函数的商的导数.ppt
3.2导数的计算(27张PPT)

;
(7) y 3 x; 2
例3 :日常生活中的饮用水通常是经过净化的,随着水纯
净度的提高,所需净化费用不断增加。已知1吨水净化
到纯净度为x%时所需费用(单位:元)为:
c(x)= 5284 (80 x 100). 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率;
(1)90%;
(2)98%.
x
x
f (x) (x2) ' lim y lim 2x x x2 lim (2x x) 2x.
x x0
x0
x
x0
公式三:(x2)' 2x
二、几种常见函数的导数
4) 函数y=f(x)=1/x的导数.
解: y f (x) 1 , x
y f (x x) f (x) 1 1 x x x x (x x)x
y
'
1 x2
探究:
表示y=C图象上每一点处的切线 斜率都为0
表示y=x图象上每一点处的切线 斜率都为1
这又说明什么?
这又说明什么?
画出函数y=1/x的图像。根据图像, 描述它的变化情况。并求出曲线在 点(1,1)处的切线方程。
x+y-2=0
3.2.2基本初等函数 的导数公式及导数 的运算法则
高二数学 选修1-1
y f (x x) f (x) C C 0,
y 0, x
f (x) C lim y 0. x0 x
公式一:C 0 (C为常数)
二、几种常见函数的导数
2) 函数y=f(x)=x的导数. 解: y f (x) x,
y f (x x) f (x) (x x) x x,
(1) c '(90) 5284 52.84 (100 90)2
导数运算ppt课件

fa+Δx-fa+fa-fa-Δx Δx
= lim Δx→0
fa+ΔΔxx-fa+-lΔimx→0
fa-Δx-fa -Δx
=A+A=2A.
答案:2A
设 f(x)为可导函数,且满足lim x→0
f1-f2x1-2x=-1,则过曲
线 y=f(x)上点(1,f(1))处的切线斜率为( )
A.2
B.-1
C.1
f(x0),则当Δx≠0时,商
fx0+Δx-fx0 Δx
Δy =__Δ_x___.称为函数y
=f(x)从x0到x1的平均变化率.
2.(1)平均速度 设物体运动路程与时间的关系是 s=f(t),在 t0 到 t0+Δt 这段时间内,物体运动的平均速度是 v0=ft0+ΔΔtt-ft0=_ΔΔ_st_. (2)瞬时速度 设物体运动路程与时间的关系是 s=f(t),当 Δt 趋近于 0 时,函数 f(t)在 t0 到 t0+Δt 这段时间内的平均变化率ΔΔst = ft0+ΔΔtt-ft0趋近于常数,我们把这个常数称为 t0 时刻的瞬时 速度.
2.深刻理解“函数在一点处的导数”、“导函数”、“导 数”的区别与联系
(1)函数在一点处的导数 f ′(x0)是一个常数,不是变量. (2)函数的导数,是针对某一区间内任意点 x 而言的.函 数 f(x)在区间(a,b)内每一点都可导,是指对于区间(a,b)内的 每一个确定的值 x0,都对应着一个确定的导数 f ′(x0).根据 函数的定义,在开区间(a,b)内就构成了一个新的函数,就是 函数 f(x)的导函数 f ′(x).
解析:f ′(x)=3ax2+2bx-3, 由题意±1 是方程 f ′(x)=0 的根, ∴-23ba=0,-1a=-1,故 a=1,b=0. 曲线方程为 y=x3-3x,点 A(0,16)不在曲线上. 设切点为 M(x0,y0),则 y0=x03-3x0. ∵f ′(x0)=3(x20-1), ∴切线方程为 y-y0=3(x20-1)(x-x0).
人教版高中数学选择性必修2《导数的四则运算法则》PPT课件

1
6. 若f ( x ) = loga x, 则f' ( x ) =
(a > 0 , 且a 1);
xlna
1
特别地 , 若f ( x ) = lnx, 则f' ( x ) = .
x
探究一:两个函数的和(差)的导数
() = , () = ,如何计算[() + ()]’与[() − ()]’它们与
两个函数积的导数
f′(x)g(x)+f(x)g′(x)
[f(x)g(x)]′=_______________________________
两个函数商的导数
fx
gx ′=
f′xgx-fxg′x
[gx]2
____________________ (g(x)≠0)
探究二:两个函数的积(商)的导数
() = , () = ,如何计算[() + ()]’与[() − ()]’它们与
’()和’()有什么关系?
[() + ()]’ ≠ ’()’()
() ’ ’()
() ≠ ’()
探究新知
导数的运算法则2:
即:
15x y 24 0.
小结反思
小结
导数的四则运算法则
设两个函数分别为 f(x)和 g(x),则:
两个函数和的导数
f′(x)+g′(x)
[f(x)+g(x)]′=_________________
两个函数差的导数
f′(x)-g′(x)
[f(x)-g(x)]′=_________________
b 1
522导数的四则运算法则课件共36张PPT

课堂篇·互动学习
类型一
导数的运算法则
[例 1] 求下列函数的导数: (1)y=(x+1)(x+2)(x+3); (2)y=x22+x 1; (3)y=xsin x-co2s x; (4)y=3x-lg x. [思路分析] 本题考查导数的运算法则,观察函数的结构特征,可先对函数式 进行合理变形,然后利用导数公式及相应的运算法则求解.
3.已知 f(x)=xln x+2 018x,若 f′(x0)=2 020,则 x0=__e___.
解析:∵f′(x)=ln x+1+2 018,∴f′(x0)=ln x0+2 019=2 020,∴ln x0=1,解 得 x0=e.
4.若曲线 y=xln x 上点 P 处的切线平行于直线 2x-y+1=0,则点 P 的坐标 是___(_e,__e_)___.
5.2 导数的运算
5.2.2 导数的四则运算法则
[课标解读]1.掌握导数的基本运算法则.2.能利用导数的四则运算法则求简单函 数的导数.
[素养目标] 水平一:能应用导数的四则运算法则求简单函数的导数(数学运 算).
水平二:能利用导数的运算法则求复杂函数的导数(数学运算).
课前篇·自主预习 检测篇·达标小练
[解] (1)∵(x+1)(x+2)(x+3) =(x2+3x+2)(x+3)=x3+6x2+11x+6, ∴y′=[(x+1)(x+2)(x+3)]′ =(x3+6x2+11x+6)′=3x2+12x+11. (2)y′=x22+x 1′=2x′x2+x12+-122xx2+1′ =2x2x+2+11-24x2=2x-2+21x22.
[变式训练 1] 求下列函数的导数: (1)y=( x-2)2;(2)y=( x+1) 1x-1.
解:(1)∵y=( x-2)Байду номын сангаас=x-4 x+4,
高一数学复习考点知识讲解课件45---函数的和、差、积、商的导数

高一数学复习考点知识讲解课件5.2.2函数的和、差、积、商的导数 考点知识1.掌握函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数. 导语同学们,上节课我们学习了基本初等函数的导数,实际上,它是我们整个导数的基础,而且我们也只会幂函数、指数函数、对数函数、三角函数这四类函数的求导法则,我们知道,可以对基本初等函数进行加减乘除等多种形式的组合,组合后的函数,又如何求导,将是我们本节课要解决的内容.一、f (x )±g (x )的导数问题令y =f (x )+g (x ),如何求该函数的导数?提示Δy =[]f (x +Δx )+g (x +Δx )-[]f (x )+g (x );Δy Δx =[]f (x +Δx )+g (x +Δx )-[]f (x )+g (x )Δx=f (x +Δx )-f (x )Δx +g (x +Δx )-g (x )Δx, y ′=lim Δx →0Δy Δx =lim Δx →0⎣⎢⎡⎦⎥⎤f (x +Δx )-f (x )Δx +g (x +Δx )-g (x )Δx =f ′(x )+g ′(x ).所以有[f (x )+g (x )]′=f ′(x )+g ′(x ).两个函数和或差的导数:[f(x)±g(x)]′=f′(x)±g′(x).注意点:推广[f1(x)±f2(x)±…±f n(x)]′=f1′(x)±f2′(x)±…±f n′(x).例1求下列函数的导数:(1)y=x5-x3+cos x;(2)y=lg x-e x.解(1)y′=()x5′-()x3′+()cos x′=5x4-3x2-sin x.(2)y′=(lg x-e x)′=(lg x)′-(e x)′=1x ln10-e x.反思感悟两个函数和(或差)的导数,等于这两个函数的导数的和(或差),对于每一项分别利用函数的求导法则即可.跟踪训练1求下列函数的导数:(1)f(x)=15x5+43x3;(2)g(x)=lg x-e x.解(1)∵f(x)=15x5+43x3,∴f′(x)=x4+4x2.(2)∵g(x)=lg x-e x,∴g′(x)=1x ln10-e x.二、f(x)g(x)和f(x)g(x)的导数1.(f (x )·g (x ))′=f ′(x )g (x )+f (x )g ′(x ),特别地,(Cf (x ))′=Cf ′(x )(C 为常数).2.⎝ ⎛⎭⎪⎫f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0). 注意点:注意两个函数的乘积和商的导数的结构形式.例2求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2;(3)y =e x x ;(4)y =(2x 2-1)(3x +1).解(1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝ ⎛⎭⎪⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3.(3)y ′=⎝ ⎛⎭⎪⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x(3x+1)+(2x2-1)×3=12x2+4x+6x2-3=18x2+4x-3.方法二∵y=(2x2-1)(3x+1)=6x3+2x2-3x-1,∴y′=(6x3+2x2-3x-1)′=(6x3)′+(2x2)′-(3x)′-(1)′=18x2+4x-3.反思感悟(1)先区分函数的运算方式,即函数的和、差、积、商,再根据导数的运算法则求导数.(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练2求下列函数的导数:(1)y=2x3-3x+x+1x x;(2)y=x2+1 x2+3;(3)y=(x+1)(x+3)(x+5).解(1)∵3131222 23y x x x x---=-++,∴135222233322y x x x x---'+--=.(2)方法一y ′=(x 2+1)′(x 2+3)-(x 2+1)(x 2+3)′(x 2+3)2=2x (x 2+3)-2x (x 2+1)(x 2+3)2=4x (x 2+3)2. 方法二∵y =x 2+1x 2+3=x 2+3-2x 2+3=1-2x 2+3, ∴y ′=⎝ ⎛⎭⎪⎫1-2x 2+3′=⎝ ⎛⎭⎪⎪⎫-2x 2+3′ =(-2)′(x 2+3)-(-2)(x 2+3)′(x 2+3)2=4x (x 2+3)2. (3)方法一y ′=[(x +1)(x +3)]′(x +5)+(x +1)(x +3)(x +5)′=[(x +1)′(x +3)+(x +1)(x +3)′](x +5)+(x +1)(x +3)=(2x +4)(x +5)+(x +1)(x +3)=3x 2+18x +23. 方法二∵y =(x +1)(x +3)(x +5)=(x 2+4x +3)(x +5)=x 3+9x 2+23x +15,∴y ′=(x 3+9x 2+23x +15)′=3x 2+18x +23.三、导数四则运算法则的应用例3(1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是()A.2B.22C .1D .2答案B解析设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴k =ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22.(2)设f (x )=a ·e x +b ln x ,且f ′(1)=e ,f ′(-1)=1e ,求a ,b 的值.解f ′(x )=(a ·e x )′+(b ln x )′=a ·e x +b x ,由f ′(1)=e ,f ′(-1)=1e ,得⎩⎨⎧ a e +b =e ,a e -b =1e ,解得⎩⎪⎨⎪⎧a =1,b =0,所以a ,b 的值分别为1,0. 反思感悟(1)熟练掌握导数的运算法则和基本初等函数的求导公式.(2)涉及切点、切点处的导数、切线方程等问题时,会根据题意进行转化,并分清“在点”和“过点”的问题.跟踪训练3(1)已知函数f (x )=a ln x x +1+b x ,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案1,1解析f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎨⎧ f (1)=1,f ′(1)=-12,即⎩⎨⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1. (2)曲线y =f (x )=2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为________.答案1解析由题意可知,f ′(x )=2e x ·e x ,f ′(1)=2,∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.(3)导数四则运算法则的应用.2.方法归纳:公式法、转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.函数y=x(x2+1)的导数是()A.x2+1B.3x2C.3x2+1D.3x2+x答案C解析∵y=x(x2+1)=x3+x,∴y′=(x3+x)′=(x3)′+x′=3x2+1.2.已知f(x)=ax3+3x2+2,若f′(-1)=4,则a的值是()A.193B.163C.133D.103答案D解析∵f′(x)=3ax2+6x,∴f′(-1)=3a-6=4,∴a =103.3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为()A .-1B .0C .1D .2答案A解析因为f (x )=12f ′(-1)x 2-2x +3,所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案y =x解析∵f (x )=e x ·sin x ,∴f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .课时对点练1.(多选)下列运算中正确的是()A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′-(x 2)′x 2 D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案AD解析A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确; B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.曲线f (x )=13x 3-x 2+5在x =1处的切线的倾斜角为()A.π6B.3π4C.π4D.π3答案B解析因为f ′(x )=x 2-2x ,k =f ′(1)=-1,所以在x =1处的切线的倾斜角为3π4.3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于()A .e 2B .eC.ln22D .ln2答案B解析∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于()A .-1B .-2C .2D .0答案B解析∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.设f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为()A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)答案C解析f (x )的定义域为(0,+∞),又由f ′(x )=2x -2-4x =2(x -2)(x +1)x>0,解得x >2,所以f ′(x )>0的解集为(2,+∞).6.(多选)当函数y =x 2+a 2x (a >0)在x =x 0处的导数为0时,那么x 0可以是()A .aB .0C .-aD .a 2答案AC解析y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .7.已知函数f (x )=x 3-mx +3,若f ′(1)=0,则m =_________________________________. 答案3解析因为f ′(x )=3x 2-m ,所以f ′(1)=3-m =0,所以m =3.8.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________. 答案1解析∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22, 得f ′⎝ ⎛⎭⎪⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝ ⎛⎭⎪⎫π4=1. 9.求下列函数的导数:(1)y =ln x +1x; (2)y =cos x e x ;(3)f (x )=(x 2+9)⎝ ⎛⎭⎪⎫x -3x ; (4)f (x )=sin x x n .解(1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=()ln x ′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2. (2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=()cos x ′e x -cos x ()e x′()e x 2=-sin x +cos x e x . (3)f (x )=x 3+6x -27x ,f ′(x )=3x 2+27x 2+6.(4)f′(x)=(sin x)′x n-sin x·(x n)′(x n)2=x n cos x-nx n-1sin xx2n=x cos x-n sin xx n+1.10.已知函数f(x)=ax2+bx+3(a≠0),其导函数f′(x)=2x-8.(1)求a,b的值;(2)设函数g(x)=e x sin x+f(x),求曲线g(x)在x=0处的切线方程.解(1)因为f(x)=ax2+bx+3(a≠0),所以f′(x)=2ax+b,又f′(x)=2x-8,所以a=1,b=-8.(2)由(1)可知g(x)=e x sin x+x2-8x+3,所以g′(x)=e x sin x+e x cos x+2x-8,所以g′(0)=e0sin0+e0cos0+2×0-8=-7,又g(0)=3,所以曲线g(x)在x=0处的切线方程为y-3=-7(x-0),即7x+y-3=0.11.已知曲线f(x)=x2+ax+1在点(1,f(1))处切线的倾斜角为3π4,则实数a等于()A.1B.-1C.7D.-7 答案C解析∵f′(x)=2x(x+1)-(x2+a)(x+1)2=x2+2x-a(x+1)2,又f′(1)=tan3π4=-1,∴a=7.12.已知曲线f(x)=(x+a)·ln x在点(1,f(1))处的切线与直线2x-y=0垂直,则a等于()A.12B.1C.-32D.-1答案C解析因为f(x)=(x+a)·ln x,x>0,所以f′(x)=ln x+(x+a)·1x,所以f′(1)=1+a.又因为f(x)在点(1,f(1))处的切线与直线2x-y=0垂直,所以f′(1)=-12,所以a=-32.13.如图,有一个图象是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R,且a≠0)的导函数的图象,则f(-1)等于()A.13B .-13C.73D .-13或53答案B解析f ′(x )=x 2+2ax +a 2-1,图(1)与图(2)中,导函数的图象的对称轴都是y 轴,此时a =0,与题设不符合,故图(3)中的图象是函数f (x )的导函数的图象.由图(3)知f ′(0)=0,即f ′(0)=a 2-1=0,得a 2=1,又由图(3)得对称轴为-2a 2=-a >0,则a <0,解得a =-1.故f (x )=13x 3-x 2+1,所以f (-1)=-13.14.已知函数f (x )=⎩⎪⎨⎪⎧ 13x 3-4x ,x <0,-1x -ln x ,0<x <1,若f ′(a )=12,则实数a 的值为________.答案14或-4解析f ′(x )=⎩⎨⎧ x 2-4,x <0,1x 2-1x ,0<x <1,若f ′(a )=12,则⎩⎨⎧ 0<a <1,1a 2-1a =12或⎩⎪⎨⎪⎧a <0,a 2-4=12,解得a =14或a =-4.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=________.答案4096解析因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x , 所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8. 因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212=4096.16.已知函数f (x )=ax x 2+b ,且f (x )的图象在x =1处与直线y =2相切. (1)求函数f (x )的解析式;(2)若P (x 0,y 0)为f (x )图象上的任意一点,直线l 与f (x )的图象切于P 点,求直线l 的斜率k 的取值范围.解(1)由题意得f ′(x )=(ax )′(x 2+b )-ax (x 2+b )′(x 2+b )2=a (x 2+b )-2ax 2(x 2+b )2=-ax 2+ab (x 2+b )2,因为f (x )的图象在x =1处与直线y =2相切,所以⎩⎪⎨⎪⎧ f ′(1)=-a +ab(1+b )2=0,f (1)=a 1+b =2,解得⎩⎪⎨⎪⎧a =4,b =1,则f (x )=4x x 2+1. (2)由(1)可得,f ′(x )=-4x 2+4(x 2+1)2,所以直线l 的斜率k =f ′(x 0)=4-4x 20(x 20+1)2=4⎣⎢⎡⎦⎥⎤2(x 20+1)2-1x 20+1, 令t =1x 20+1,则t ∈(0,1], 所以k =4(2t 2-t )=8⎝ ⎛⎭⎪⎫t -142-12, 则在对称轴t =14处取到最小值-12,在t =1处取到最大值4,所以直线l 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-12,4.。
函数的商的导数.ppt

谢谢你的观赏
6
复习引入
复习两个函数的和(差)的求导法则: 学生练习:求函数的导数. 复习两个函数的积的求导法则: 学生练习:求函数的导数. 问题:如何求函数的导数?
2020-12-19
谢谢你的观赏
7
新授课
法 则 范 例 应 用
2020-12-19
谢谢你的观赏
8
法则
法则3 两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子 的积,再除以分母的平方.
2020-12-19
谢谢你的观赏
3
教学重点和难点
教学重点:掌握商的求导法则,灵活运用 求导的四则运算法则;
教学难点:商的求导法则与积的求导法则 联系与区别的理解.
2020-12-19
谢谢你的观赏
4
教学用具
投影仪
2020-12-19
谢谢你的观赏
5
教学过程
复习引入 新 授 小 结 练 习
2020-12-19
2020-12-19
谢谢你的观赏
13
u v
uv uv v2
(v 0)
证明
2020-12-19
谢谢你的观赏
9
法则
返回
说明:
①
u v
u . v
②类比:(uv) uv
③
u v
uv uv v2
.
uv,
u v
uv uv v2
④若两个函数可导,则它们的和、差、积、商
(商的情况下分母不为0)必可导.若两个函数必
不可导,则它们的和、差、积、商不一定可导.ຫໍສະໝຸດ 例如f(x)
sin x
1 、g(x) x
cosx
导数的四则法则运算PPT教学课件
•他认为必须做什么才能证明他自己 是个真正的男子汉?
仔细阅读4、5、6三部分,在其中 寻找有哪些因素催化了戈文亮性格 的突变,致使他最终放弃了杀狐? 在这些因素中?谁又起到了关键的 作用?
读第7部分,思考,当戈文亮最终放弃了自 己的猎狐行动,读者在为他喝彩时,他自己 是怎样的呢?他意识到自己成功了吗?他的 情绪怎么样?请揣摩他当时的心态,在课文 中找到相关的语句。是谁最终肯定了他的成 功?
冲突篇
冲突、冲突是作品情节的基础,没有 冲突就没有情节。
在文中寻找矛盾冲突。
韦老师 戈文亮自己
戈文亮
母狐 小狐 父亲
讨论:每一对矛盾冲突对推动情节 所起到的作用。
以戈文亮为矛盾冲突的五对冲突中,每 一处都有有让我们怦然心动的细节,请 同学们选取基中一对矛盾冲突,深入到 人物的内心,与作品本身对话,与自己 的内心对话,以《一点点感动》为题, 写出心中的感受。
x)
f (x)g(x) f (x)g(x)
g ( x)2
3:求下列函数的导数
(1)y=tanx
y' ( sin x )' cos2 x sin 2 x 1
cos x
cos2 x
cos2 x
(2) y
x3 x2 3
x2 6x 3 y'
(x2 3)2 5
应用:
1.求下列函数的导数:
(1)y=2xtanx
c(x)=5284/(100-x) (80<x<100).
求净化到下列纯净度时,所需净化 费用的瞬时变化率:
(1)90%;(2)98%。 8
解:净化费用的瞬时变化率就是
新教材选择性5.2.2函数的和差积商的导数课件(25张)
1.若存在过点(1,0)的直线与曲线 y=x3 和 y=ax2+145x-9 都相切,则 a 的值为
()
A.-1 或-2654
B.-1 或241
C.-74或-2654
D.-74或 7
解析:设过点(1,0)的直线与曲线 y=x3 相切于点(x0,x30), 则切线方程为 y-x30=3x20(x-x0),即 y=3x20x-2x03.
f(1)=5,所以31a2+a+2b4+b+c=c=0,0,解得ba==-2,9,
a+b+c=5,
c=12.
故函数 f(x)的解析式是 f(x)=2x3-9x2+12x.
[答案] (1)D (2)f(x)=2x3-9x2+12x
利用导数求参数的常见题型 利用导数求参数,常涉及(1)已知曲线的切线(导数的几何意义)求参问题; (2)已知导函数的图象求原函数问题(或某点处的函数值),这些都要根据导数的 几何意义或某点处的导数值列方程(组)求解参数.特别地由于三次函数的导数 是二次函数,因此将导数的计算与二次函数的图象和性质结合起来就很容易理 解了.解题时应考虑二次函数的单调性、最值、图象的对称轴、二次项系数等 对图象的影响.
第五
章
导数及其应用
5.2 导数的运算 5. 函数的和、差、积、商的导数
新课程标准解读 能利用给出的基本初等函数的导数公式和导数的四则运算 法则,求简单函数的导数
核心素养 数学运算
已知 f(x)=x,g(x)=1x.Q(x)=f(x)+g(x),H(x)=f(x)-g(x). [问题] (1)f(x),g(x)的导数分别是什么? (2)试求 y=Q(x),y=H(x)的导数.并观察 Q′(x),H′(x)与 f′(x),g′(x) 的关系.
《函数求导法则》课件
高阶导数的定义
总结词
高阶导数的定义是指一个函数在某一点 的导数,对其再次求导,得到的导数称 为二阶导数,以此类推,可以得到更高 阶的导数。
VS
详细描述
高阶导数的定义是通过对一个函数进行多 次求导来得到的。具体来说,一个函数在 某一点的导数,对其再次求导,得到的导 数称为二阶导数。类似地,对二阶导数再 次求导,可以得到三阶导数,以此类推, 可以得到更高阶的导数。
高阶导数的计算方法
总结词
高阶导数的计算方法是通过连续求导来得到 的。具体的计算方法取决于函数的表达式和 求导法则。
详细描述
高阶导数的计算方法是通过连续求导来得到 的。对于多项式函数,可以使用链式法则和 幂函数求导法则进行计算。对于三角函数、 指数函数等其他类型的函数,可以使用相应 的求导法则进行计算。在进行高阶求导时, 需要注意保持运算的准确性和简洁性,以避 免计算错误和繁琐的计算过程。
05
导数在几何中的应用
导数与切线斜率
总结词
导数在几何中最重要的应用之一是求 切线的斜率。
详细描述
对于可导函数,其在某一点的导数值 即为该点切线的斜率。通过求导,我 们可以得到切线的斜率,进而确定切 线的方程。
导数与函数图像的凹凸性
总结词
导数的符号决定了函数图像的凹凸性。
详细描述
当一元函数在某区间内单调递增时,其导数大于0; 当函数单调递减时,其导数小于0。因此,通过判断 导数的符号,我们可以确定函数图像的凹凸性。
复合函数的导数
总结词
理解复合函数的导数概念,掌握复合 函数导数的计算方法。
详细描述
复合函数的导数是通过对函数进行微 分来得到的,它描述了函数值随自变 量变化的速率。复合函数的导数计算 需要遵循链式法则、乘积法则等基本 法则。
5.2.1基本初等函数的导数5.2.2.导数的四则运算法则课件高二下学期数学人教A版选择性(1)
f g
(x) (x)
与
f g
( x) ( x)
也不相等.
事实上,对于两个函数 f (x) 和 g(x) 的乘积(或商)的导数,有如下法则:
[ f (x)g(x)] f (x)g(x) f (x)g(x) ;
f (x)
g(x)
f
(x)g(x) f (x)g(x) [g(x)]2
x x0
x0
y=c
O
x
若 y c 表示路程关于时间的函数,则 y 0 可以解释为某物体的瞬时速度始终为
0,即一直处于静止状态.
2.函数 y f (x) x 的导数
因为 y f (x x) f (x) (x x) x 1 ,
x
x
x
所以 y lim y lim1 1 .
x x0
4.函数 y f (x) x3 的导数
因为 y f (x x) f (x) (x x)3 x3 x3 3x2 x 3x (x)2 (x)3 x3
x
x
x
x
3x2 3x x (x)2 ,
所以
y
y lim x0 x
lim[3x2
x0
3x
x
(x)2 ]
3x2
.
y 3x2 表示函数 y x3 的图象上点 (x,y) 处切线的斜率为3x2 ,这说明随着 x 的变 化,切线的斜率也在变化,且恒为非负数.
5284 (100 98)2
1321,所以,净化到纯净度为98% 时,净化费用的瞬时
变化率是 1321 元/吨.
函数 f (x) 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可 知, c(98) 25c(90) .它表示净化到纯净度为 98%左右时净化费用的变化率,大约是 净化到纯净度为 90%左右时净化费用变化率的 25 倍.这说明,水的纯净度越高,需 要的净化费用就越多,而且净化费用增加的速度也越快.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-11-16
xx
3
教学重点和难点
教学重点:掌握商的求导法则,灵活运用 求导的四则运算法则;
教学难点:商的求导法则与积的求导法则 联系与区别的理解.
2020-11-16
xx
4
教学用具
投影仪
2020-11-16
xx
5
教学过程
复习引入 新 授 小 结 练 习
2020-11-16
xx
6
复习引入
复习两个函数的和(差)的求导法则: 学生练习:求函数的导数. 复习两个函数的积的求导法则: 学生练习:求函数的导数. 问题:如何求函数的导数?
2020-11-16
xx
7
新授课
法 则 范 例 应 用
2020-11-16
xx
8
法则
法则3 两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子 的积,再除以分母的平方.
函数的商的导数
2020-11-16
xx
1
函数的商的导数
教学目标 教学重点和难点 教学用具 教学过程 布置作业
2020-11-16
xx
2
教学目标
掌握两个函数的商的求导法则.
能正确运用已学过的导数公式和导数四则 运算法则,求某些简单函数的导数.
能运用导数的几何意义与物理意义,解决 有关的曲线、直线问题及物体运动问题.
例如
f
(x)
sin x
1 、g(x) x
cosx
1 x
,设
f (x)、g(x),则在
x0
处均不可导,但它们的和 f (x) g(x) sin x cosx 在 x 0
处可导.
2020-11-16
xx
10
小结(纳入知识体系)
综合上节与本节可知:由常函数、幂函数及正、 余弦函数经加、减、乘、除运算得到的简单的函 数均可利用求导法则与导数公式求导,而不需要 回到导数的定义去求此类简单函数的导数.
曲线的切线问题及物体的运运速度问题均均可借 助于导数的几何意义及物理意义转化为简单函数 的求导问题得到解决.
2020-11-16
xx
11
练习
教科书第122页练习第1、2②④题,习 题3.3的第4、5题.
2020-11-16
xx
12
布置作业
教科书习题3.3第1④⑥、2②④、3、6题.
2020-11-16
xx
13
u v
uv uv v2
(v 0)
证明
2020-11-16
xx
9
法则
返回
说ቤተ መጻሕፍቲ ባይዱ:
①
u v
u . v
②类比:(uv) uv
③
u v
uv uv v2
.
uv,
u v
uv uv v2
④若两个函数可导,则它们的和、差、积、商
(商的情况下分母不为0)必可导.若两个函数必
不可导,则它们的和、差、积、商不一定可导.