淄博市2009年中考数学模拟试题及答案
2009年中考模拟试卷数学试题卷

2009年中考模拟试卷 数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2. 答题时,应该在答题卷指定位置内写明校名,姓名,班级,学号。
3. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4. 考试结束后,上交试题卷和答题卷。
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在 答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.计算(-3)3的结果是( ) A 、9B 、-9C 、27D 、-272.去年5月12日,我国四川省汶川县发生了强烈地震,灾情牵动着所有中国人民的心,为此,我校开展了“再小的力量也是一种支持”的募捐活动,全校师生共捐献善款322485.2元,将这个数据保留两个有效数字并用科学记数法表示为……………………( ▲ ) A 、33×104B 、3.3×105C 、32×104D 、3.2×1053.下列式子正确的是( ▲ )A.x 6÷x 3=x 2B.(-3)0=1 C.4m 2-=241mD.(a 2)4=a 64.下列不等式组的解集,在数轴上表示为如图所示的是 ( ▲ )A.1020x x ->⎧⎨+≤⎩ B.1020x x -≤⎧⎨+<⎩C.1020x x +≥⎧⎨-<⎩ D.1020x x +>⎧⎨-≤⎩5. 如图,在△ABC 中,∠C=90°,AC=8cm, AB 的垂直平分线MN 交AC 于D ,连结BD ,若53cos =∠BDC ,BC 的长是( ▲ )A .4cmB .6cmC .8cmD .10cm 6.二次函数y =x 2-3x+6的顶点坐标是( ▲ )A.(-3,6)B.(3,6)C.315(,)24-D.315(,)247.如图,△ABC 与△DEF 是位似图形位似比为3:4,已知AB =6,则DE 为……( ▲ ) A 、4 B 、4.5 C 、6 D 、8第8题图第7题图 ABC DM N(第5题图)8.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( ▲ ) A 、20㎝2B 、40㎝2C 、20π㎝2D 、40π㎝29.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小王掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ▲ )A. 118B.112C.19D.1610、如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影部分,依次进行的变换不.可行..的是( ▲ )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转D.旋转、对称、旋转二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要求填写的内容, 尽量完整地填写答案.11.写出一个..你熟悉的中心对称的几何图形名称,它是 . 12.估计与的大小关系是5.0_____215-(填“>”“<”“=”) 13. 已知A 、B 、C 、D 点的坐标如图所示, E 是图中两条虚线的交点,若△ABC 和△ADE 相似, 则E 点的坐标是___________________.14. 如图是一张简易活动餐桌,现测得OA=OB=30cm ,图①图②图③图④OC=OD=50cm,现要求桌面离地面的高度为40cm,那么两条桌腿的张角∠COD的大小应为度.15.一次函数y=-x+1与反比例函数y=-2,x与y的对应值如下表:方程-x+1=-x 的解为___________;不等式-x+1>-x的解集为____________.16. 假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到. 现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数. 那么刻的数是36的钥匙所对应的原来房间应该是号.三、完整解一解 (本题有8个小题, 其中17、18、19题每题4每题8分, 6分,20、21、22每题8分, 23、24题每题12分,共66分)17.(本题6分)说出日常生活现象中的数学原理:18.(本题6分)如图,已知一条公路MN附近有4个村庄A、B、C、D,按要求作图:(1)找出一个建生活垃圾临时收集站的地点P,使四个村庄去扔垃圾时的总路程最小;(2)画出一条生活垃圾临时收集站到公路的最近运输路线; (3)在公路上找到一个最合适的公交停靠站Q ;19.(本题6分)如图,已知△ABC 中,∠C=900,D 为AB 上一点,且AC=AD ,试探究∠A 与∠DCB 的关系,并说明理由.20.(本题8分)已知A 地在B 地的正南方3千米处,甲、乙两人分别从A 、B 两地向正北方向匀速直行,他们和B 地的距离S (千米)与所用的时间t (小时)的函数关系的图象如图所示,写出尽可能多的结论。
2009年初中毕业生学业水平考试模拟卷参考答案

2009年初中毕业生学业水平考试模拟卷数学试题卷参考答案一、选择题(本题有10小题,每小题4分,共40分)二、填空题 (本题有6小题,每小题5分,共30分) 11.(3+a )(3-a).12、k =-1013.200914.15. 1016. 2008三、解答题 (本题有8小题,共80分,各小题都必须写出解答过程) 17.(本题10分) (1)计算:02)2009(|2|45sin 21612π---︒+--- 解 略(2)解不等式组2193127.x x x -⎧⎨-<+⎩≥,解:略18.(本题满分8分)已知:如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE 。
求证:(1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形。
证略19.(本题8分) 略解:(1)y =30x(2)没满20.(本题8分) 19.(本题8分) 解:(1)如图,△A'B'C'就是所求的像 ……(3分) (-4, 1) 、(-1,-1) ……(2分) (2) (a -5,b -2) ……(3分)21.(本题10分). 解:(1)∵ AB ⊥OD , ∴∠OEB=900在Rt △OEB 中,BE=OB ×sin ∠COD=10×45=8 由垂径定理得AB=2BE=16所以弦AB 的长是16 ……(3分) (2)方法(一)在Rt △OEB 中,==6. ∵CD 切⊙O 于点D, ∴∠ODC=900, ∴∠OEB=∠ODC. ∵∠BOE=∠COD, ∴△BOE ∽△COD,∴CD OD BE OE =, ∴1086CD = , ∴CD=403. 所以CD 的长是403……(4分)方法(二)由sin ∠COD=45 可得tan ∠COD=43,在Rt △ODC 中,tan ∠COD= CDOD ,∴CD=OD •tan ∠COD=10×43=403……(4分)(3)连结OA. 在Rt △ODC 中, ∵o ≈0.8 ∴∠o ∴∠o ,∴劣弧AB 的长度 106.26 3.14210180180n R l π⨯⨯==≈18.5 ……(3分) 22.(本题10分)解:(1)2 ,0.125 ; ……(各2分) (2)图略; ……(2分) (3)由表得,有29名同学获得一等奖或二等奖. 设有x 名同学获得一等奖, 则有(29-x )名同学获得二等奖,根据题意得 151029335x x +-=()……(2分)解得 x =9 ……(1分) ∴ 50x +30(29-x )=1050所以他们得到的奖金是1050元 ……(1分)D23.(本题满分12分)解:(1)连结EF 交AC 于O ,当顶点A 与C 重合时,折痕EF 垂直平分AC ,OA OC ∴=,90AOE COF ∠=∠= ····························1分 在平行四边形ABCD 中,AD BC ∥,EAO FCO ∴∠=∠, COF AOE ∆≅∆∴。
山东省淄博市临淄区2009—2010学年初三年级上学期期末考试试卷——数学

所以所求函数关系式为:s=-20t+50
…………………………9分
(3)从函数图像可知,在1~2.5小时这段时间内,乙比甲离A地
更近. ……10分 27.解:(1)根据题意得:
……………5分 (2)根据题意得:
………………………………………6分 解得
元
………………………………………8
分
,
随
增大而减小 …………………………………9分
成本(元/ 售价(元/
个)
个)
2
2.3
3
3.5
(1)求出与的函数关系式; (2)如果该厂每天最多投入成本10000元,那么每天最多获利多少 元?
附加题(满分10分) 如图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在
30°的三角板Rt△ABC斜边AB的中点处,∠A=30o,∠E= 45o,
C2
C3
第21题 21.解:(1)所作图形如图所示. (2)以
为腰的等腰三角形有
其中点
的坐标分别为:
,
,
.
画对坐标系得2分,每找到一点各得1分,坐标写对各得1分,满分8
分.
四、解答题(第22,23每题6分、第24,25,26,27题每题10
分,满分52分)
22.计算(每小题3分,满分6分)
解:(1)=
图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分
组成的图形成轴对称图形.那么符合条件的小正方形共有(
第10题
(A)4个
(B)3个
).
(C)2个 得分
(D)1个
评卷人
二、填空题(每小题3分,共30分)
11.8的立方根是
.
2009山东中考数学解答题选编(威海、泰安、淄博)

09威海23.如图1,在正方形A B C D 中,E F G H ,,,分别为边A B B C C D D A ,,,上的点,H A E B F C G D ===,连接E G F H ,,交点为O .(1)如图2,连接E F F G G H H E ,,,,试判断四边形E F G H 的形状,并证明你的结论;(2)将正方形A B C D 沿线段,EG HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形A B C D 的边长为3cm ,1cm H A E B F C G D ====,则图3中阴影部分的面积为_________2cm . 23.(本小题满分10分)解:(1)四边形E F G H 是正方形.1分证明: 四边形A B C D 是正方形,∴90A B C D AB BC C D D A ∠=∠=∠=∠====°,.H A EB FC G D === ,AE BF C G D H ∴===.2分 A E H B F E C G F D H G ∴△≌△≌△≌△.3分EF FG G H H E ∴===.4分∴四边形E F G H 是菱形.5分由D H G A E H △≌△知D H G A E H ∠=∠.90A E H A H E ∠+∠= °, 90D H G A H E ∴∠+∠=°.90G H E ∴∠=°.6分∴四边形E F G H 是正方形.7分(2)1.10分24.(11分)如图,在直角坐标系中,点A B C ,,的坐标分别为(10)(30)(03)-,,,,,,过A B C ,,三点的抛物线的对称轴为直线l D ,为对称轴l 上一动点.(1)求抛物线的解析式;(2)求当A D C D +最小时点D 的坐标; (3)以点A 为圆心,以A D 为半径作A .①证明:当A D C D +最小时,直线B D 与A 相切.②写出直线B D 与A 相切时,D 点的另一个坐标:___________. 24.(本小题满分11分)解:(1)设抛物线的解析式为(1)(3)y a x x =+-.1分将(03),代入上式,得3(01)(03)a =+-. 解,得1a =-.2分∴抛物线的解析式为(1)(3)y x x =-+-.(第23题图1)D C B AOHG FEBAD C GFH (第23题图2)(第23题图3)E BAD C GFH图2O即223y x x =-++.3分(2)连接B C ,交直线l 于点D .点B 与点A 关于直线 l 对称,AD BD ∴=.4分 AD C D BD C D BC ∴+=+=.由“两点之间,线段最短”的原理可知:此时A D C D +最小,点D 的位置即为所求.5分 设直线B C 的解析式为y kx b =+,由直线B C 过点(30),,(03),,得033.k b b =+⎧⎨=⎩,解这个方程组,得13.k b =-⎧⎨=⎩,∴直线B C 的解析式为3y x =-+.6分由(1)知:对称轴l 为212(1)x =-=⨯-,即1x =.将1x =代入3y x =-+,得132y =-+=.∴点D 的坐标为(1,2).7分说明:用相似三角形或三角函数求点D 的坐标也可,答案正确给2分. (3)①连接A D .设直线l 与x 轴的交点记为点E .由(1)知:当A D C D +最小时,点D 的坐标为(1,2).2D E A E B E∴===.45D A B D B A ∴∠=∠=°.8分90AD B ∴∠=°.AD BD ∴⊥.BD ∴与A ⊙相切.9分②(12)-,.11分25.(12分)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数k y x=的图象相交于点,A B .过点A 分别作A C x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作B F x ⊥轴,BD y ⊥轴,垂足分别为F D ,,A C 与B D 交于点K ,连接C D .(1)若点A B ,在反比例函数k y x=的图象的同一分支上,如图1,试证明:①AED K C FBK S S =四边形四边形;②A N B M =. (2)若点A B ,分别在反比例函数k y x=的图象的不同分支上,如图2,则A N 与BM 还相等吗?试证明你的结论.x25.(本小题满分12分)解:(1)①A C x ⊥轴,AE y ⊥轴,∴四边形A E O C 为矩形.B F x ⊥轴,BD y ⊥轴,∴四边形B D O F 为矩形. AC x ⊥轴,BD y ⊥轴,∴四边形A E D K D O C K C F B K ,,均为矩形.1分1111O C x AC y x y k === ,,,∴11AEO C S O C AC x y k === 矩形2222O F x FB y x y k === ,,,∴22BDOF S O F FB x y k === 矩形. ∴AEO C BD O F S S =矩形矩形. AEDK AEOC DOCK S S S =-矩形矩形矩形,CF B KB D O F D OS S S=-矩形矩形矩形,∴AED K C FBK S S =矩形矩形.2分②由(1)知AED K C FBK S S =矩形矩形.∴A K D K B K C K = .∴A KB KC KD K=.4分 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.5分∴C D K ABK ∠=∠.∴AB C D ∥.6分 AC y ∥轴,∴四边形A C D N 是平行四边形. ∴AN C D =.7分同理B M C D =.A N B M ∴=.8分(2)A N 与BM 仍然相等.9分 AEDK AEOC ODKC S S S =+矩形矩形矩形,BKCF BDOF ODKC S S S =+矩形矩形矩形,又 AEO C BD O F S S k ==矩形矩形,∴AED K BK C F S S =矩形矩形.10分∴A K D K B K C K = .)∴C KD KA KB K=. K K ∠=∠,∴C D K ABK △∽△∴CDK ABK ∠=∠.∴AB C D ∥.11分AC y ∥轴,∴四边形A N D C 是平行四边形. ∴AN C D =.同理B M C D =. ∴A N B M =.12分泰安(本小题满分10分)如图,△ABC 是直角三角形,∠ACB=90°,C D ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F 。
2009年淄博中考数学试题

2009年淄博中考数学试题淄博市二○○九年中等学校招生考试数学试题注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1-4页)为选择题,36分;第Ⅱ卷(5-12页)为非选择题,84分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题共36分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.每小题3分,错选、不选或选出的答案超过一个,均记0分.10.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为(A)120? (B)约156?(C)180? (D)约208?二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.国家统计局2009年4月16日发布:一季度,农村居民人均现金收入1622元,与去年同期相比增长8.6%,将1622元用科学记数法表示为元.16.请写出符合以下三个条件的一个函数的解析式.①过点;②在第一象限内y随x的增大而减小;③当自变量的值为2时,函数值小于2.三、解答题:本大题共8小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)解不等式:5x-12≤2(4x-3)21.(本题满分8分)某中学共有学生2000名,各年级男女生人数如下表:六年级七年级八年级九年级男生250 z 254 258女生x 244 y 252若从全校学生中任意抽一名,抽到六年级女生的概率是0.12;若将各年级的男、女生人数制作成扇形统计图,八年级女生对应扇形的圆心角为44.28°.(1)求x,y,z的值;(2)求各年级男生的中位数;(3)求各年级女生的平均数;(4)从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率.25.(本题满分10分)如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm( ),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.。
山东省淄博市中考数学模拟试卷(六)含答案解析

山东省淄博市中考数学模拟试卷(六)一、选择题:1.下列计算正确的是()A. =2B.•=C.﹣=D. =﹣3 2.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.下列正多边形中,不能铺满地面的是()A.正三角形B.正四边形C.正五边形D.正六边形4.如图,点B、C在⊙O上,且BO=BC,则圆周角∠BAC等于()A.60° B.50°C.40°D.30°5.二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是()A.(﹣1,8) B.(1,8)C.(﹣1,2) D.(1,﹣4)6.对于反比例函数y=,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大C.当x<0时,y随x的增大而减小D.y随x的增大而减小7.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.4箱B.5箱C.6箱D.7箱8.如图所示,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=,则下列结论正确的个数有()①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④BD=2cm.A.1个B.2个C.3个D.4个9.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.10.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD11.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x ﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=212.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1二、填空题:13.某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的中位数是分.14.如图,在▱ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.15.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为°.(结果保留π)16.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是(只填序号).17.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是米.18.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为;若=2,则k=.19.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O 为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,点A3的坐标为(,).三、解答题:20.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.21.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.22.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.23.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.24.阅读题例,解答下题:例解方程x2﹣|x﹣1|﹣1=0解:(1)当x﹣1≥0,即x≥1时x2﹣(x﹣1)﹣1=0x2﹣x=0(2)当x﹣1<0,即x<1时x2+(x﹣1)﹣1=0x2+x﹣2=0解得:x1=0(不合题设,舍去),x2=1解得x1=1(不合题设,舍去)x2=﹣2综上所述,原方程的解是x=1或x=﹣2依照上例解法,解方程x2+2|x+2|﹣4=0.25.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点.(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.山东省淄博市中考数学模拟试卷(六)参考答案与试题解析一、选择题:1.下列计算正确的是()A. =2B.•=C.﹣=D. =﹣3 【考点】二次根式的混合运算.【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.【解答】解:A、=2,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣=2﹣,故C错误;D、=|﹣3|=3,故D错误.故选:B.【点评】此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质: =|a|.2.下列调查方式合适的是()A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、要了解市民对电影《南京》的感受,应随机抽查一部分市民,只采访了8名初三学生,具有片面性;B、要了解全校学生用于做数学作业的时间,应从全校中随机抽查部分学生,不能在网上向3位好友做调查,不具代表性;C、要保证“嫦娥一号”卫星零部件的状况,是精确度要求高、事关重大的调查,往往选用全面调查;D、要了解全国青少年儿童的睡眠时间,范围广,宜采用抽查方式;故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查3.下列正多边形中,不能铺满地面的是()A.正三角形B.正四边形C.正五边形D.正六边形【考点】平面镶嵌(密铺).【专题】常规题型.【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:A、正三角形的每个内角是60°,能整除360°,能密铺;B、正方形的每个内角是90°,4个能密铺;C、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;D、正六边形的每个内角是120°,能整除360°,3个能密铺.故选C.【点评】本题考查一种正多边形的镶嵌,难度不大,关键是掌握平面密铺应该符合一个内角度数能整除360°.4.如图,点B、C在⊙O上,且BO=BC,则圆周角∠BAC等于()A.60° B.50°C.40°D.30°【考点】圆周角定理.【分析】首先根据三边相等的三角形得到等边三角形,则∠O=60°,再根据圆周角定理进行求解.【解答】解:∵BO=BC,BO=CO,∴BO=BC=CO,∴△BOC是等边三角形.∴∠O=60°.∴∠BAC=30°.故选D.【点评】此题综合运用了等边三角形的性质和圆周角定理.5.二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是()A.(﹣1,8) B.(1,8)C.(﹣1,2) D.(1,﹣4)【考点】二次函数的性质.【分析】利用二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),可求函数的顶点坐标.【解答】解:∵a=﹣3、b=﹣6、c=5,∴﹣ =﹣1, =8,即顶点坐标是(﹣1,8).故选A.【点评】本题考查了二次函数的顶点坐标.6.对于反比例函数y=,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大C.当x<0时,y随x的增大而减小D.y随x的增大而减小【考点】反比例函数的性质.【专题】压轴题.【分析】因为k=2>0,根据反比例函数的性质,利用排除法求解.【解答】解:A、∵2>0,∴当x>0时,y随x的增大而减小,错误;B、∵2>0,∴当x<0时,y随x的增大而减小,错误;C、当x<0时,y随x的增大而减小,正确;D、应强调在每一个象限内或在函数的每一支上,y随x的增大而减小,错误.故选C.【点评】本题主要考查反比例函数当k>0时的性质,熟练掌握反比例函数的性质是解题的关键.7.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.4箱B.5箱C.6箱D.7箱【考点】由三视图判断几何体.【专题】压轴题.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题意知,第二行正方体的个数从左往右依次为:1,1,2;第一行第一列有1个正方体,共有1+1+2+1=5个正方体.故选B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.如图所示,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=,则下列结论正确的个数有()①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④BD=2cm.A.1个B.2个C.3个D.4个【考点】菱形的性质;锐角三角函数的定义.【专题】压轴题.【分析】根据菱形的性质及已知对各个选项进行分析,从而得到答案.【解答】解:∵菱形ABCD的周长为20cm∴AD=5cm∵sinA==∴DE=3cm(①正确)∴AE=4cm∵AB=5cm∴BE=5﹣4=1cm(②正确)∴菱形的面积=AB×DE=5×3=15cm2(③正确)∵DE=3cm,BE=1cm∴BD=cm(④不正确)所以正确的有三个,故选C.【点评】此题主要考查学生对菱形的性质的运用能力.9.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD【考点】菱形的判定.【分析】已知四边形的对角线互相垂直,可依据“对角线互相垂直且平分的四边形是菱形”的判定方法,来选择条件.【解答】解:四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分;(对角线互相垂直且平分的四边形是菱形)故选B.【点评】此题主要考查的是菱形的判定方法:对角线互相垂直且平分的四边形是菱形.11.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x ﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=2【考点】二次函数图象与几何变换.【专题】压轴题.【分析】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b,c的值.【解答】解:由题意得新抛物线的顶点为(1,﹣4),∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x﹣h)2+k代入得:y=(x+1)2﹣1=x2+2x,∴b=2,c=0.故选B.【点评】抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.12.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】先判断出函数反比例函数y=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特点进行判断即可.【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.二、填空题:13.某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的中位数是76分.【考点】中位数.【分析】先把这组数据按从小到大的顺序排列,找到第四个数据即为中位数.【解答】解:将这组数据按从小到大的顺序排列为:52,67,71,76,76,80,92,处于中间位置的那个数是76,那么由中位数的定义可知,这组数据的中位数是76.故答案为76.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.如图,在▱ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为21.【考点】平行四边形的性质.【专题】压轴题.【分析】△OAB的周长=AO+BO+AB,只要求得AO和BO即可,根据平行四边形的对角线互相平分的性质求得答案.【解答】解:在▱ABCD中,OA=OC=AC,OB=OD=BD,∵AC=14,BD=8,∴OA=7,OB=4,∵AB=10,∴△OAB的周长=7+4+10=21.故答案为21.【点评】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.15.已知扇形半径是3cm,弧长为2πcm,则扇形的圆心角为120°.(结果保留π)【考点】弧长的计算.【分析】设扇形的圆心角为n°,根据弧长公式和已知得出方程=2π,求出方程的解即可.【解答】解:设扇形的圆心角为n°,∵扇形半径是3cm,弧长为2πcm,∴=2π,解得:n=120,故答案为:120.【点评】本题考查了弧长的计算的应用,解此题的关键是能根据弧长公式得出关于n的方程,题目比较好,难度适中.16.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是③(只填序号).【考点】函数的概念.【专题】压轴题.【分析】根据对称轴是y轴,排除①②选项,再根据④不是偶函数,即可确定答案.【解答】解:①y=2x,是正比例函数,函数图象的对称轴不是y轴,错误;②y=是反比例函数,函数图象的对称轴不是y轴,错误;③y=x2是抛物线,对称轴是y轴,是偶函数,正确;④y=(x﹣1)2+2对称轴是x=1,错误.故属于偶函数的是③.【点评】本题主要考查正比例函数、反比例函数、二次函数的对称性和二次函数是偶函数的性质.17.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是6米.【考点】相似三角形的应用.【专题】压轴题.【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.【解答】解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴=,∵CD=1m,BC=1.8m,DE=1.5m,∴=,解得:x=6.所以甲的影长是6米.【点评】根据身高与影长的比例不变,得出三角形相似,运用相似比即可解答.18.如图,直线y=x与双曲线y=(x>0)交于点A,将直线y=x向下平移个6单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,则C点的坐标为(,0);若=2,则k= 12.【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】根据题意得到直线BC的解析式,令y=0,得到点C的坐标;根据直线AO和直线BC的解析式与双曲线y=联立求得A,B的坐标,再由已知条件=2,从而求出k值.【解答】解:∵将直线y=x向下平移个6单位后得到直线BC,∴直线BC解析式为:y=x﹣6,令y=0,得x﹣6=0,∴C点坐标为(,0);∵直线y=x与双曲线y=(x>0)交于点A,∴A(,),又∵直线y=x﹣6与双曲线y=(x>0)交于点B,且=2,∴B(+,),将B的坐标代入y=中,得(+)=k,解得k=12.故答案为:(,0),12.【点评】此题考查一次函数与反比例函数的性质,联立方程求出点的坐标,同时还考查学生的计算能力.19.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O 为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,点A3的坐标为(4,0).【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】根据点A1坐标为(1,0),且B1A1⊥x轴,可得出B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出∠xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,从而寻找出点A2、A3…的坐标规律,最后求出A3的坐标.【解答】解:∵点A1坐标为(1,0),∴OA1=1.∵B1A1⊥x轴,∴点B1的横坐标为1,且点B1在直线上,∴y=,∴B1(1,),∴A1B1=.在Rt△A1B1O中由勾股定理,得OB1=2,∴sin∠OB1A1=,∴∠OB1A1=30°,∴∠OB1A1=∠OB2A2=∠OB3A3=…=∠OB n A n=30°.∵OA2=OB1=2,∴A2(2,0).在Rt△OB2A2中,∵OB2=2OA2=4∴OA3=4,∴A3(4,0).故答案为:(4,0).【点评】本题考查的是一次函数图象上点的坐标特点,涉及到直角三角形的性质,特别是30°所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系等知识.三、解答题:20.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【专题】计算题.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.【点评】本题考查的知识点比较多:绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算的有关内容,熟练掌握且区分清楚,才不容易出错.21.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.【考点】列表法与树状图法;分式的定义.【专题】压轴题.【分析】(1)列举出不放回的2次实验的所有情况即可;(2)看抽取的两张卡片结果能组成分式的情况占总情况的多少即可.【解答】解:(1)树状图:列表法:=.(2)共有6种情况,能组成的分式的有,,, 4种情况,所以P分式【点评】此题考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.用到的知识点为:分母中含有字母的式子是分式.22.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】方案型;图表型.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.23.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【考点】圆的综合题.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.…理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.24.阅读题例,解答下题:例解方程x2﹣|x﹣1|﹣1=0解:(1)当x﹣1≥0,即x≥1时x2﹣(x﹣1)﹣1=0x2﹣x=0(2)当x﹣1<0,即x<1时x2+(x﹣1)﹣1=0x2+x﹣2=0解得:x1=0(不合题设,舍去),x2=1解得x1=1(不合题设,舍去)x2=﹣2综上所述,原方程的解是x=1或x=﹣2依照上例解法,解方程x2+2|x+2|﹣4=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【专题】阅读型.【分析】根据题中所给的材料把绝对值符号内的x+2分两种情况讨论(x+2≥0和x+2<0),去掉绝对值符号后再解方程求解.【解答】解:①当x+2≥0,即x≥﹣2时,x2+2(x+2)﹣4=0,x2+2x=0,解得x1=0,x2=﹣2;②当x+2<0,即x<﹣2时,x2﹣2(x+2)﹣4=0,x2﹣2x﹣8=0,解得x1=4(不合题设,舍去),x2=﹣2(不合题设,舍去).综上所述,原方程的解是x=0或x=﹣2.【点评】从题中所给材料找到需要的解题方法是解题的关键.注意在去掉绝对值符号时要针对符号内的代数式的正负性分情况讨论.25.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点.(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的判定;解直角三角形.【专题】几何综合题.【分析】(1)根据等边对等角的性质可得∠A=∠C,再根据旋转的性质可得∠ABE=∠C1BF,AB=BC=A1B=BC1,然后利用“角边角”证明△ABE和△C1BF全等,根据全等三角形对应边相等可得BE=BF,从而得解;(2)先根据旋转的性质求出∠ABC1=150°,再根据同旁内角互补,两直线平行求出AB∥C1D,AD∥BC1,证明四边形BC1DA是平行四边形,又因为邻边相等,所以四边形BC1DA是菱形;(3)过点E作EG⊥AB于点G,等腰三角形三线合一的性质可得AG=BG=1,然后解直角三角形求出AE的长度,再利用DE=AD﹣AE计算即可得解.【解答】解:(1)EA1=FC.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α得△A1BC1,∴∠ABE=∠C1BF,AB=BC=A1B=BC1,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA),∴BE=BF,∴A1B﹣BE=BC﹣BF,即EA1=FC;(2)四边形BC1DA是菱形.理由如下:∵旋转角α=30°,∠ABC=120°,∴∠ABC1=∠ABC+α=120°+30°=150°,∵∠ABC=120°,AB=BC,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABC1+∠C1=150°+30°=180°,∠ABC1+∠A=150°+30°=180°,∴AB∥C1D,AD∥BC1,∴四边形BC1DA是平行四边形,又∵AB=BC1,∴四边形BC1DA是菱形;(3)过点E作EG⊥AB,∵∠A=∠ABA1=30°,∴AG=BG=AB=1,在Rt△AEG中,AE===,由(2)知AD=AB=2,∴DE=AD﹣AE=2﹣.【点评】本题考查了旋转的性质,主要利用了全等三角形的判定与性质,菱形的判定与性质,以及解直角三角形,等腰三角形三线合一的性质,难度不大,利用好旋转变换只改变图形的位置不改变图形的形状与大小,找出相等的线段是解题的关键.。
2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
淄博市中考数学试卷及答案(解析)

山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分)1.(4分)(山东淄博)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.2.(4分)(山东淄博)方程﹣=0解是()A.x=B.x=C.x=D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(4分)(山东淄博)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.4.(4分)(山东淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.解答:解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选:D.点评:本题考查了简单组合体的三视图,分别得出三视图是解题关键.5.(4分)(山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b及c的值代入计算,即可求出原方程的解.解答:解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选C.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.6.(4分)(山东淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求值a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(4分)(山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.8.(4分)(山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.(4分)(山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.10.(4分)(山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C. D. 2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.11.(4分)(山东淄博)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B.2C.5D. 6 考点:切线的性质.分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.解答:解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(4分)(山东淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(山东淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式8,进而利用完全平方公式分解因式得出即可.解答:解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(4分)(山东淄博)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.15.(4分)(山东淄博)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC.考点:菱形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形AB CD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.16.(4分)(山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.17.(4分)(山东淄博)如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.分析:如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D点下面两格的小正方形放在右面,就组成了一人矩形.解答:解:如图:点评:本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.三、解答题(共7小题,共52分)18.(5分)(山东淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.(5分)(山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.考点:平行线的性质.分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.点评:本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.20.(8分)(山东淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.21.(8分)(山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.22.(8分)(山东淄博)如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.考点:一次函数综合题.分析:(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论;(2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,﹣3),所以根据点B、P的坐标易求直线BP的解析式.解答:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.点评:本题综合考查了待定系数法求一次函数解析式,旋转的性质,全等三角形的判定与性质等知识.解答(2)题时,求得点P位于y轴负半轴上的坐标是解题的关键.23.(9分)(山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.考点:相似三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.解答:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.点评:本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.24.(9分)(山东淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有无数个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.考点:圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.专题:综合题;探究型.分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.解答:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淄博市2009年中考数学模拟试题及答案 学校 姓名
一,选择题:
每个小题都给出四个选项,其中只有一个选项是正确的,请把正确选项的字母填入表中。
填写正确的得3分,不填或多填均得0分。
1.已知sin α=
2
3
,且α是锐角,则α=( ) A;750 B;600 C;450 D;300
2.已知关于x 的一元二次方程 x 2
-2x+α=0有实根,则实数α的取值范围是( ) A; α≤1 B; α<1 C; α≤-1 D; α≥1 3.用换元法解方程 x 2
-2x+
8272
=-x
x ,若设x 2
-2x=y ,则原方程化为关于y 的整式方程是( ) A ;y 2+8y -7=0 B ;y 2
-8y -7=0 C ;y 2+8y+7=0 D ;y 2
-8y +7=0 4.已知一次函数 y=k x -k ,若y 随x 的增大而减小,则该函数的图像经过( )
A;第一,二,三象限, B; 第一,二,四象限 C; 第二,三,四象限 D; 第一,三,四象限 5.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环) 甲:10 8 10 10 7 乙:7 10 9 9 10
即两人射击成绩的稳定程度是( )
A;甲比乙稳定 B;乙比甲稳定 C;甲,乙的稳定程度相同 D;无法进行比较 6.⊙O 1与⊙O 2的半径分别为2和5,当O 1O 2=2.5时,两圆的位置关系是( ) A ;外切 B ;相交 C ;内切 D ;内含 7.已知正六边形的外接圆的半径是a ,则正六边形的周长是( )
A;3a B;6a C;2a D;24a
8.已知:如图⊙O 的割线PAB 交⊙O 于点A,B, PA=7cm, AB=5cm, PO=10cm, 则⊙O 的半径是( ) A;4cm B;5cm C;6cm D;7cm
9.已知,如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=1300,过D 点的切线PD 与直线AB 交于P 点,则∠ADP 的度数为( )
A;400 B;450 C;500 D;650
10.如图,已知等边三角形△ABC 内接于⊙O 1,⊙O 2与BC 相切于C ,与AC 相交于E ,与⊙O 1相交于另一点D ,直线AD 交⊙O 2于另一点F ,交BC 的延长线于G ,点F 为AG 的中点。
对于如下四个结论:①EF ∥BC ②BC=FC ③D E ·AG=AB ·EC ④弧AD=弧DC 其中一定成立的是:( )
A;①②④ B; ②③ C; ①③④ D; ①②③④ 二,填空题:每小题3分
11.已知βα,是方程x 2
+2x -5=0的两个实数根,则ααβα22
++的值为 。
12.若正比例函数y=kx 与y=2x 的图像关于x 轴对称,则k 的值等于 。
13.写出一个图像位于第二,四象限的反比例函数的解析式 。
14。
为了了解中学生的素质教育情况,某县在全县各中学共抽取了200名九年级学生进行素质教育调查,将所得的数据整理后,划出频率分布直方图(如图),已知图中从左到右前4个小组的频率分别是0.04 ,0.12 ,0.16 , 0.4 ,则第5小组的频数是 。
15.圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为 。
16.如图,已知在△ABC 中,∠ACB=900,∠B=350
,为C 圆心,CA 为半径的圆交AB 于D 点,则弧AD 为 . 17.如图,AB 是⊙O 的直径,弦C D ⊥AB ,垂足是G ,F 是CG 的中点,延长AF 交⊙O 于E ,CF=2, AF=3, 则EF 的长是 。
18.设函数y=x 2
-(k+1)x -4(k+5)的图像如图所示,它与x 轴交于A,B 两点,且线段OA 与OB 的长的比为1:4,则k= 。
三,解答题: 19.本小题6分
已知该班学生期末考试数学成绩平均分是76分。
(1)求该班80分和90分的人数分别是多少? (2)设该班30名学生成绩的众数为a,中位数为b, 求a+b 的值。
20.本小题8分
如图,抛物线的对称轴是直线x=1 ,它与x 轴交于A,B 两点,与y 轴交于C 点,点A,C 的坐标分别为(-1,0),(0,
2
3
) (1)求此抛物线对应的函数的解析式。
(2)若点P 是此抛物线上位于x 轴上方的一个动点,求△ABC 面积的最大值.
21.本小题8分
如图所示,已知一次函数y=kx+b 的图像与x 轴y 轴分别交于A,B 两点,且与反比例函数y=x
m
的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=1,
(1)求点A,B,D 的坐标。
(2)求一次函数与反比例函数的解析式。
22. 本小题8分
如图所示,四边形ABDE 内接⊙O ,AE, BD 的延长线相交于点C ,直径AE 为8, OC=12, (1)求证:
CB
CE
AC CD
(2)计算C D ·CB 的值,并指出CB 的取值范围。
23. 本小题8分
如图,山脚下有一棵树AB,小强从点B 沿山坡向上走50米到达点D ,用高为1.5米的测角仪CD 测得树顶的仰角为100,已知山坡的坡角为150,求树AB 的高。
(精确到0.1米,已知sin100=0.17 ,cos100=0.98 ,tan100=0.18 ,sin150=0.26 ,cos150=0.97 ,tan150=0.27)
24. 本小题8分
甲,乙两名工人接受相同数量的生产任务,开始时,乙比甲每天少做4件,乙比甲多用2天时间。
这样甲乙两人各剩120件,随后,乙改进了生产技术,而甲每天的工作量不变,结果两人完成全部生产任务所用的时间相同。
求:原来甲,乙两人每天各做多少件?
25.本小题10分
如图,已知⊙A ,⊙B 都经过点C ,BC 是⊙A 的切线,⊙B 交AB 于点D ,连结CD 并延长交⊙A 于点E ,连结AE
(1)求证:A E ⊥AB (2)求证:D E ·DC=2AD ·DB (3)如果D E ·DC=8 ,AE=3,求BC 的长。
26. 本小题10分
设抛物线y=ax 2+bx+c 经过A (-1,2), B(2 ,-1)两点,且与y 轴交于点M (1) 求b 和c (用含a 的代数式表示)
(2) 求抛物线y=ax 2
-bx+c -1上横坐标与纵坐标相等的点的坐标
(3) 在第(2)小题所求出的点中,有一个点也在抛物线y=ax 2+bx+c 上,试判断直线AM 和x 轴的位置关系,
并说明理由。
答案:
一,B, A, D, B, B, D, B, A, A, D
二,(11)0 (12)-2 (13)答案不唯一 (14)56 (15)15π (16)700
(17)1 (18)11 三,(19)8,5人 a+b=160 (20)y=-
2
3
212++x x , 4 (21)y=x+1, y=x 2 , (22)证明略,OC=12
(23)树高约为23.2米。
(24)甲10件,乙6件。
(25)证明略, BC=BD=4
(26)b=-a -1,c=1-2a ;P 1(1,1),P 2(-2,-2), 当P 1(1,1)在抛物线上时,直线AM 平行于x 轴,当P 2(-2,-2)在抛物线上时,直线与相交x 轴,。