汇总上海高考排列组合概率题

合集下载

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(无答案)排列与组合1. (2023甲卷理科T9)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A.120B.60C.40D.302. (2023乙卷理科T7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种3. (2023新一卷T7)记S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列:乙:{nn S }为等差数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件4. (2023新一卷T13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有 种(用数字作答)5. (2023新二卷T3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同抽样结果共有( )A.1520045400C C ⋅种 B.4020020400C C ⋅种 C.3020030400C C ⋅种 D.2020040400C C ⋅种 6. (2023上海卷T10)已知(1+2023x )100+(2023−x )100=a 0 +a 1x +a 2x 2+…+a 100x 100,其中a 0,a 1,a 2…a 100∈R若0≤k ≤100且k ∈N,当a k <0时,k 的最大值是 .7. (2023上海卷T12)空间内存在三点A 、B 、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A 、B 、C 可以组成正四棱锥,求方案数为 .8. (2023天津卷T11)在(2x 3-x1)6的展开式中,x 2项的系数为 . 概率与统计1. (2023甲卷理科T6)有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.12. (2023甲卷文科T4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为3. (2023乙卷理科T5,文科T7)设O 为平面坐标系的坐标原点,在区域{(x,y)|1≤x 2+y 2≤4}内随机取一点,记该点为A,则直线OA 的倾斜角不大于4的概率为 ( )4. (2023乙卷文科T9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A. B. C. D.5. (2023新一卷T 9)有一组样本数据x 1,x 2,…,x 6,其中x 1是最小值,x 6是最大值,则A.x 2,x 3,x 4,x 5的平均数等于x 1,x 2,…,x 6的平均数B.x 2,x 3,x 4,x 5的中位数等于x 1,x 2,…,x 6的中位数C.x 2,x 3,x 4,x 5的标准差不小于x 1,x 2,…,x 6的标准差D.x 2,x 3,x 4,x 5的极差不大于x 1,x 2,…,x 6的极差6. (2023新二卷T12)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码:三次传输时,收到的信专中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.(2023上海卷T9)国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为8.(2023上海卷T14)根据身高和体重散点图,下列说法正确的是( )A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.(2023天津卷T7)调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数r ,下列说法正确的是( )0.8245A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是0.824510.(2023天津卷T13)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.11.(2023甲卷理科T19)为探究某药物对小鼠的生长作用,将40只小鼠均分为两组,分别为对照组(不药物)和实验组(加药物)(1)设其中两只小鼠中对照组小鼠数目为X,求X的分布到和数学期望:(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.2,14.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i)求40只小鼠体重的中位数m,并完成下面2×2列联表:(i)根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用参考数据:12.(2023甲卷文科T19)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g)试验,结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数(2)(i)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表(∈)根据(∈)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()()22n ad bc a b c d a c b d χ-=++++13. (2023乙卷理科T17文科T17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,y(i=1,2,…10),试验结果如下记zi=xi -yi(i=1,2,…,10),记z 1,z 2,…,z 1的样本平均数为z ,样本方差为s 2,(1)求z ,s 2 (2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2102s ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)14. (2023新一卷T21)甲、两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮,无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率:(3)已知:若随机变量x 服从两点分布,且P(x i =1)=1−P(x i =0)=q i,i=1,2,…,n,则∑∑=n i ni i i q X )(E ,.记前n 次(即从第1次到第n 次)投篮中甲投篮的次数为Y ,求E(Y)15. (2023新二卷T19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将患者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的概率作为相应事件发生的概率(1)当漏诊率p(c)=0.5%时,求临界值c 和误诊案q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值16.(2023上海卷T19)21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到的模型为红色外观,事件B取到模型有棕色内饰,求P(B)、P(B/A),并据此判断事件A和事件B是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望。

高考试题分类解析(排列组合、二项式定理与概率)

高考试题分类解析(排列组合、二项式定理与概率)

排列组合、二项式定理与概率选择题1.(全国卷Ⅱ)10()x 的展开式中64x y 项的系数是(A )(A) 840 (B) 840-ﻩ(C) 210ﻩ(D) 210- 2.(全国卷Ⅲ)在(x−1)(x+1)8的展开式中x 5的系数是(B )(A)−14 (B)14 (C)−28 (D )283.(北京卷)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A ) (A )124414128C C C(B )124414128C A A(C)12441412833C C C A (D)12443141283C C C A 4.(北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(B )(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D)44A 种5.(天津卷)某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为( B) A.12581ﻩB .12554ﻩC .12536ﻩD.125276.(天津卷)某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( AA.12581 ﻩB.12554 ﻩC.12536 ﻩD.12527 7.(福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ﻩ ( B ) ﻩA.300种 B.240种ﻩC.144种 D.96种8.(广东卷)先后抛掷两枚均匀的正方体股子(它们的六个面分别标有点数1、2、3、4、5、6),股子朝上的面的点数分别为,则的概率为(C) (A)16(B)536(C)112(D)129.(湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是ﻩ( D )ﻩA.168ﻩB .96ﻩC.72 D.14410.(湖北卷)以平行六面体ABCD —A ′B′C ′D ′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为 (A)A .385367B .385376 C.385192 D .3851811.(湖南卷)4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是(B ) A.48 ﻩB.36 C.24 ﻩD .1812.(江苏卷)设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( C)( A ) 10 ( B ) 40 ( C ) 50 ( D )8013.(江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( B)(A )96 (B)48 (C)24 (D)014.(江西卷)123)(x x +的展开式中,含x的正整数次幂的项共有ﻩ( B )ﻩA.4项 B.3项ﻩC.2项ﻩD .1项15.(江西卷)将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( A ) ﻩA.70 B.140ﻩC .280 D.840 16.(江西卷)将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( A)A.561B.701 C.3361 D .4201 17.(辽宁卷)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( D )A.10100610480C C C ⋅ﻩB .10100410680C C C ⋅ C.10100620480C C C ⋅ D.10100420680C C C ⋅ 18.(浙江卷)在(1-x)5-(1-x )6的展开式中,含x3的项的系数是( C )(A) -5 (B) 5 (C) -10 (D) 1019.(山东)如果3nx ⎛⎫ ⎝的展开式中各项系数之和为128,则展开式中31x 的系数是(C )(A)7 (B)7- (C )21 (D )21-20. (山东)10张奖券中只有3张有奖,5个人购买,至少有1人中奖的概率是(D )(A )310 (B )112 (C )12 (D)111221.(重庆卷)8. 若nx x ⎪⎭⎫ ⎝⎛-12展开式中含21x 项的系数与含41x 项的系数之比为-5,则n等于( B )(A) 4;ﻩﻩ ﻩ(B) 5; (C) 6;ﻩﻩﻩ (D) 10。

上海市2020〖人教版〗高三数学复习试卷排列组合和概率理

上海市2020〖人教版〗高三数学复习试卷排列组合和概率理

上海市2020年〖人教版〗高三数学复习试卷排列组合和概率理创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校1.【⋅全国】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A、12种B、10种C、9种D、8种2.【⋅全国】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为()3.【⋅全国】为了解某地区的中生视力情况,拟从该地区的中生中抽取部分学生进行调查,事先已了解到该地区、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A、简单随机抽样B、按性别分层抽样C、按学段分层抽样D、系统抽样4. 【⋅全国】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)12(B)13(C)14(D)165.【全国1高考理第5题】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A .81B .83C .85D .87 【热点深度剖析】从这三年高考来看,对这一热点的考查,主要考查分类计数原理、分步计数原理,排列组合,等可能事件的概率,古典概型,几何概型,条件概率,相互独立事件的概率、互斥事件的概率. 高考题一道考查正态分布,也是基础题,清晰正态分布的分辨能力和公式是解题的关键;另一个题是组合数,属于基础题,高考考查抽样方法与古典概型,属于基础题;高考题主要考查古典概型,利用排列组合知识求古典概型的概率属于基础题.高考对这一部分知识的考查单独的考题会以选择题、填空题的形式出现,一般在试卷的靠前部分,属于中低难度的题目,难度较低,分清事件是什么事件是解题的关键;排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;从高考试题的形式来看,排列组合和概率往往结合在一起考查,且以概率为主,单纯考察排列组合较少,试题难度不大,为中低档题,预测高考,排列、组合及排列与组合的综合应用仍是高考的重点,同时应注意排列、组合与概率、分布列等知识的结合,特别是几何概型有可能考查,重点考查学生的运算能力与逻辑推理能力.【重点知识整合】1.排列数m n A 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N .(1)排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21n n A n n n n ==--⋅(2)组合数公式()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =. (3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. 2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉)(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)(5)多排问题单排法(6)多元问题分类法(7)有序问题组合法(8)选取问题先选后排法(9)至多至少问题间接法(10)相同元素分组可采用隔板法4、分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !5.随机事件A 的概率0()1P A ≤≤,其中当()1P A =时称为必然事件;当()0P A =时称为不可能事件P(A)=0;6.等可能事件的概率(古典概率): P(A)=n m .理解这里m 、n的意义.7、互斥事件:(A 、B 互斥,即事件A 、B 不可能同时发生).计算公式:P (A +B )=P (A )+P (B ).8、对立事件:(A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生).计算公式是:P (A )+ P(B)=1;P ( )A =1-P (A );9、独立事件:(事件A 、B 的发生相互独立,互不影响)P(A •B)=P(A) • P(B) .提醒:(1)如果事件A 、B 独立,那么事件A 与B 、A 与B 及事件A 与B 也都是独立事件;(2)如果事件A 、B 相互独立,那么事件A 、B 至少有一个不发生的概率是1-P (A ⋅B )=1-P(A)P(B);(3)如果事件A 、B 相互独立,那么事件A 、B 至少有一个发生的概率是1-P ( )A ⋅B =1-P( )A P( )B .10、独立事件重复试验:事件A 在n 次独立重复试验中恰好发生了.....k 次.的概率()(1)k k n k n n P k C p p -=-(是二项展开式[(1)]n p p -+的第k +1项),其中p 为在一次独立重复试验中事件A发生的概率.提醒:(1)探求一个事件发生的概率,关键是分清事件的性质.在求解过程中常应用等价转化思想和分解(分类或分步)转化思想处理,把所求的事件:转化为等可能事件的概率(常常采用排列组合的知识);转化为若干个互斥事件中有一个发生的概率;利用对立事件的概率,转化为相互独立事件同时发生的概率;看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件.(2)事件互斥是事件独立的必要非充分条件,反之,事件对立是事件互斥的充分非必要条件;(3)概率问题的解题规范:①先设事件A=“…”, B=“…”;②列式计算;③作答.11.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型:(1)有限性:在一次试验中,可能出现的不同的基本事件只有有限个;(2)等可能性:每个基本事件的发生都是等可能的.古典概型中事件的概率计算如果一次试验的等可能基本事件共有n个,随机事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A)=m.n 12.几何概型区域A为区域Ω的一个子区域,如果每个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型.几何概型的概率P(A)=μA,其中μAμΩ表示构成事件A的区域长度(面积或体积).μΩ表示试验的全部结果所构成区域的长度(面积或体积).13、解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件n 次独立重复试验 即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复.【应试技巧点拨】1.求排列应用题的主要方法:(1)对无限制条件的问题——直接法;(2)对有限制条件的问题,对于不同题型可采取直接法或间接法,具体如下: ①每个元素都有附加条件——列表法或树图法;②有特殊元素或特殊位置——优先排列法;③有相邻元素(相邻排列)——捆绑法;④有不相邻元素(间隔排列)——插空法;2.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.解排列、组合的综合应用问题,要按照“先选后排”的原则进行,即一般是先将符合要求的元素取出(组合),再对取出的元素进行排列,常用的分析方法有:元素分析法、位置分析法、图形分析法.要根据实际问题探索分类、分步的技巧,做到层次清楚,条理分明.4.事件A 的概率的计算方法,关键要分清基本事件总数n 与事件A 包含的基本事件数m .因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么?它包含的基本事件有多少.回答好这三个方面的问题,解题才不会出错.5.几何概型的两个特点:一是无限性,即在一次试验中,基本事件的个数可以是无限的;二是等可能性,即每一个基本事件发生的可能性是均等的.因此,用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”.即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占的总面积(总体积、长度)”之比来表示.6.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”“至多”等问题往往用这种方法求解.注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.牢记公式()()1n k k k n n P k C p p -=-,0,1,2,,k n =,并深刻理解其含义.7.解答条件概率问题时应注意的问题(1)正确理解事件之间的关系是解答此类题目的关键.(2)在求()p AB 时,要判断事件A 与事件B 之间的关系,以便采用不同的方法求()p AB .其中,若B A ⊆,则()()p AB p B =),从而()()()P B p B A P A =. 8.解答离散型随机变量的分布列及相关问题的一般思路(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【考场经验分享】1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.分类时要做到不重不漏.对于复杂的计数问题,可以分类、分步综合应用.2.解决排列、组合问题可遵循“先组合后排列”的原则,区分排列、组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.3.要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果.4.几何概型求解时应注意:(1)对于一个具体问题能否应用几何概型概率公式计算事件的概率,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.(2)由概率的几何定义可知,在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小仅与该区域的几何度量成正比,而与该区域的位置与形状无关.5.如果题设条件比较复杂,且备选答案数字较小,靠考虑穷举法求解,如果试题难度较大并和其他知识联系到一起,感觉不易求解,一般不要花费过多的时间,可通过排除法模糊确定,一般可考虑去掉数字最大与最小的答案 本部分内容的基础是概率,高考试题中无论是以古典概型为背景的分布列,还是以独立重复试验为背景的分布列,都要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意.【名题精选练兵篇】1. 【吉安市一中高三上学期第二次阶段考试】某进行模拟考试有80个考室,每个考室30个考生,每个考生座位号按1~30号随机编排,每个考场抽取座位号为15号考生试卷评分,这种抽样方法是( )A. 简单随机抽样B. 系统抽样C. 分层抽样D. 分组抽样2. 【襄阳市第五高三第一学期11月质检】高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,已知甲乙相邻,则甲丙相邻的概率为( )A .13B .23C .12D .16 3. 设随机变量ξ服从正态分布2N 1σ(,),若P 2)0.8ξ<=(,则(01)P ξ<<的值为( )A .0.2B .0.3C .0.4D .0.64. 【贵阳市普通高中高三上学期期末监测】若任取x ,]1,0[∈y ,则点),(y x P 满足21x y ≤的概率为( ) A.22 B.31 C.21 D.32 5. 【龙岩市非一级达标校高三上学期期末检查】甲、乙两位同学在高二5次月考的数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是x 甲、x 乙,则下列正确的是( )A .x x <乙甲,甲比乙成绩稳定B .x x >乙甲,乙比甲成绩稳定C .x x >乙甲,甲比乙成绩稳定D .x x <乙甲,乙比甲成绩稳定6. 【北京市丰台区高三上学期期末考试】11月,北京成功举办了亚太经合组织第二十二次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有(A )1818A 种(B )218218A A 种(C )281031810A A A 种(D )2020A 种 7.【宝鸡市九校高三联合检测】已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是( )A.12π- B.13π- C.16π- D.112π-8. 已知集合A =2{20}x x x --<,1{lg}1x B x y x -==+,在区间(3,3)-上任取一实数x ,则x A B ∈⋂的概率为A .18B .14C .13D .112 9.已知函数3221()13f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为 A.79 B.13 C.59 D.2310.【遂宁市高三第二次诊断】从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是( )A .590B .570C .360D .21011.【兰州市高三诊断】从数字1、2、3、4、5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为A .15B .25 C .35 D .4512.在圆22(2)(2)4x y --+=内任取一点,则该点恰好在区域50303x x y x ⎧⎪⎨⎪⎩+2y -≥-2+≥≤内的概率为( )A .18π B .14π C .12π D .1π13.【长望浏宁四县高三3月调研】如图,矩形ABCD 的四个顶点的坐标分别为A (0,—1),B (π,—1),C (π,1),D (0,1),正弦曲线x x f sin )(=和余弦曲线x x g cos )(=在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( ). A .π21+ B .π221+ C .π1 D .π21 14.【稳派新课程高三2月】如图,大正方形的面积是34,四个全等三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( )A.171B.172C.173D.174 15.【高三教学质量检测一】周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( )A .0.80B .0.75C .0.60D .0.4816. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为.【名师测试篇】1.某小区准备在小区活动广场建造如图所示的休闲区域,中心区域E 将建造一个喷泉,现要求在其余四个区域中种上不同颜色的花卉,现有四种不同颜色的花卉可供选择.要求每一个区域种一种颜色的花卉,相邻区域所种的颜色不同,则不同的种花卉的方法种数为( )A .64B .72C .84D .962.在小语种自主招生考试中,某学校获得5个推荐名额,其中韩语2名,日语2名,俄语1名.并且日语和韩语都要求必须有女生参加.学校通过选拔定下3女2男共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .26种3.如图,设抛物线()210y ax a =-+>的顶点为A ,与x 轴正半轴的交点为B ,设抛物线与两坐标轴正半轴围成的区域为M ,随机往M 内投一点P ,则点P 落在AOB ∆内的概率是( ) A.56 B.45 C.34D.234. 从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如右茎叶图:根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①;②.5.若a 和b 是计算机在区间(0,2)上产生的随机数,那么函数2()lg(44)f x ax x b =++的值域为R (实数集)的概率为( )A .12ln 24+B .32ln 24-C .1ln 22+D .1ln 22- 6.在平面直角坐标系中,已知点P (4,0),Q (0,4),A ,B 分别是x 轴和y 轴上的动点,若以MN 为直径的圆C 与直线PQ 相切,当圆C 的面积最小时,在四边形APQB 内任取一点,则这点落在圆C 外的概率为。

2013-2018年上海高考真题汇编-排列组合概率统计

2013-2018年上海高考真题汇编-排列组合概率统计

近五年上海高考真题汇编 排列组合、二项式定理、概率、统计(2017秋2)若排列数4566⨯⨯=mP ,则____=m答案:3(2018春8)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩.若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为__________. 答案:180(2017春11)设126a a a 、、、为123456、、、、、的一个排列,则满足1234563a a a a a a -+-+-=的不同排列的个数为______答案:48(2014年)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的三天恰好为连续3天的概率是_____(结果用最简分数表示) 知识点:计数原理,等可能事件及其概率计算 解析:连续10天中随机选择3天的选法种数为310C 种三天恰好为连续3天的选法种数为8种,所以概率为18310115C C =(2009春10)一只猴子随机敲击只有26个小写英文字母的练习键盘. 若每敲1次在屏幕上出现一个字母,它连续敲击10次,屏幕上的10个字母依次排成一行,则出现单词“monkey”的概率为 .(结果用数值表示)答案:6265(2015理8文10)在报名的3名男老师和6名女老师中,选择5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为_______(结果用数值表示)答案:120(2011春12)2011年上海春季高考有8所高校招生,如果某3位同学恰好被其中2所高校录取,那么录取方法的种数为 .答案:第一步:从8所高校取2所高校的方法有28C 28=种,第二步:3位同学分配到2所高校的方法有2位同学被分配到同一所高校,所以有2132C C 6=种,所以录取方法的种数为286168⨯=种.(2010理14)以集合{},,,Ua b c d =的子集中选出4个不同的子集,需同时满足以下两个条件:(1),U ∅都要选出;(2)对选出的任意两个子集A 和B ,必有A B ⊆或B A ⊆,那么共有_________种不同的选法 知识:分类计数原理解:由条件(1)知,本题本质上找两个非空真子集,根据子集含元素的个数分类 A 集合含1元素,B 集合含2个元素,共114312C C =种选法 A 集合含1元素,B 集合含3个元素,共124312C C =种选法 A 集合含2元素,B 集合含3个元素,共214212C C =种选法所以由分类计数原理得共有36种选法(2010文10)从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 .(结果用最简分数表示)答案:基本事件总数为2525251265121n C ⨯===⨯⨯,红桃共13张,抽出的2张均为红桃的事件数为213136m C ==⨯,所以“抽出的2张均为红桃”的概率为1361265117m P n ⨯===⨯ (2018秋9)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示)答案:15(2016理14)如图,在平面直角坐标系xOy 中,O 为正八边形128A A A 的中心,1(1,0)A .任取不同的两点i A 、j A ,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是__________.答案:528(2014年)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的三天恰好为连续3天的概率是_____(结果用最简分数表示)知识点:计数原理,等可能事件及其概率计算解析:连续10天中随机选择3天的选法种数为310C 种三天恰好为连续3天的选法种数为8种,所以概率为18310115C C =(2013年文理)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_________(结果用最简分数表示)答案:1318知识点:对立事件和等可能事件及其概率计算解析:从1,2,3,4,5,6,7,8,9,九个球中,任意取出两个球的取法种数为2936C =种记A :取出的两个球的编号之积为偶数则A 的对立事件A :取出的两个球的编号之积为奇数,相当于从编号为1,3,5,7,9,这五个球中取出2个球,取法种数为2510C =,所以()1053618P A ==,()51311818P A =-=(2012文理)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是_______________(结果用最简分数表示)知识点:分步计数原理和等可能事件的概率及其计算方法解:每个同学都有三种选择:跳高与跳远;跳高和铅球;跳远和铅球,三个同学共有33327⨯⨯=种有且仅有两人选择的项目完全相同的选取过程是 第一步从3个同学中选2个同学,即23C 种第二步从三种比赛项目组合中选一个分配给这两名同学,即13C 种 第三步从剩余的两个项目组合中选一个分配给余下的1名同学所以选取方法共有21133218C C C⨯⨯=种故有且仅有两人选择的项目完全相同的概率是182 273=故答案为:2 3试一试:(2016文11)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为_____答案:1(2011理12文13)随机抽取9个同学中,至少有2个同学在同一月出生的概率是.(默认每月天数相同,结果精确到0.001)答案:0.985(2010理9)从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率()P A B=________(结果用最简分数表示)答案:7 26(2013文19)10(1)x+的二项展开式中的一项是().A45x.B290x.C3120x D.4252x 答案:C+)10x的2x项1.80,1.69,1.77,则这组数据的中位数是_________(米)答案:1.76(2014年高考文5)某校高一、高二、高三分别有学生1600名、1200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为.答案:70(2013年高考文6)某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为.答案:78(2010年高考文5)将一个总数为A、B、C三层,其个体数之比为5:3:2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取个个体.答案:20。

(08-18)上海高考数学十年总结-排列组合和概率

(08-18)上海高考数学十年总结-排列组合和概率

(08-18)上海高考数学十年总结-排列组合和概率(2008年上海)7.在平面直角坐标系中,从六个点:(0,0)(2,0)(1,1)(0,2)(2,2)(3,3)A B C D E F 、、、、、 中任取三个,这三点能构成三角形的概率是___________________(结果用分数表示).(2009年上海)7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E ξ____________(结果用最简分数表示).(2010年上海)6. 随机变量的概率分布率由下图给出:则随机变量的均值是 8.2解析:考查期望定义式E =7×0.3+8×0.35+9×0.2+10×0.15=8.2(2011年上海)9. 马老师从课本上抄录一个随机变量的概率分布律如下表:请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案 .(2012年上海)ξξξε?!?321P(ε=x )x εE ε=17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2. 若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A)1ξD >2ξD .(B)1ξD =2ξD .(C)1ξD <2ξD .(D)1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.(2013年上海)8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)【解答】9个数5个奇数,4个偶数,根据题意所求概率为252913118C C -=.10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ= 【解答】10E x ξ=,22221019)30||D d ξ=++++++=.(2014年上海)【2014年上海卷(理10)】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则 选择的3天恰好为连续3天的概率是 (结果用最简分数表示).【答案】151【解析】:3108115P C ==(2015年上海)12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则 E ξ1﹣E ξ2= (元).(2016年上海)4. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是___ (米) 【答案】1.76(2017年上海)9.已知四个函数:①y =-x ;②y =1x-;③y =3x ;④y =12x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为” . 【答案】13【解析】①③、①④的图像有一个公共点,∴概率为24213C =.(2018年上海)9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。

上海市高三数学 排列组合 二项式 概率统计复习题(含解析)沪教版(1)

上海市高三数学 排列组合 二项式 概率统计复习题(含解析)沪教版(1)

排列组合二项式概率统计概念:1、排列数:!(1)(2)(1)()!mn n P n n n n m n m =---+=-2、组合数:(1)(2)(1)!!!()!m mn nm m P n n n n m n C P m m n m ---+===-,规定01n C =。

3、组合数的性质:m n m n n C C -=, 111m m m n n n C C C ++++=,11k k n n kC nC --=, 1121m m mm m m m m n n C C C C C ++++++++=。

4、排列与组合的关系m m mn n m P C P =5、二项式定理:011222()n n n n r n r rn nn n n n n a b C a C a b C a b C a b C b---+=+++++6、1r n r rr n T C a b -+= b 的指数与组合数的上标一致。

7、 ○1二项展开式的各二项式系数之和0122nn n n n n C C C C ++++=○2二项展开式的奇数项之和024n n n C C C +++=偶数项之和13512n n n n C C C -+++=8、 总体平均数121()N x x x Nμ=++9、 总体中位数的意义:从小到大的次序排列,位于正当中位置的数是中位数,当N 为偶数时,当中位置的两个数的平均数是总体中位数 10、总体方差2222121[]N x x x Nσμμμ=-+-++-()()()=2222121N x x x Nμ=+++-()11、样本方差(总休标准差的点估计值):s =12、随机抽样(抽签法、随机数表法):13、系统抽样:等间隔抽样,(每一个间隔抽取一个) 14、分层抽样:按比例抽样,比例n =N nk N=样本数总体数(一)排列与组合1、在一块并排10垄的田地中,选择两垄分别种植A 、B 两种作物,每种作物种植一 垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6 ,不同的种植方法共有多少种?解:第一步:选垄 ,分类完成。

高考数学汇编排列组合+概率+统计 (2)

排列组合二项式概率统计 (虹口区2013学年度第一学期高三年级数学学科)4、从长度分别为1、2、3、4的四条线段中任意取三条,则以这三条线段为边可以构成三角形的概率是 .答案:41 (虹口区2013学年度第一学期高三年级数学学科)7、已知6)1(ax +的展开式中,含3x 项的系数等于160,则实数=a .答案:2=a(普陀区2013学年度第一学期高三年级数学学科)4. 在n x )3(-的展开式中,若第3项的系数为27,则=n .答案:3(普陀区2013学年度第一学期高三年级数学学科)12. 已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若43214321b b b b a a a a +++<+++,则集合A 的取法共有 种.答案:31(杨浦区2013学年度第一学期高三年级数学学科文)12.若21()n x x +的二项展开式中,所有二项式系数和为64,则n 等于 .答案:6(杨浦区2013学年度第一学期高三年级数学学科文)13.在100件产品中有90件一等品,10件二等品,从中随机取出4件产品.则恰含1件二等品的概率是 .(结果精确到0.01) 答案:0.30(杨浦区2013学年度第一学期高三年级数学学科理)12. 若21()n x x+的二项展开式中,所有二项式系数和为64,则该展开式中的常数项为 .答案: 15(杨浦区2013学年度第一学期高三年级数学学科理)13.设a ,b 随机取自集合{1,2,3},则直线30ax by ++=与圆221x y +=有公共点的概率是 .答案:95 (静安区2013学年度第一学期高三年级数学学科)7、若6(12)2a b +=+(其中a b 、为有理数),则a b += .答案:169(静安区2013学年度第一学期高三年级数学学科文)8、排一张4 独唱和4个合唱的节目表,则合唱不在排头且任何两个合唱不相邻的概率是 (结果用最简分数表示).答案:2(静安区2013学年度第一学期高三年级数学学科理)5.某班有38人,现需要随机抽取5人参加一次问卷调查,抽到甲同学而未抽到乙同学的可能抽取情况有 种. (结果用数值表示)答案:8. 某小组有10人,其中血型为A 型有3人,B 型4人,AB 型3人,现任选2人,则此2人是同一血型的概率为 .(结论用数值表示)答案:415 8、不透明的袋子中装有除颜色不同其它完全一样的黑、白小球共10只,从中任意摸出一只小球得到是黑球的概率为25.则从中任意摸出2只小球,至少得到一只白球的概率为 .答案:1513 10、已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则_______.ab =答案:210.59、若n x x )2(2-的展开式中只有第六项的二项式系数最大,则展开式中的常数项是 .答案:180 11. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则x y -的值为 。

沪教高三数学第一轮复习:排列组合与概率


例3.六本不同的书,按下列要求,各有多少种不同的分法? (1)分给甲、乙、丙三人,每人两本; 解: N C 2 C 2 C 2 90 6 4 2 (2)分为三堆,每堆两本; 解:
2 2 C 62 C 4 C 2 N 15 3 P3
小结:均分问题:
把 km 个不同元素平均分成 k 组,每组 m 个元素,共有
课题:10.1排列组合与概率
【知识点梳理 】:
1、加法原理: 做一件事情, 完成它可以有 n 类办法, 在第一类办法中有 m1 种不同的 方法, 在第二类办法中有 m2 种不同的方法, ……, 在在第 n 类办法中有 mn 种不同的方法,那么完成这件事共有 的方法。 2、乘法原理:
N m1 m2 mn
m n
【例题精讲】:
例1.解下列方程:
P24x1 140Px2 ; (1)
2x 1 4 解: x2 (2 x 1) 2 x (2 x 1) (2 x 2) 140 x ( x 1)
x3
C xy 2 1 C xy 2 C xy 22 (2) 0.6 ;
m n
7、组合数的两个性质: (1)C
C
nm n
; (2)C
m n 1
m m m 1 C n 1 C n C n ;
8、基本事件:把一次试验 可能出现的结果 叫做基本事件。 9、古典概型:把具有以下两个特点的概率模型叫做古典概型: (1) 一次试验所有的基本事件只有 有限 个; (2)每个基本事件出现的可能性 相等 。 10、随机事件、必然事件与不可能事件: 在概率论中,随机试验的结果叫做 随机事件 ,随机事件一般用大写英 文字母 A、B 等来表示;试验后必定出现的事件叫做 必然事件 ,记 作 ;试验中不可能出现的事件叫做 不可能事件 ,记作 。

上海高考考排列组合概率题汇总试

上海高考排列组合概率题汇总1. (1985理)从六个数字1、2、3、4、5、6中任取四个不同的数字,有多少种取法?由这六个数字可以组成多少个没有重复数字的四位偶数?[15;180]2. (1985文)从六个数字1、2、3、5、7、9中任取四个不同的数字,有多少种取法?由这六个数字可以组成多少个没有重复数字的四位偶数?[15;60]3. (1986)用1、2、3、4四个数字组成没有重复数字的四位奇数的个数是________。

[12]4. (1987)=++++1010910210110C C C C ____________。

[1023] 5. (1987)七人并排成一行,如果甲、乙两人必须不相邻,那么不同排法的种数是( )(A )1440(B )3600(C )4320(D )4800[B]6. (1988)从6个运动员中选出4人参加4×100米接力赛,如果甲、乙都不能跑第一棒,那么共有___________种不同的参赛方案。

[240]7. (1989)两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一个座位),则不同坐法的种数( )(A )3858C C (B )385812C C P (C )3858P P (D )88P [D]8. (1990)平面上,四条平行直线和另外五条平行直线互相垂直,则它们构成的矩形共有_______个。

[60]9. (1991)设有编号1、2、3、4、5的五个球和编号1、2、3、4、5的五个盒子,现将这五个球投放入这五个盒内,要求每个盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法的总数为( )(A )20(B )30(C )60(D )120[A]10. (1992)由1、2、3、4、5组成比40000小的没有重复数字的五位数的个数是________________。

[72]11. (1993)1名教师和4名获奖同学排成一排照相留念,若老师不排在两端,则共有不同的排法_____________种。

上海高三二模分类汇编-排列组合和概率统计(详解版)

二模汇编——排列组合与概率统计专题一、知识梳理排列组合【知识点1】排列模型:从给定的n 个元素中,选择m 个元素做排列的种数记为mn P ,由乘法原理易知)!(!m n n P m n -=.【例1】(长宁金山青浦2017二模16)设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足 对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( ) A. 512 B. 256 C. 255 D. 64 【答案】A【点评】排列问题,列举法找出规律.【知识点2】组合模型:从给定的n 个元素中,选择m 个元素的组合数记为mn C .由乘法原理可知m n m m m n P P C =⋅,由此知!)!(!m m n n C m n -=.【例1】有15本不同的书,其中6本是数学书,问: (1)分给甲4本,且都不是数学书; (2)平均分给3人; (3)若平均分为3份;(4)甲分2本,乙分7本,丙分6本; (5)1人2本,1人7本,1人6本.【答案】(1)49C (2)55510515C C C (3)3355510515P C C C (4)66713215C C C (5)3366713215P C C C【点评】注意平均分组问题.【知识点3】含组合数的代数式的化简.组合数有如下两个基本公式: mn n m n C C -=;111+++=+m n m n m n C C C .【例1】(1)22361212x x x C C -+=,求x . (2) 333333345678C C C C C C +++++= .(3) 173213n n n n C C -++=. 【答案】(1)2236x x x -=+ 或221236x x x -=-- 2560x x --=或260x x +-=122,3x x == 或343,2x x =-=经检验2x =(2)原式=33333343456789126C C C C C C C +++++==(3)1721713631332n n n n n n-≤⎧⇒≤≤⇒=⎨≤+⎩∴ 原式=11181112191219121931C C C C +=+=+= 【点评】牢记组合中的两个基本公式.【知识点4】排列组合基本方法所谓的方法,某种意义上可以认为就是把问题转换成基本模型的方式.【知识点4.1】 应用记数原理【例1】(1)将4封信投寄到3个邮箱中,有多少种不同的投寄方法?(2)将4封信投寄到3个邮箱中,每个邮箱至少一封信,有多少种不同的投寄方法? (3)将4封信投寄到3个邮箱中,恰好有一个邮箱没有投递,有多少种不同的投寄方法? 【答案】(1)81 (2)36(3)42 【点评】计数原理.【知识点4.2】捆绑法与插空法、隔板法【例1】9名身高各不相同的人排队,按下列要求,各有多少种不同的排法? (1)排成一排;(2)排成前排4人,后排5人;(3)排成一排,其中A 、B 两人不相邻; (4)排成一排,其中,C D 两人必须相邻; (5)排成一排,其中E 不在排头,F 不在排尾; (6)排成一排,其中A 必须站在B 的右侧;(7)排成一排,身高最高的人站在中间且向两边递减; (8)排成一排,其中,H I 之间必须间隔2个. 【答案】(1)99P (2)99P (3)2787P P(4)2828P P(5)81178777P P P P+(或9879872P P P -+)(6)992P (7)48C (8)226726P P P【例2】(宝山区7)在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女生都有,则不同的选取方式的种数为 (结果用数值表示). 【参考答案】1688.【例3】(普陀区4)书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示).【参考答案】24.二项式定理【知识点1】二项式定理公式nn n k k n k n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)(n ∈N通项公式:kk n k nk b a C T -+=1(0,1,2,,)k n =;其中:kn C (0,1,2,,)k n =叫做二项式系数.【例1】(崇明2017二模7)若1nx ⎫⎪⎭的二项展开式中各项的二项式系数的和是64,则展开式中的常数项的值为 . 【答案】15; 【点评】公式应用.【例2】(虹口2017二模5)若7)(a x +的二项展开式中,含6x 项的系数为7,则实数=a . 【答案】1【知识点2】二项式系数的性质① 在二项展开式中,与首、尾“等距离”的两项的二项式系数相等,即:k n n k n C C -= ;② 在二项展开式中,所有的二项式系数之和等于:n2,即:n n nn n n n C C C C 2)11(210=+=++++ ;奇数项的二项式系数和=偶数项的二项式系数和等于:12-n ,即:15314202-=+++=+++n n n n n n nC C C C C C N n ∈.【例1】(闵行、松江2017二模5)若()1(2),3n n n x x ax bx c n n -*+=++++∈≥N ,且4b c =,则a 的值为 . 【答案】16 【点评】公式应用. 【例2】(青浦区8)621(1)(1)x x++展开式中2x 的系数为______________.【参考答案】30.【例3】(长宁嘉定2)nx x ⎪⎭⎫ ⎝⎛+1的展开式中的第3项为常数项,则正整数=n ___________.【参考答案】4.【例4】(杨浦区3)若的二项展开式中项的系数是,则___________.【参考答案】4.【例5】(金山区9)(1+2x )n 的二项展开式中,含x 3项的系数等于含x 项的系数的8倍,则正整数n = . 【参考答案】5.【例6】(徐汇区2)在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .【参考答案】20.【例7】(虹口区8)若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-++-则3a 的值等于 .【参考答案】20.【例8】(崇明区7)若二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中一次项的系数是70-,则23lim()n n a a a a →∞++++= .【参考答案】13-.【例9】(浦东区5)91)x二项展开式中的常数项为________. 【参考答案】84.【例10】(奉贤区10)代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答)概率论初步()13nx +2x 54n =【知识点1】古典概率把具有以下两个特点的概率模型叫做古典概率 (1)一次试验所有的基本事件只有有限个例如掷一枚硬币的试验只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.掷一颗骰子试验中结果有六个,即有六个基本事件.(2)每个基本事件出现的可能性相等【例1】(浦东新区2017二模7)已知射手甲击中A 目标的概率为0.9,射手乙击中A 目标的概率为0.8,若甲、乙两人各向A 目标射击一次,则射手甲或射手乙击中A 目标的概率是__________. 【答案】0.98【例2】(徐汇2017二模6)把12345678910、、、、、、、、、分别写在10张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大于6的数的卡片的概率为____________.(结果用最简分数表示) 【答案】710【知识点2】事件概率的和一般的,事件B A ,的和的概率等于事件B A ,出现的概率减去事件B A ,同时出现的概率()()()()AB P B P A P B A P -+=⋃公式叫做概率加法公式.不可能同时出现的两个事件叫做不相容或互斥事件,如果B A ,为互不相容事件,那么其和的概率就等于概率和,()()()B P A P B A P +=⋃.【例1】(长宁金山青浦2017二模10) 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生废品相互独立,若经过两道工序后得到的零件不是废品的概率是0.9603,则p = . 【答案】0.03【例2】 小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不 大于2或小红掷出的点数不小于3的概率为 . 【答案】97.【知识点3】独立事件积的概率互相独立事件定义:如果事件A 和事件B 出现之间没有影响,那么事件B A ,互相独立.两个相互独立事件发生的概率,等于积的概率为:()()()B P A P AB P ⋅=.【例1】(嘉定2017二模10)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为32和53.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立 ,则至少有一种新产品研发成功的概率为______________. 【答案】1513【例2】(2009年高考理16)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F ⋅的值等于( ) .A 0 .B 116 .C 14.D 12 【答案】B.【例3】(崇明区10)某办公楼前有7个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在相邻车位的概率是 . 【参考答案】47.【例4】若事件A 、B 满足142()()()255P A P B P AB ===,,,则()()P AB P AB -= . 【参考答案】310.【例5】某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示). 【参考答案】221.【例6】(青浦区9)高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 .【参考答案】151192.【例7】(长宁嘉定9)某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0、1、2、3的四个相同小 球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为____________. 【参考答案】167. 【例8】(杨浦区4)掷一颗均匀的骰子,出现奇数点的概率为____________. 【参考答案】12.【例9】(金山区8)若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一个黑球的概率是 . 【参考答案】0.6.【例10】(黄浦区10)将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是 .(结果用数值表示) 【参考答案】516.【例11】(徐汇区9)将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是 . 【参考答案】16.【例12】(普陀区6)若321()nx x -的展开式中含有非零常数项,则正整数n 的最小值为_________. 【参考答案】5.统计统计的基本思想方法是用样本来估计总体,即用局部推断整体.这就要求样本应具有很好的代表性.而样本的良好客观代表性,则完全依赖抽样方法,主要有:随机抽样、分层抽样、系统抽样.用样本估计总体是研究统计问题的一种思想方法,即用样本的平均数去估计总体的平均数,用关于样本的方差(标准差)去估计总体的方差(标准差).基本统计量:若样本容量为n ,其个体数值分别为,,,21n x x x 则样本平均数:n x x x x n+++=21样本方差:()()()[]()[]22222122221211x n x x x nx x x x x x n S n n -++=-++-+-= 样本标准差S 是2S 的算术平方根,它们依次作为总体平均数μ、总体方差2σ、总体标准差σ的估计值总体均值的点估计值:12nx x x x n+++=总体标准差的点估计值:(n x xs ++-=,x s x s ⎡⎤-+⎣⎦叫做均值的σ区间估计,2,2x s x s ⎡⎤-+⎣⎦叫做均值的2σ区间估计. 【例1】(2014年高考文5)某校高一、高二、高三分别有学生1600名、1200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为 . 【答案】70.【例2】(浦东新区2017二模6)若三个数123,,a a a 的方差为1,则12332,32,32a a a +++的方差为 . 【答案】9【点评】数据变动对平均数与方差的影响.【例3】(2009年高考理17文18)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ).A 甲地:总体均值为3,中位数为4 .B 乙地:总体均值为1,总体方差大于0 .C 丙地:中位数为2,众数为3 .D 丁地:总体均值为2,总体方差为3【答案】D.【例4】某次体检,8位同学的身高(单位:米)分别为.1.68,1.71,1. 73,1.63,1.81,1.74,1.66,1.78,则这组数据的中位数是 (米). 【参考答案】1. 72.【例5】(黄浦区9)已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是 人. 【参考答案】140.【例6】(崇明区5)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石(精确到小数点后一位数字). 【参考答案】169.1.【例7】(闵行松江区12)设*n ∈N ,n a 为(4)(1)nnx x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([]x 表示不超过实数x 的最大整数).则22()()n n t b c -++的最小值为 .【参考答案】254.【例8】(宝山区14)在x x62()-的二项展开式中,常数项等于( ) (A )160- (B )160 (C )150- (D )150 【参考答案】A .【例9】 二项式40的展开式中,其中是有理项的项数共有( ). (A ) 4项 (B ) 7项 (C ) 5项 (D ) 6项 【参考答案】()B .2019年二模真题汇编一、填空题宝山区1、在()()5311x x -+的展开式中,3x 的系数为___________(结果用数值表示) 【答案】9-【解析】观察法,3x 可以是()51x -中3x 项和后面的式中1相乘,也可以是()51x -中常数项和3x 相乘,()()5332351110x C x x -⇒-=-;()()50055111x C x -⇒-=所以系数为9- 10. 一个口袋中装有9个大小形状完全相同的球,球的编号分别为…,1,2,9,随机摸出两个球,则两个球的编号之和大于9的概率是_____(结果用分数表示). 【答案】95 【解析】()2912342205369P C +++=== 崇明区1、已知二项式62)(xa x +的展开式中含3x 项的系数是160,则实数a 的值是________. 【答案】2【解析】由通项公式可知,r r r r r r r x C a xa x C T 31266261)()(--+⋅==,令3312=-r ,得3=r ,所以,160363=C a ,解得2=a2、甲、乙、丙、丁4名同学参加志愿者服务,分别到三个路口疏导交通,每个路口有1名或2名志愿者,则甲、乙两人在同一路口的概率为__________(用数字作答)【答案】61【解析】61332433=⋅P C P奉贤2.在62()x x+的展开式中常数项为 【答案】160【解析】1602,322336266661=∴=∴=⎪⎭⎫ ⎝⎛=--+C r x C x x C T r r r rr rr , 10. 随机选取集合{地铁5号线,BRT ,莘南线}的非空子集A 和B 且A B ≠∅的概率是 【答案】4937【解析】{地铁5号线,BRT ,莘南线}的非空子集有7个,所以选取A 和B 的总结果数是4977=⨯种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海高考排列组合概率题汇总
1. (1985理)从六个数字1、2、3、4、5、6中任取四个不同的数字,有多少种取法?
由这六个数字可以组成多少个没有重复数字的四位偶数?[15;180]
2. (1985文)从六个数字1、2、3、5、7、9中任取四个不同的数字,有多少种取法?
由这六个数字可以组成多少个没有重复数字的四位偶数?[15;60]
3. (1986)用1、2、3、4四个数字组成没有重复数字的四位奇数的个数是________。

[12]
4. (1987)=++++10109102101
10C C C C ____________。

[1023]
5. (1987)七人并排成一行,如果甲、乙两人必须不相邻,那么不同排法的种数是( )
(A )1440(B )3600(C )4320(D )4800[B]
6. (1988)从6个运动员中选出4人参加4×100米接力赛,如果甲、乙都不能跑第一棒,
那么共有___________种不同的参赛方案。

[240]
7. (1989)两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人
一个座位),则不同坐法的种数( )(A )3858C C (B )385812C C P (C )3858P P (D )88
P [D] 8. (1990)平面上,四条平行直线和另外五条平行直线互相垂直,则它们构成的矩形共
有_______个。

[60]
9. (1991)设有编号1、2、3、4、5的五个球和编号1、2、3、4、5的五个盒子,现将
这五个球投放入这五个盒内,要求每个盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法的总数为( )(A )20(B )30(C )60(D )120[A]
10. (1992)由1、2、3、4、5组成比40000小的没有重复数字的五位数的个数是
________________。

[72]
11. (1993)1名教师和4名获奖同学排成一排照相留念,若老师不排在两端,则共有不
同的排法_____________种。

[72]
12. (1994)计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,
排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放两端,那么不同陈
列方式有( )(A )5544P P 种(B )554433P P P 种(C )55441
3P P C 种(D )554422P P P 种[D]
13. (1994试)9支足球队中,有5支亚洲队,4支非洲队,从中任意抽取两队进行比赛,
则1队是亚洲队且1队是非洲队的概率是( )(A )291415C C C +(B )291
4C C (C )29
15C C (D )
2914
1
5C C C [D]
14. (1995)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组
装计算机各2台的概率是_______________。

[33
25] 15. (1996)有8本互不相同的书,其中数学书3本,外文书2本,其它书3本,若将这
些书随机地排成一排放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的概率为_______________。

[28
1] 16. (1997)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程0c By Ax =++的A 、B 、C ,所得恰好经过坐标原点的直线的概率是_________________。

[
71] 17. (1998)袋内装有大小相同的4个白球和3个黑球,从中任意摸出3个球,其中只有
一个黑球的概率是___________________。

[35
18] 18. (1999)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆
16y x 22=+内的概率是____________________。

[9
2] 19. (2000春)有n )N n (∈件不同的产品排成一排,若其中A 、B 两件产品排成一排的不
同排法有48件,则=n ____________。

[5]
20. (2000)有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号
码1、2和3,现任取出3面,它们的颜色与号码均不相同的概率是_________。

[14
1] 21. (2001春)在大小相同的6个球中,2个是红球,4个是白球,若从中任意选取3个
球,则所选的3个球中至少有1个红球的概率是___________________。

[5
4] 22. (2001)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不
同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同的选择,则餐厅至少还需准备不同的素菜品种_____________种。

[7]
23. (2002春)六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排
每人比前排同学高的概率是____________。

[20
1] 24. (2002)在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来
的9名增至14名,但只任取其中7名裁判的评分作为有效分,若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是_______________。

[13
3] 25. (2003春)八名世界网球顶级选手在上海大师赛上分成两组,每组各四人,分别进行
单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第三、四名,则该大师赛共有_____________场比赛。

[16]
26. (2003)某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现
从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为_____。

[190
119] 27. (2004春)一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论
文3篇,若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________。

[14
5] 28. (2004)若在二项式10)1x ( 的展开式中任取一项,则该项的系数为奇数的概率是
_____________。

[11
4] 29. (2005春)某班共有40名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是____________。

[260
1] 30. (2005)某班有50名学生,其中15人选修A 课程,另外35人选修B 课程。

从班级中任选两名学生,他们是选修不同课程的学生的概率是__________。

[
73] 31. (2006春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益
广告,要求首尾必须播放公益广告,则共有_____________种不同的播放方式。

[48]。

相关文档
最新文档