、充分利用磁盘空间,利用率为100%。
缺点:1、不提供数据冗余。
储存(磁盘阵列柜)基础知识解读

7
DAS:直接附加存储
的DAS(Driect Attached Storage—直接附件存储)是指将存储设备 通过SAS线缆或光纤通道直接连接到服务器上。
8
DAS:直接附加存储
存储直接连接到一台服务器上 • SCSI, SAS, iSCSI, FC • 块级别 I/O 内部磁盘 • 具备/不具备RAID保护 外部磁盘 • 存储系统 • 基于控制器的RAID引擎
Ethernet to Client workstations
存储的参数
主机通道(主机接口): 几个? 什么类型?
SCSI接口、FC接口、iSCSI接口、SAS接口
磁盘通道(磁盘接口):能接多少块硬盘? 什么接口? SATA、SCSI、FC、SAS 存储连接设备:用于服务器与存储直接连接的设备。 SCSI 卡、SAS卡、RAID卡、FC通道卡、 以太网口、FC交换机、以太网交换机
5
磁盘阵列柜的应用
由于磁盘阵列柜具有数据存储速度快、存储容量大等优点,所以磁盘阵列柜通 常比较适合在企业内部的中小型中央集群网存储区域进行海量数据存储。
6
存储网络的架构
企业存储技术发展日新月异,早期大型服务器的DAS 技术( Direct Attached Storage,直接附加存储,又称直连存储),后 来为了提高存储空间的利用及管理安装上的效率,因而有了SAN( Storage Area Network,存储局域网络)技术的诞生,SAN 可 说是DAS 网络化发展趋势下的产物。早先的SAN 采用的是光纤通 道(FC,Fiber Channel)技术,所以在iSCSI出现以前,SAN 多半 单指FC 而言。一直到iSCSI 问世,为了方便区别,业界才分别以 FC-SAN和IP-SAN。 NAS(Network Attached Storage:网络附 属存储)是一种将分布、独立的数据整合为大型、集中化管理的数 据中心,以便于对不同主机和应用服务器进行访问的技术。
了解电脑硬盘阵列(RAID)如何提升数据存储性能与冗余性

了解电脑硬盘阵列(RAID)如何提升数据存储性能与冗余性电脑硬盘阵列(RAID)是一种通过将多个硬盘组合起来工作来提升数据存储性能和提供数据冗余性的技术。
本文将详细介绍RAID的各种级别和其工作原理,以及它如何在数据存储方面发挥作用。
一、RAID的概述RAID,全称为“Redundant Array of Independent Disks”,即独立磁盘冗余阵列。
它旨在通过同时使用多个硬盘来提升数据存储性能和增强数据的容错能力。
RAID可以通过数据分布和冗余化来提高系统性能和可靠性。
二、RAID的级别RAID有多种级别,每个级别都有其独特的特点和适用场景。
下面将介绍几个常见的RAID级别:1. RAID 0RAID 0是最简单的RAID级别,它通过将数据分块地存储到多个硬盘上来提升读写速度。
RAID 0具有良好的性能,但没有冗余功能,一旦某个硬盘出现故障,所有数据将会丢失。
2. RAID 1RAID 1是一种镜像级别的RAID,它要求至少使用两个硬盘。
RAID 1通过将数据同时写入两个硬盘来实现数据冗余,从而提供更高的可靠性。
当其中一个硬盘出现故障时,系统可以自动切换到另一个硬盘继续工作。
3. RAID 5RAID 5通过将数据和校验信息分布存储在多个硬盘上来实现数据冗余和性能提升。
RAID 5至少需要三个硬盘。
当其中一个硬盘出现故障时,RAID 5可以根据校验信息恢复数据。
RAID 5是一种性能和冗余兼顾的RAID级别。
4. RAID 10RAID 10是RAID 1和RAID 0的结合,需要至少四个硬盘。
RAID 10将数据同时写入多对镜像硬盘,然后再将镜像硬盘组合成一个RAID 0阵列。
RAID 10提供了优秀的性能和较高的冗余性。
三、RAID的工作原理RAID使用不同的技术和算法来实现数据的分布和冗余。
下面将介绍几种常见的RAID技术:1. 块级分布在RAID中,数据被分成固定大小的块,然后分布存储在不同的硬盘上。
磁盘阵列RAID10详解

备份和容错是不同的概念。备份让你可以在灾难发生后恢复数据。容错是减少灾难发生的概率。你可以想象成容错是在悬崖顶部立一条护栏,而备份是在悬崖底部设立一座医院。护栏和医院都是你想要的,但是它们是完全不同的事物。
一旦我们开始在驱动器上实施RAID,无论是本地连接的还是存储网络上的远程设备,如今的我们可以根据业务需要选择四种主要的RAID解决方案:RAID 1(镜像);RAID 5(带校验码的条带化);RAID 6(带双校验码的条带化);RAID 10(带条带的镜像)。
带校验码的RAID阵列需要有一定的计算操作来算出操作的数据是什么以及应该将哪些数据放到驱动器。虽然这种计算非常简单,但是有出错的可能性。
如果RAID 1或RAID 10阵列控制发生故障,从理论上来说,系统有可能在驱动器的内容中写入坏数据。但是由于控制器本身没有进行驱动器变动的进程,因此这种情况发生的可能性非常小,因为除了创建镜像外,系统没有"重建"流程。
当带校验码的阵列执行重建操作时,它们会执行复杂的进程来逐步审视阵列的整个内容,然后将丢失的数据写回到被替代的驱动器。就其本身来说是个简单的步骤,应该不需要担心。
我和其他一些人首先注意到的是稍微不同的情境,即由于与阵列的连接器松动所导致的磁盘连接性的丢失。随着时间的流逝,服务器中的驱动器有可能会松动,尤其是持续服务好几年以后。
如今,我们有其他方面的顾虑,主要是数据安全性和性能。花稍微更多一点钱来确保数据保护是比较明智的选择。RAID 5只能承受一块驱动器的故障和损失。对于拥有三块驱动器的阵列,RAID 5的安全性只比RAID 1差一些。
我们可能可以接受三块驱动器中损失一块。三块驱动器损失一块和两块驱动器损失一块相比好像没那么让人害怕。但是如果是更大的阵列呢,比如说16块驱动器?如果我们只能承受16块驱动器中损失一块,那我们有理由怀疑系统的可靠性。
磁盘RAID简介及性能分析

磁盘RAID简介及性能分析
最近在分析一些计算机的基础数据,刚好有两台空闲的PC服务器,所以做了一下磁盘RAID的测试,采用了ORION测的,把测试结果与理论计算公式做了一个分享。
关于RAID级别的介绍网上有很多资料,所以前半部份只是用图形的方式表示各种RAID级别的存储,接着整理了一下各种RAID级别的理论数据。
最后展示了RAID5 VS RAID10及RAID10各种stripe size(条带)的测试数据。
总体来说,在OLTP数据库应用中RAID10还是优先选择,RAID5一般还是用于备份文件或一些历史数据表空间文件。
关于stripe size的测试结果也很明显,一般RAID默认是64K,但是256K不管是在IOPS还是MBPS上都表现出更好的性能,有些网上的文章说普通数据库应用stripe size应该小点比较好,如32K,64K。
这个值也许在2000年时是正确的,随着硬盘的性能提高,带宽从10年前的50MB到现在的160MB,64KB的stripe size明显发挥不出多个磁盘并发的优势,所以建议大家做RAID时设置大一些的stripe size。
本文仅是我个人环境的测试数据,仅供大家参考,也欢迎大家一起探讨注:本文的知识不适合SSD硬盘。
以下是RAID3和RAID4的示意图,RAID3与RAID4的区别是RAID4采用块处理。
以下数据中数字表示可以发挥几块盘的作用。
硬盘陈列知识点总结手写

硬盘陈列知识点总结手写硬盘陈列是指在商场、专卖店、展览会等销售场所,通过一定的布局和设计,将硬盘产品陈列出来,吸引顾客目光,增加产品销量的一种方法。
好的硬盘陈列不仅可以提高产品的曝光率,还可以吸引顾客的注意力,提高购买率。
因此,对硬盘陈列进行深入的了解和实践十分必要。
一、硬盘陈列的重要性1. 提高产品的曝光率通过巧妙的硬盘陈列,可以使产品的展示更突出,提高产品的曝光率,让更多的顾客能够看到产品,从而增加潜在购买者的数量。
2. 吸引顾客的注意力好的硬盘陈列可以吸引顾客的注意力,让他们对产品产生兴趣,从而增加购买欲望。
精美的陈列可以给顾客留下深刻的印象,增加产品的吸引力。
3. 提高产品的销售率通过合理的硬盘陈列,可以让产品更容易被顾客发现,增加产品的销量,提高产品的市场竞争力。
二、硬盘陈列的原则1. 产品分类陈列不同种类的硬盘应该进行分类陈列,方便顾客查找和选择,也能够凸显产品的特点和优势。
2. 风格统一硬盘陈列的风格应该统一,要与产品的特点和品牌形象相匹配,不同产品之间应该协调搭配,让整个陈列看起来更具有美感和吸引力。
3. 突出重点产品对于一些重点推广的产品,可以进行突出陈列,通过位置、灯光等手段吸引顾客的注意力,增加产品的曝光率。
4. 合理利用空间充分利用硬盘陈列的展示空间,合理摆放产品,不要让展示区域过于拥挤或空旷,要给顾客留下宽敞明亮的感觉,让顾客更愿意停留和选购。
5. 定期更新陈列定期更换和更新硬盘陈列的布局和设计,让顾客保持新鲜感,增加购买欲望,也可以减少陈列的视觉疲劳,让顾客对产品保持敏感度。
三、硬盘陈列的设计要点1. 流线型陈列硬盘陈列的设计要遵循用户的使用习惯和移动轨迹,使得顾客更容易找到所需要的产品。
例如,短暂停留区域应该设置在流线方向上,让顾客更容易被吸引停留。
2. 陈列高度硬盘陈列的高度应该根据产品的特点和顾客的视觉需求进行合理设置,过高或者过低的陈列都会影响顾客的购物体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全面认识磁盘阵列柜性能--------------------------------------------------------------------------------一个SCSI 硬盘的平均故障间隔时间〈MTBF, Mean Time Between Failure〉,都在数万小时以上,在正常使用情况下,要坏掉一个硬盘已经很不容易了;在同一系统内,两个磁盘驱动器同时坏掉的机率,更是微乎其微。
但是,如果把磁盘驱动器放在布满杀手的环境内,就另当别论了。
构建一个磁盘阵列储存系统,可靠度远比速度来的重要。
因此,不但要选一个高性能的阵列控制器,更要慎重地挑一个高可靠度的磁盘阵列柜。
因为,宝贵的数据不是存在数组控制器里,而是存放在磁盘驱动器里;而磁盘驱动器又是放在磁盘阵列柜内。
所以,要仔细挑选一个可靠的磁盘阵列柜,来当磁盘驱动器的神盾,千万不要挑一个磁盘驱动器杀手!磁盘阵列柜的设计挑战由于磁盘驱动器的技术以及传输接口的技术不断的发展,磁盘阵列系统的设计随时都面临新的挑战,以便符合与日俱增的要求。
一个优质的磁盘阵列柜,必须在设计阶段,就要考虑到其规格必须符合更大容量、更高转速磁盘驱动器的需求,提供:稳定、高容量、容错的电源供应系统可靠、高性能、容错的冷却系统能够克服震动的机械结构支持SCA2 热抽换接头之被动背板一体成型、无主动组件之磁盘载盒数组柜环境监控与警示功能直接热抽换且方便的维护操作功能最佳的空间利用以下我们就针对这些规格和功能,提供一些建议。
稳定、高容量、容错的电源供应系统如果各位仔细看看磁盘驱动器的规格书,您会发现磁盘驱动器马达启动时,需要很大的启动电流〈约2A〉,约为平常读写时〈约0.66A〉的3 倍;磁盘驱动器在SEEK 时,需要很大的瞬间电流〈约2.1A〉,约为读写时〈约0.66A〉之3 倍。
因此,电源供应系统必须能提供足够、稳定之瞬间电流,否则会造成磁盘驱动器无法启动,甚至造成数据写入错误〈此为导致RAID 磁盘驱动器被RAID 控制器判定为Down,但磁盘驱动器送回原厂测试却无故障之原因〉。
当磁盘驱动器转速越来越快,SEEK 速度也越来越快时,电源供应器必须提供足够的容量,以因应将来扩充的需求。
具备容错,热抽换、负载分享之双电源供应器,是不可或缺的,更重要的是,如果电源供应器发生故障,要能不必下螺丝就能热抽换电源供应〈使用螺丝起子解螺丝会造成震动及摇摆,会损害工作中之磁盘驱动器〉。
有了双电源供应器,更要具备两组电源输入,一个接到市电,一个接到UPS。
如此,无论突然断电,或UPS 故障,都不会造成RAID 当机。
好的电源供应系统,还须具备交流电压与频率自动选择及调整,以适用不同电压及频率,更重要的是,要能克服电压及频率不稳之状况。
在用电尖峰时段,市电电压可能降到100伏特以下,而在非用电尖峰时段,市电电压可能升到120伏特以上,因此电源供应系统必须能够容忍这些电压变化,提供磁盘驱动器稳定的电压和电流,否则可能造成磁盘驱动器故障,甚至数据写入错误。
磁盘阵列柜的电源供应系统,最好能够提供从85到260伏特无段自动调整,如此,无论插到哪种插座,市电品质如何变化,都不会影响磁盘阵列的功能。
可靠、高性能、容错的冷却系统在许多案例中,我们发现冷却系统设计不完善的磁盘阵列柜,只能装设7200转的磁盘驱动器,若使用10,000 转的磁盘驱动器,系统就会过热。
现在,Seagate 已经推出15,0000转的磁盘驱动器了,如何挑选一个具备可靠、高性能、容错之冷却系统的磁盘阵列柜,就更显得重要了。
一般磁盘阵列柜之设计,在每个磁盘驱动器载具上加装小风扇,整个系统再装数个大风扇,用边吸边吹的方式散热,不但散热效果不好,而且是产生磁盘驱动器故障的潜在因素:它带来的危害有以下这些:产生大量气流将粉尘吹入系统,污染磁盘驱动器及风扇本身造成故障。
采用一般PC用小风扇,且数量多〈转动机械零件越多,故障机率越高〉,系统可靠度因而巨幅降低?/li>一旦有一个小风扇故障,相关磁盘驱动器便无法获得足够散热而故障。
一个优质磁盘阵列柜之冷却系统的设计,必须完全符合热力学理论之全方位冷却:热传导、热对流及热辐射之三相散热方式,才能更有效率、可靠度更高:磁盘驱动器载盒必须采用黑色、高导热系数之金属〈如铝合金〉,并与载盒紧密接触固定,如此可以最快最有效地将磁盘驱动器之热能传导至整个载盒,然后以最大辐射面积与最佳辐射颜色〈黑色〉,将热能辐射至机体内空气中,再以中央系统涡轮抽风机将热空气以对流方式排出磁盘驱动器载盒不能使用风扇,及其它任何主动组件,以免本身故障而损及磁盘驱动器系统采用中央抽风排热设计,须使用两个以上之工业用涡轮抽风机〈不可用一般PC用风扇〉,以提高可靠度与排热效率。
由于工业用涡轮抽风机本身可以防止轴承被粉尘污染,且抽气效率极高,可将机体内热空气抽出,并在机体内产生很大的相对低压,冷空气便可由经过精密设计之对流孔,均匀地进入机体内,达到最佳对流散热效果。
中央系统涡轮抽风机必须具备热抽换功能,且能够自动温控转速,以达到最佳之排热性能与能源使用效率只需一部涡轮抽风机就足以维持系统散热之最低限度。
工业用涡轮抽风机之出气口面积只有一般PC用风扇1/10,因此即使有任何风扇因故停止运转,也不致影响整个系统之热对流结构。
防震机械结构由于磁盘阵列的特性,当存取阵列中的数据时,阵列中所有的磁盘驱动器的磁头,都几乎在同时,往同一个方向SEEK,又几乎同时在相同的位置煞车,其惯性动量非常之大。
因此造成很大的震动问题。
如果磁盘阵列柜的机械结构不能克服这些震动问题,轻则造成Re-Seek,严重的话,会导致碟面受损,数据遗失。
一个好的磁盘阵列柜的机械结构设计,必须克服上述震动问题:磁盘驱动器以刚性方式固定于磁盘驱动器载盒〈不使用任何塑料或其它韧性支柱〉:塑料或其它韧性支柱会变成震动的放大器,让磁盘驱动器震得更厉害。
刚性方式固定,可以透过经由模态分析〈Model Analysis〉设计之阵列柜,避开自然共振频率〈Natural Resonance Frequency〉以及强迫共振频率〈Forced Resonance Frequency〉,将系统震动降至最低,得到最佳性能,不会因震动造成磁头偏移而需重新寻轨定位(re-seek)。
磁盘驱动器载盒必须为一体成型之刚性合金制造,且紧密稳固地固定在机箱内。
如果是以卡榫或螺丝方式接合,其防震效果可想而知,非常不理想。
支持SCA2接口的被动背板前面提到,磁盘阵列系统最重要的是可靠度,因此所有具备主动组件〈包含电子组件和机械组件〉都必须安装在可热抽换的模块上,以便发生故障时可以随时更换。
一般来说,被动组件是不会坏的,除非暴力相向。
磁盘阵列柜中,除了背板〈Backplane〉之外,其它所有模块都可以是可热抽换的。
因此,背板上不可以有任何主动组件,以免有任一组件发生故障,必须停机更换,而且,一般来说,使用者是无法自行更换背板的。
磁盘阵列柜背板的另一个重要规格,是必须使用SCA2 接头,以支持热抽换〈Hot-Swap〉。
我们都知道,把磁盘驱动器从系统中拔出或插入,会造成很大的突波讯号,可能影响正在工作的Bus,甚至损坏磁盘驱动器接口组件,因此必须要有特殊的设计,来降低并防止突波可能造成的损害。
SCA2 接头的设计,是采用长、中、短等不同长度的接脚,将前期电源和地线、主电源、总线信号线等,依照先后顺序接触〈插入时〉或分离〈拔出时〉,如此可以将磁盘驱动器线路缓慢充电,将其电位提升以降低其与总线间之电位差,以减低突波讯号,保护电子接口组件以及避免干扰工作中的总线。
一体成型,无主动元件的磁盘载盒在实际的案例中,我们常发现用户把磁盘载盒送修,因为磁盘载盒蜂鸣器一直叫、风扇卡住不转了...,当然,磁盘驱动器也可能因此而毁了〈因为风扇不转而造成磁盘驱动器过热,唉,水能载舟,亦能覆舟〉。
这就是磁盘载盒设计不良所造成的。
一个好的磁盘载盒设计,必须没有使用任何可动机械或主动电子组件,亦即,不要有小风扇,也不要任何控制线路。
如此,磁盘载盒本身就是金刚不坏之身,不会造成故障,更不会成为磁盘驱动器杀手。
同时,磁盘驱动器的固定方式,也是一门学问。
除了前述要将磁盘驱动器直接且紧密地固定在磁盘载盒上,以达到热传导散热之外,磁盘驱动器最好是倒挂式固定。
如果采取一般正面式固定,则磁盘驱动器所产生的热,传导至磁盘载盒之后,又辐射出来产生热空气,再往上升,刚好用来烤磁盘驱动器的线路板和组件〈本是同根生,相煎何太急?〉,会加速组件的老化。
如果采取倒挂式固定,则传导到磁盘载盒的热,会辐射到磁盘驱动器上部空间,由对流气流带走,不会烘烤到磁盘驱动器线路组件。
为求达到最佳热辐射散热效果,磁盘驱动器载盒之表面,最好漆上黑色,因为黑色是最容易吸收热能,也是最容易辐射出热能的颜色。
磁盘驱动器载盒的材质,必须具备高导热系数的特性,如铝合金辨识理想的材料,导热系数高,加工也方便。
而如前述,磁盘驱动器载盒必须是一体成型的刚性金属合金制造,以达到最佳震动克服性能。
我们非常不建议采用组合式磁盘载盒,一般这些组合式磁盘载盒,都是由一个架子和一个盒子组成;架子上有风扇和热抽换控制电路,固定在机壳上,再接Cable;磁盘驱动器则装在盒子,透过转接接头连到架子上。
如此,不但造成前述震动问题,而且一旦架子的风扇或电子组件故障,就必须停机更换。
阵列柜环境监控与示警功能磁盘阵列柜中所有主动组件或机械组件,以及内部环境温度,都必须能够监控且有适当的警示和通报功能:阵列控制器必须能支持S.M.A.R.T.,以便预测可能发生的磁盘驱动器故障。
妥善利用S.M.A.R.T. 功能,能够预先准备好备用磁盘驱动器,以便在第一时间把不稳的磁盘驱动器更换掉,如此可以把风险系数降至最低。
环境状态监控器必须能随时监视机柜内部温度,以及控制排设装置转速,以达到最佳冷却及能源利用效率。
同时异常状况必须以两种以上方式通报,至少包含在数组柜本身的声音与视觉灯光警示,以及远程通报。
电源供应器的输入与输出,也必须随时监控。
同时异常状况必须以两种以上方式通报,至少包含在数组柜本身的声音与视觉灯光警示,以及远程通报。
另外,非常重要的一点是,环境监视控制器本身也是主动组件,也可能发生故障,因此,磁盘阵列柜的环境监控器,必须能够支持热抽换功能。
直接热拔插且方便的维护操作功能在磁盘阵列柜中,所有可能发生故障的组件,包括主动电子组件、可动机械组件,都必须能够支持热抽换功能。
不能抽换的组件,就必须是不会故障的被动组件。
具备可热抽换功能,大家都知道,但是,要如何才能更方便、更安全地作热抽换,可是一门学问。
一个提供方便维护、安全热抽换的磁盘阵列柜,至少需具备以下功能:所有可热抽换的组件,都必须能由外部直接抽换,而不必先移除其它组件,如此才不会造成任何风险。