2017年七年级数学下期中试卷(龙海市石码片含答案和解释)

合集下载

龙海市石码片七年级下期中数学试卷及答案

龙海市石码片七年级下期中数学试卷及答案

2016-2017学年福建省漳州市龙海市石码片七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=02.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥ C.④;②;③ D.①;②;③3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=05.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.17.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为.12.写出一个以为解的二元一次方程是.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.14.若是方程组的解,则3a+b的值为.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是.19.若不等式组恰有两个整数解,则m的取值范围是.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.24.已知方程组与有相同的解,求m、n的值.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?2016-2017学年福建省漳州市龙海市石码片七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=0【考点】86:解一元一次方程.【专题】11 :计算题.【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.2.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥ C.④;②;③ D.①;②;③【考点】84:一元一次方程的定义.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x ﹣10>﹣5中,一元一次方程的是(①),二元一次方程的是(⑤),一元一次不等式的是(⑥),故选A【点评】此题考查了一元一次方程、二元一次方程,以及一元一次不等式的定义,熟练掌握各自的定义是解本题的关键.3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【考点】C2:不等式的性质;83:等式的性质.【专题】17 :推理填空题.【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【解答】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点评】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0【考点】83:等式的性质.【分析】根据移项的定义,分别判断各项可得出答案.【解答】解:A、由﹣2y﹣5=﹣1+y移项得:﹣2y﹣y=5﹣1,故本选项正确;B、由﹣3x=﹣6的两边同时除以﹣3得:x=2,故本选项错误;C、由y=2的两边同时乘以10得:y=10,故本选项错误;D、由2(1﹣2x)+3=0去括号得:﹣2+4x+3=0,故本选项错误;故选:A.【点评】本题考查了等式的性质,学生不仅需要熟悉解方程的步骤,更需要熟悉解方程每步的含义.移项的本质是等式的性质1:等式两边同加(或减)同一个数(或式子),结果仍相等.5.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.【考点】34:同类项.【分析】根据同类项的定义进行选择即可.【解答】解:∵﹣63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.【点评】本题考查了同类项,掌握同类项的定义是解题的关键.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.1【考点】97:二元一次方程组的解.【分析】先把m看作是常数,解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①﹣②得:y=m+2③,把③代入②得:x=m﹣3,∵x+y=﹣3,∴m﹣3+m+2=﹣3,∴m=﹣1.故选C.【点评】本题实质是解二元一次方程组,先用m表示出x,y的值后,再求解关于m的方程,解方程组关键是消元.7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元【考点】8A:一元一次方程的应用.【专题】12 :应用题.【分析】商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x 元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.【解答】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选B.【点评】本题考查一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价﹣进价列方程求解.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【解答】解:根据等量关系(1),盒身的个数×2=盒底的个数,可得;2×10x=40y;根据等量关系(2),制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组.故选C.【点评】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人【考点】C9:一元一次不等式的应用.【分析】设参加合影的同学人数为x人,由题意可得不等关系得:(一张底片的钱+x张相片的钱)÷人数<0.6,根据不等关系列出不等式,解不等式可得答案.【解答】解:设参加合影的同学人数为x人,由题意得:<0.6,∵x为正整数∴0.8+0.4x<0.6x,解得:x>4,∴至少5人,故选:C.【点评】本题主要考查一元一次不等式的应用,关键是理解题意,根据题意找出不等关系,列出不等式.10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a【考点】C3:不等式的解集.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,可得答案.【解答】解:∵不等式组无解,∴b≤a,故选:D.【点评】本题主要考查不等式组的解集的确定,熟练掌握口诀:“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为﹣9 .【考点】88:同解方程.【分析】根据同解方程的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:由3x=2(x﹣2)解得x=﹣4,将x=﹣4代入2x﹣m=1,得﹣8﹣m=1,解得m=﹣9,故答案为:﹣9.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.12.写出一个以为解的二元一次方程是x+y=5 .【考点】92:二元一次方程的解.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如x+y=5.答案不唯一.故答案是:x+y=5.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为x<2 .【考点】C5:一元一次不等式的定义.【分析】根据一元一次不等式的定义,可得a,的值,根据解不等式,可得答案.【解答】解:由题意,得2+a=1,解得a=﹣1,5a﹣3x2+a>1﹣5﹣3x>1,解得x<2,故答案为:x<2.【点评】本题考查了一元一次不等式的定义,利用一元一次不等式的定义得出a的值是解题关键.14.若是方程组的解,则3a+b的值为﹣3 .【考点】97:二元一次方程组的解.【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:把代入方程组,得,解得,3a+b=﹣3,故答案为:﹣3.【点评】本题考查了二元一次方程组的解,利用方程的解满足方程得出关于a,b的方程组是解题关键.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是k≥2 .【考点】C6:解一元一次不等式;97:二元一次方程组的解.【分析】两方程相加得出x+y=3k﹣3,根据x+y≥1得出关于k的不等式,解之可得.【解答】解:两方程相加可得3x+3y=3k﹣3,∴x+y=k﹣1,∵x+y≥1,∴k﹣1≥1,解得:k≥2,故答案为:k≥2.【点评】本题主要考查解一元一次不等式的能力,根据题意列出关于k的不等式是解题的关键.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y厘米,则列出的方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故答案是:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为2<x<4 .【考点】CB:解一元一次不等式组;2C:实数的运算.【专题】23 :新定义.【分析】首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.【解答】解:∵a△b=ab﹣a﹣b+1,∴3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:2<x<4.故答案为2<x<4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是0、1、2、3 .【考点】C7:一元一次不等式的整数解;97:二元一次方程组的解.【分析】将代入方程组,得,解之得出a、b的值,代入不等式可得关于x的不等式,解之即可得.【解答】解:将代入方程组,得:,解得:,∴不等式为﹣2x+6≥0,解得:x≤3,∴该不等式的非负整数解为0、1、2、3,故答案为:0、1、2、3.【点评】本题主要考查解二元一次方程组和一元一次不等式的能力,熟练掌握解方程组和不等式的基本步骤和方法是解题的关键.19.若不等式组恰有两个整数解,则m的取值范围是0≤m<1 .【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m﹣2<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣2<﹣1,解得:0≤m<1恰有两个整数解,故答案为0≤m<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).【考点】98:解二元一次方程组;86:解一元一次方程.【专题】521:一次方程(组)及应用.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出x的值是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)1﹣=去分母,可得:6﹣2(1+2x)=3(x﹣1)去括号,可得:6﹣2﹣4x=3x﹣3移动,合并同类项,可得:7x=7解得x=1.(2)②×2﹣①×3,可得:y=6×2﹣5×3=﹣3,把y=﹣3代入①,可得:x=7,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组、解一元一次方程组的方法,要熟练掌握,注意代入法和加减法在解二元一次方程组中的应用.21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)去分母得:20﹣5(x﹣7)>2(4x+3)+10,20﹣5x+35>8x+6+10,﹣5x﹣8x>16﹣35﹣20,﹣13x>﹣39,x<3,在数轴上表示为:;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集等知识点,能求出不等式或不等式组的解集是解此题的关键.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?【考点】8A:一元一次方程的应用.【分析】这些学生有多少名,根据图书的总数不变即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这些学生有x名,根据题意得:3x+20=5x﹣26,解得:x=23.答:这些学生有23名.【点评】本题考查了一元一次方程的应用,根据图书的总数不变列出关于x的一元一次方程是解题的关键.23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.【考点】C6:解一元一次不等式;85:一元一次方程的解.【分析】解方程得出x=﹣,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:x+2k=5x+5k+1,x﹣5x=5k+1﹣2k,﹣4x=3k+1,x=﹣,∵方程x+2k=5(x+k)+1的解是负数,∴﹣<0.解得:k>﹣.【点评】本题主要考查解方程和一元一次不等式的能力,根据题意得出关于k的不等式是解题的关键.24.已知方程组与有相同的解,求m、n的值.【考点】97:二元一次方程组的解.【分析】根据方程组的解相同,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:由题意,得,解得,把代入,得,解得,答:m的值为4,n的值为﹣1.【点评】本题考查了二元一次方程组的解,利用方程组的解相同得出关于m,n的方程组是解题关键.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.【考点】CB:解一元一次不等式组;97:二元一次方程组的解.【分析】(1)将a看做常数解关于x、y的方程,依据方程的解为正数得出关于a的不等式组,解之可得;(2)根据绝对值的性质取绝对值符号,合并同类项可得.【解答】解:(1),①+②,得:x=﹣4a+5,①﹣②,得:y=a+4,∵方程的解为正数,∴,解得:﹣4<a<;(2)由(1)知﹣4a+5>0且a+4>0,∴原式=﹣4a+5﹣a﹣4=﹣5a+1.【点评】本题主要考查解二元一次方程组和一元一次不等式及绝对值的性质,根据题意列出关于a的不等式组是解题的关键.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨,可以列出相应的二元一次方程组,从而解答本题;(2)、(3)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,则,解得,12.5≤x≤15,第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;第三种方案;当a=15时,20﹣a=5,即购买A型污水处理设备15台,购买B型污水处理设备5台;(3)如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;因为第一种方案所需资金:13×12+7×10=226万元;第二种方案所需资金:14×12+6×10=228万元;第三种方案所需资金:15×12+5×10=230万元;∵226<228<230,∴选择第一种方案所需资金最少,最少是226万元.【点评】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.。

2016-2017年福建省漳州市龙海市程溪中学七年级(下)期中数学试卷(解析版)

2016-2017年福建省漳州市龙海市程溪中学七年级(下)期中数学试卷(解析版)

2016-2017学年福建省漳州市龙海市程溪中学七年级(下)期中数学试卷一、选择题:(每小题4分,共40分)1.(4分)方程2x﹣3y=5,x+=6,3x﹣y+2z=0,2x+4y,5x﹣y>0中是二元一次方程的有()个.A.1B.2C.3D.42.(4分)下列方程的变形中,正确的是()A.由x﹣5=﹣3,得x=5+3B.由6y=3,得y=2C.由x=0,得x=3D.由2=x﹣4,得x=4+23.(4分)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣4.(4分)若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣125.(4分)在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A.y=3x+2B.y=﹣3x+2C.y=3x﹣2D.y=﹣3x﹣2 6.(4分)若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A.B.C.D.7.(4分)“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>8 8.(4分)不等式组的解集为()A.x>﹣3B.x<4C.﹣4<x<3D.﹣3<x<4 9.(4分)8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A.8cm2B.15cm2C.16cm2D.20cm2 10.(4分)爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是()A.11岁B.12岁C.13岁D.14岁二、填空题:(每小题4分,共24分)11.(4分)当a=时,代数式1﹣2a与a﹣2的值相等.12.(4分)由3x+5y=10,得到用x表示y的式子为y=.13.(4分)在括号内填写一个二元一次方程,使所成方程组的解是,.14.(4分)不等式5x+14≥0的负整数解是.15.(4分)一件服装标价500元,若以6折销售,仍可获利20%,则这件服装进价为元.16.(4分)甲队有37人,乙队有23人,现在从乙队抽调x人到甲队,使甲队人数正好是乙队人数的2倍,根据题意,列出方程是.三、解答题(共86分)17.(16分)解下列方程:(1)3x﹣(x﹣5)=2(2x﹣1);(2).18.(8分)解方程组:.19.(8分)解不等式:10﹣3(x+6)≤2(x﹣1).20.(8分)解不等式组并把它的解集在数轴上表示出来.21.(8分)若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.22.(8分)要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?23.(10分)某商场销售A、B两种型号计算器,A型号计算器的进货价格为每台30元,B型号计算器的进货价格为每台40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)分别求商场销售A、B两种型号计算器每台的销售价格.(2)商场准备用不多于2 500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【利润=销售价格﹣进货价格】24.(10分)火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A,B两种型号的车厢将这批货物运至北京,甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A,B两种货厢的节数,共有哪几种方案?请你设计出来.25.(10分)阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:;(2)若为自然数,则满足条件的x值有个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?2016-2017学年福建省漳州市龙海市程溪中学七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题4分,共40分)1.(4分)方程2x﹣3y=5,x+=6,3x﹣y+2z=0,2x+4y,5x﹣y>0中是二元一次方程的有()个.A.1B.2C.3D.4【解答】解:2x﹣3y=5符合二元一次方程的定义;x+=6不是整式方程,不符合二元一次方程的定义;3x﹣y+2z=0含有3个未知数,不符合二元一次方程的定义;2x+4y,5x﹣y>0都不是方程.由上可知是二元一次方程的有1个.故选:A.2.(4分)下列方程的变形中,正确的是()A.由x﹣5=﹣3,得x=5+3B.由6y=3,得y=2C.由x=0,得x=3D.由2=x﹣4,得x=4+2【解答】解:A、由x﹣5=﹣3移项,得x=5﹣3.故本选项错误;B、由6y=3的两边同时除以6,得y=.故本选项错误;C、由x=0的两边同时乘以(﹣3),得x=0.故本选项错误;D、由2=x﹣4移项,得x=4+2.故本选项正确;故选:D.3.(4分)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣【解答】解:A、∵a<b,∴6a<6b,正确,不符合题意;B、∵a<b,∴a﹣3<b﹣3,正确,不符合题意;C、根据a<b不能判断a+4和b+3的大小,错误,符合题意;D、∵a<b,∴﹣>﹣,正确,不符合题意.故选:C.4.(4分)若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣12【解答】解:把x=﹣3代入方程得:2(﹣3﹣m)=6,解得:m=﹣6.故选:B.5.(4分)在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A.y=3x+2B.y=﹣3x+2C.y=3x﹣2D.y=﹣3x﹣2【解答】解:分别把当x=2时,y=﹣4,当x=﹣2时,y=8代入等式y=kx+b得,,①﹣②得,4k=﹣12,解得k=﹣3,把k=﹣3代入①得,﹣4=﹣3×2+b,解得b=2,分别把k=﹣3,b=2的值代入等式y=kx+b得,y=﹣3x+2,故选:B.6.(4分)若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A.B.C.D.【解答】解:不等式组的解集为﹣1≤x≤3在数轴表示﹣1和3以及两者之间的部分:故选:D.7.(4分)“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>8【解答】解:根据题意,得2x﹣3≤8.故选:A.8.(4分)不等式组的解集为()A.x>﹣3B.x<4C.﹣4<x<3D.﹣3<x<4【解答】解:,由①解得:x<4,由②解得:x>﹣3,把两解集画在数轴上,如图所示:则原不等式的解集为:﹣3<x<4.故选:D.9.(4分)8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A.8cm2B.15cm2C.16cm2D.20cm2【解答】解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:,则每一个小长方形的面积为5×3=15(cm2);故选:B.10.(4分)爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是()A.11岁B.12岁C.13岁D.14岁【解答】解:设现在孙子的年龄是x岁,根据题意得,解得x=12,即现在孙子的年龄是12岁.故选:B.二、填空题:(每小题4分,共24分)11.(4分)当a=1时,代数式1﹣2a与a﹣2的值相等.【解答】解:根据题意得:1﹣2a=a﹣2,移项合并得:﹣3a=﹣3,解得:a=1.故答案为:1.12.(4分)由3x+5y=10,得到用x表示y的式子为y=2﹣x.【解答】解:移项得:5y=10﹣3x,系数化1得:y=(10﹣3x)=2﹣x.故填:2﹣x.13.(4分)在括号内填写一个二元一次方程,使所成方程组的解是,x+y=3,本题答案不唯一.【解答】解:∵,∴x+y=3,故答案为:x+y=3,本题答案不唯一.14.(4分)不等式5x+14≥0的负整数解是﹣2,﹣1.【解答】解:移项得,5x≥﹣14,系数化为1得,x≥﹣,在数轴上表示为:由数轴上x的取值范围可知,不等式5x+14≥0的负整数解是﹣2,﹣1共两个.15.(4分)一件服装标价500元,若以6折销售,仍可获利20%,则这件服装进价为250元.【解答】解:设该服装的进价是x元.由题意得:500×60%=x×(1+20%),解得x=250,即进价为250元.故答案为:250.16.(4分)甲队有37人,乙队有23人,现在从乙队抽调x人到甲队,使甲队人数正好是乙队人数的2倍,根据题意,列出方程是37+x=2×(23﹣x).【解答】解:根据分析中的等量关系可列出的方程是32+x=2×(23﹣x).故答案为:37+x=2×(23﹣x).三、解答题(共86分)17.(16分)解下列方程:(1)3x﹣(x﹣5)=2(2x﹣1);(2).【解答】解:(1)去括号,得3x﹣x+5=4x﹣2,移项,合并同类项,得﹣2x=﹣7,解得,x=;(2)去分母,得3y+6﹣8y+4=24,移项、合并同类项,得﹣5y=14,化系数为1,得y=﹣.18.(8分)解方程组:.【解答】解法一:①×2+②得5x=10(3分)解得:x=2(4分)将x=2代入①得y=﹣2(5分)∴方程组的解为(6分)解法二:由①得y=2x﹣6③(3分)将③代入②得x+2(2x﹣6)=﹣2解得:x=2(4分)将x=2代入③得y=﹣2(5分)∴方程组的解为(6分)19.(8分)解不等式:10﹣3(x+6)≤2(x﹣1).【解答】解:去括号,得:10﹣3x﹣18≤2x﹣2,移项,得:﹣3x﹣2x≤﹣2﹣10+18,合并同类项,得:﹣5x≤6,系数化为1,得:x≥﹣.20.(8分)解不等式组并把它的解集在数轴上表示出来.【解答】解:∵2x﹣1>1,∴2x>2,∴x>1,∴不等式2x﹣1>1的解集为x>1,解x﹣2≤,∴2x﹣4≤x﹣1,∴x≤3,∴不等式x﹣2≤的解集为x≤3,所以原不等式组的解集为1<x≤3.21.(8分)若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.【解答】解:(1),①﹣②得,x﹣y=﹣2m+3﹣4=﹣2m﹣1;(2)由题意,得﹣2m﹣1>﹣8,解得m<,∵m为正整数,∴m=1、2或3.22.(8分)要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?【解答】解:设乙每小时加工x个零件,那么甲每小时加工(x+2)个零件.根据题意,列方程,得5(x+2)+4(x+x+2)=200,解这个方程,得x=14,x+2=14+2=16,答:甲每小时加工16个零件,乙每小时加工14个零件.23.(10分)某商场销售A、B两种型号计算器,A型号计算器的进货价格为每台30元,B型号计算器的进货价格为每台40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)分别求商场销售A、B两种型号计算器每台的销售价格.(2)商场准备用不多于2 500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【利润=销售价格﹣进货价格】【解答】(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元.根据题意,得解得(答:商场销售A、B两种型号计算器的销售价格分别为42元、56元.(2)设需要购进A型号的计算器a台.根据题意,得30a+40(70﹣a)≤2500.解得a≥30.答:最少需要购进A型号的计算器30台.24.(10分)火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A,B两种型号的车厢将这批货物运至北京,甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A,B两种货厢的节数,共有哪几种方案?请你设计出来.【解答】解:设需要A型车厢x节,则需要B型车厢(50﹣x)节.依题意得,解得28≤x≤30.因为x为整数,故x=28,29,30.答:共有三种方案:①A型车厢28节,B型车厢22节;②A型车厢29节,B型车厢21节;③A型车厢30节,B型车厢20节.25.(10分)阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:;(2)若为自然数,则满足条件的x值有个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?【解答】解:(1)由2x+y=5,得y=5﹣2x(x、y为正整数).所以,即0<x<∴当x=1时,y=3;当x=2时,y=1.即方程的正整数解是或.(只要写出其中的一组即可)(2)同样,若为自然数,则有:0<x﹣2≤6,即2<x≤8.当x=3时,;当x=4时,;当x=5时,;当x=8时,.即满足条件x的值有4个,故选C.(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=35,其中m、n均为自然数.于是有:,解得:,所以0<m<.由于n=7﹣m为正整数,则为正整数,可知m为5的倍数.∴当m=5时,n=4;当m=10时,n=1.答:有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.。

【精校】福建省漳州市龙海市石码片七年级下册期中数学试卷及答案.doc

【精校】福建省漳州市龙海市石码片七年级下册期中数学试卷及答案.doc

2019-2020学年福建省漳州市龙海市石码片七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=02.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥ B.④;⑤;⑥ C.④;②;③ D.①;②;③3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=05.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.17.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为.12.写出一个以为解的二元一次方程是.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.14.若是方程组的解,则3a+b的值为.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是.19.若不等式组恰有两个整数解,则m的取值范围是.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.24.已知方程组与有相同的解,求m、n的值.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?2019-2020学年福建省漳州市龙海市石码片七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=0【考点】86:解一元一次方程.【专题】11 :计算题.【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.2.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥ B.④;⑤;⑥ C.④;②;③ D.①;②;③【考点】84:一元一次方程的定义.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中,一元一次方程的是(①),二元一次方程的是(⑤),一元一次不等式的是(⑥),故选A【点评】此题考查了一元一次方程、二元一次方程,以及一元一次不等式的定义,熟练掌握各自的定义是解本题的关键.3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【考点】C2:不等式的性质;83:等式的性质.【专题】17 :推理填空题.【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【解答】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点评】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0【考点】83:等式的性质.【分析】根据移项的定义,分别判断各项可得出答案.【解答】解:A、由﹣2y﹣5=﹣1+y移项得:﹣2y﹣y=5﹣1,故本选项正确;B、由﹣3x=﹣6的两边同时除以﹣3得:x=2,故本选项错误;C、由y=2的两边同时乘以10得:y=10,故本选项错误;D、由2(1﹣2x)+3=0去括号得:﹣2+4x+3=0,故本选项错误;故选:A.【点评】本题考查了等式的性质,学生不仅需要熟悉解方程的步骤,更需要熟悉解方程每步的含义.移项的本质是等式的性质1:等式两边同加(或减)同一个数(或式子),结果仍相等.5.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.【考点】34:同类项.【分析】根据同类项的定义进行选择即可.【解答】解:∵﹣63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.【点评】本题考查了同类项,掌握同类项的定义是解题的关键.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.1【考点】97:二元一次方程组的解.【分析】先把m看作是常数,解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①﹣②得:y=m+2③,把③代入②得:x=m﹣3,∵x+y=﹣3,∴m﹣3+m+2=﹣3,∴m=﹣1.故选C.【点评】本题实质是解二元一次方程组,先用m表示出x,y的值后,再求解关于m的方程,解方程组关键是消元.7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元【考点】8A:一元一次方程的应用.【专题】12 :应用题.【分析】商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.【解答】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选B.【点评】本题考查一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价﹣进价列方程求解.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【解答】解:根据等量关系(1),盒身的个数×2=盒底的个数,可得;2×10x=40y;根据等量关系(2),制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组.故选C.【点评】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人【考点】C9:一元一次不等式的应用.【分析】设参加合影的同学人数为x人,由题意可得不等关系得:(一张底片的钱+x张相片的钱)÷人数<0.6,根据不等关系列出不等式,解不等式可得答案.【解答】解:设参加合影的同学人数为x人,由题意得:<0.6,∵x为正整数∴0.8+0.4x<0.6x,解得:x>4,∴至少5人,故选:C.【点评】本题主要考查一元一次不等式的应用,关键是理解题意,根据题意找出不等关系,列出不等式.10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a【考点】C3:不等式的解集.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,可得答案.【解答】解:∵不等式组无解,∴b≤a,故选:D.【点评】本题主要考查不等式组的解集的确定,熟练掌握口诀:“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为﹣9 .【考点】88:同解方程.【分析】根据同解方程的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:由3x=2(x﹣2)解得x=﹣4,将x=﹣4代入2x﹣m=1,得﹣8﹣m=1,解得m=﹣9,故答案为:﹣9.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.12.写出一个以为解的二元一次方程是x+y=5 .【考点】92:二元一次方程的解.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如x+y=5.答案不唯一.故答案是:x+y=5.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为x<2 .【考点】C5:一元一次不等式的定义.【分析】根据一元一次不等式的定义,可得a,的值,根据解不等式,可得答案.【解答】解:由题意,得2+a=1,解得a=﹣1,5a﹣3x2+a>1﹣5﹣3x>1,解得x<2,故答案为:x<2.【点评】本题考查了一元一次不等式的定义,利用一元一次不等式的定义得出a的值是解题关键.14.若是方程组的解,则3a+b的值为﹣3 .【考点】97:二元一次方程组的解.【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:把代入方程组,得,解得,3a+b=﹣3,故答案为:﹣3.【点评】本题考查了二元一次方程组的解,利用方程的解满足方程得出关于a,b的方程组是解题关键.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是k≥2 .【考点】C6:解一元一次不等式;97:二元一次方程组的解.【分析】两方程相加得出x+y=3k﹣3,根据x+y≥1得出关于k的不等式,解之可得.【解答】解:两方程相加可得3x+3y=3k﹣3,∴x+y=k﹣1,∵x+y≥1,∴k﹣1≥1,解得:k≥2,故答案为:k≥2.【点评】本题主要考查解一元一次不等式的能力,根据题意列出关于k的不等式是解题的关键.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故答案是:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为2<x<4 .【考点】CB:解一元一次不等式组;2C:实数的运算.【专题】23 :新定义.【分析】首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.【解答】解:∵a△b=ab﹣a﹣b+1,∴3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:2<x<4.故答案为2<x<4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是0、1、2、3 .【考点】C7:一元一次不等式的整数解;97:二元一次方程组的解.【分析】将代入方程组,得,解之得出a、b的值,代入不等式可得关于x的不等式,解之即可得.【解答】解:将代入方程组,得:,解得:,∴不等式为﹣2x+6≥0,解得:x≤3,∴该不等式的非负整数解为0、1、2、3,故答案为:0、1、2、3.【点评】本题主要考查解二元一次方程组和一元一次不等式的能力,熟练掌握解方程组和不等式的基本步骤和方法是解题的关键.19.若不等式组恰有两个整数解,则m的取值范围是0≤m<1 .【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m﹣2<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣2<﹣1,解得:0≤m<1恰有两个整数解,故答案为0≤m<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).【考点】98:解二元一次方程组;86:解一元一次方程.【专题】521:一次方程(组)及应用.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出x的值是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)1﹣=去分母,可得:6﹣2(1+2x)=3(x﹣1)去括号,可得:6﹣2﹣4x=3x﹣3移动,合并同类项,可得:7x=7解得x=1.(2)②×2﹣①×3,可得:y=6×2﹣5×3=﹣3,把y=﹣3代入①,可得:x=7,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组、解一元一次方程组的方法,要熟练掌握,注意代入法和加减法在解二元一次方程组中的应用.21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)去分母得:20﹣5(x﹣7)>2(4x+3)+10,20﹣5x+35>8x+6+10,﹣5x﹣8x>16﹣35﹣20,﹣13x>﹣39,x<3,在数轴上表示为:;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集等知识点,能求出不等式或不等式组的解集是解此题的关键.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?【考点】8A:一元一次方程的应用.【分析】这些学生有多少名,根据图书的总数不变即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这些学生有x名,根据题意得:3x+20=5x﹣26,解得:x=23.答:这些学生有23名.【点评】本题考查了一元一次方程的应用,根据图书的总数不变列出关于x的一元一次方程是解题的关键.23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.【考点】C6:解一元一次不等式;85:一元一次方程的解.【分析】解方程得出x=﹣,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:x+2k=5x+5k+1,x﹣5x=5k+1﹣2k,﹣4x=3k+1,x=﹣,∵方程x+2k=5(x+k)+1的解是负数,∴﹣<0.解得:k>﹣.【点评】本题主要考查解方程和一元一次不等式的能力,根据题意得出关于k的不等式是解题的关键.24.已知方程组与有相同的解,求m、n的值.【考点】97:二元一次方程组的解.【分析】根据方程组的解相同,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:由题意,得,解得,把代入,得,解得,答:m的值为4,n的值为﹣1.【点评】本题考查了二元一次方程组的解,利用方程组的解相同得出关于m,n的方程组是解题关键.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.【考点】CB:解一元一次不等式组;97:二元一次方程组的解.【分析】(1)将a看做常数解关于x、y的方程,依据方程的解为正数得出关于a的不等式组,解之可得;(2)根据绝对值的性质取绝对值符号,合并同类项可得.【解答】解:(1),①+②,得:x=﹣4a+5,①﹣②,得:y=a+4,∵方程的解为正数,∴,解得:﹣4<a<;(2)由(1)知﹣4a+5>0且a+4>0,∴原式=﹣4a+5﹣a﹣4=﹣5a+1.【点评】本题主要考查解二元一次方程组和一元一次不等式及绝对值的性质,根据题意列出关于a的不等式组是解题的关键.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨,可以列出相应的二元一次方程组,从而解答本题;(2)、(3)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,则,解得,12.5≤x≤15,第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;第三种方案;当a=15时,20﹣a=5,即购买A型污水处理设备15台,购买B型污水处理设备5台;(3)如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;因为第一种方案所需资金:13×12+7×10=226万元;第二种方案所需资金:14×12+6×10=228万元;第三种方案所需资金:15×12+5×10=230万元;∵226<228<230,∴选择第一种方案所需资金最少,最少是226万元.【点评】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.。

2016-2017年福建省漳州市龙海市石码片七年级(下)期中数学试卷(解析版)

2016-2017年福建省漳州市龙海市石码片七年级(下)期中数学试卷(解析版)

的整数解.
22. (7 分)把一些图书分给某些学生阅读,如果每人分 3 本,则剩余 20 本;如 果每人分 5 本,则还缺 26 本,这些学生有多少名? 23. (7 分)已知关于 x 的方程 x+2k=5(x+k)+1 的解是负数,求 k 的取值范围. 24. (10 分)已知方程组 与 有相同的解,求 m、n 的值. 的解为正数.
B.90 元
8. (4 分)用白铁皮做罐头盒,每张铁皮可制盒身 10 个或制盒底 40 个,一个盒 身与两个盒底配成一套罐头盒,现有 120 张白铁皮,设用 x 张制盒身,y 张制
第 1 页(共 16 页)
盒底,得方程组( A. C.
) B. D.
9. (4 分)几位同学拍了一张合影,已知冲洗一张底片需要 0.8 元,洗一张相片 需要 0.4 元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分 摊的钱不足 0.6 元,则参加合影的同学人数( A.至少 4 人 B.至多 4 人 ) D.至多 5 人
第 3 页(共 16 页)
第 4 页(共 16 页)
2016-2017 学年福建省漳州市龙海市石码片七年级(下) 期中数学试卷
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分) 1. (4 分)方程 x﹣2=2﹣x 的解是( A.x=1 B.x=﹣1 ) C.x=2 D.x=0
C.至少 5 人 )
10. (4 分)若不等式组 A.b>a
无解,则有(
B.b<a
C.b=a
D.b≤a
二、填空题(本大题共 9 小题,每小题 4 分,共 36 分) 11. (4 分) 若方程 2x﹣m=1 和方程 3x=2 (x﹣2) 的解相同, 则 m 的值为 12. (4 分)写出一个以 为解的二元一次方程是 . . .

2017年福建省漳州市龙海二中七年级下学期数学期中试卷与解析答案

2017年福建省漳州市龙海二中七年级下学期数学期中试卷与解析答案

2016-2017学年福建省漳州市龙海二中七年级(下)期中数学试卷一、选择题(共40分,每小题4分)1.(4分)方程4x﹣1=3的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣22.(4分)解方程﹣1=时,去分母正确的是()A.3x﹣3=2x﹣2 B.3x﹣6=2x﹣2 C.3x﹣6=2x﹣1 D.3x﹣3=2x﹣13.(4分)“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>84.(4分)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B. C.D.5.(4分)不等式组的解集是()A.0<x<1 B.x>0 C.x<1 D.无解6.(4分)足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场7.(4分)已知是方程组的解,则a、b的值为()A.a=﹣1,b=3 B.a=1,b=3 C.a=3,b=1 D.a=3,b=﹣18.(4分)若不等式组无解,则m的取值范围是()A.m>3 B.m<3 C.m≥3 D.m≤39.(4分)8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A.8cm2B.15cm2C.16cm2D.20cm210.(4分)若a>b,且c为有理数,则下列各式正确的是()A.ac>bc B.ac<bc C.ac2<bc2 D.ac2≥bc2二、填空题(共24分,每小题4分)11.(4分)已知方程mx﹣2=3x的解为x=﹣1,则m=.12.(4分)写出一个解为的二元一次方程组是.13.(4分)方程3x+y=7,用x的代数式表示y,则y=.14.(4分)不等式13﹣3x>0的正整数解是.15.(4分)如果4x﹣5y=0,且x≠0,那么的值是.16.(4分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.三、解答题解方程(组)(每题8分,共24分)17.(24分)(1)﹣=1.(2)(3).18.(8分)当x取何值时,代数式与的差大于1.19.(8分)解不等式组,并把它们的解集在数轴上表示出来.20.(8分)若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.21.(12分)在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩,如图是购门票时,小明与他爸爸的对话.(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.22.(12分)某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?23.(14分)阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:;(2)若为自然数,则满足条件的x值有个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?2016-2017学年福建省漳州市龙海二中七年级(下)期中数学试卷参考答案与试题解析一、选择题(共40分,每小题4分)1.(4分)方程4x﹣1=3的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【解答】解:4x﹣1=3∴4x=4,∴x=1,故选:A.2.(4分)解方程﹣1=时,去分母正确的是()A.3x﹣3=2x﹣2 B.3x﹣6=2x﹣2 C.3x﹣6=2x﹣1 D.3x﹣3=2x﹣1【解答】解:去分母得:3x﹣6=2(x﹣1),故选:B.3.(4分)“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>8【解答】解:根据题意,得2x﹣3≤8.故选:A.4.(4分)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B. C.D.【解答】解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D.故选:C.5.(4分)不等式组的解集是()A.0<x<1 B.x>0 C.x<1 D.无解【解答】解:不等式组的解集是:0<x<1,故选:A.6.(4分)足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场【解答】解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选:C.7.(4分)已知是方程组的解,则a、b的值为()A.a=﹣1,b=3 B.a=1,b=3 C.a=3,b=1 D.a=3,b=﹣1【解答】解:∵是方程的解,∴把代入方程组,得,∴.故选:B.8.(4分)若不等式组无解,则m的取值范围是()A.m>3 B.m<3 C.m≥3 D.m≤3【解答】解:∵不等式组无解.∴m≤3.故选D.9.(4分)8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A.8cm2B.15cm2C.16cm2D.20cm2【解答】解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:,则每一个小长方形的面积为5×3=15(cm2);故选:B.10.(4分)若a>b,且c为有理数,则下列各式正确的是()A.ac>bc B.ac<bc C.ac2<bc2 D.ac2≥bc2【解答】解:①∵c为有理数,可以是正数也可以是负数,∴A、B都错误;②如果c=0,c2=0,C选项错误;③如果c≠0,c2>0,∴ac2>bc2,如果c=0,ac2=bc2,∴a2ac2≥bc2,D正确.故选:D.二、填空题(共24分,每小题4分)11.(4分)已知方程mx﹣2=3x的解为x=﹣1,则m=1.【解答】解:∵方程mx﹣2=3x的解为x=﹣1,∴﹣m﹣2=﹣3,解得:m=1.故答案为:1.12.(4分)写出一个解为的二元一次方程组是.【解答】解:根据题意得:.故答案为:13.(4分)方程3x+y=7,用x的代数式表示y,则y=﹣3x+7.【解答】解:方程3x+y=7,解得:y=﹣3x+7,故答案为:﹣3x+714.(4分)不等式13﹣3x>0的正整数解是1,2,3,4.【解答】解:不等式的解集是x<,因而不等式的正整数解是1,2,3,4.15.(4分)如果4x﹣5y=0,且x≠0,那么的值是.【解答】解:∵4x﹣5y=0,∴5y=4x,∴===.故答案为:.16.(4分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距504千米.【解答】解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.三、解答题解方程(组)(每题8分,共24分)17.(24分)(1)﹣=1.(2)(3).【解答】解:(1)去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:3x﹣4x=6+9+2,合并得:﹣x=17,解得:x=﹣17;(2),②﹣①得:2x=10,解得:x=5,把x=5代入①得:y=2,则方程组的解为;(3),①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=2,则方程组的解为.18.(8分)当x取何值时,代数式与的差大于1.【解答】解:依题意得:﹣>1,2x+8﹣9x+3>6,﹣7x>﹣5,x<.即当x<时,代数式与的差大于1.19.(8分)解不等式组,并把它们的解集在数轴上表示出来.【解答】解:解不等式3x﹣1≤2x+1,得:x≤2,解不等式﹣2x<8,得:x>﹣4,所以不等式组的解集是:﹣4<x≤2,表示在数轴上如下:20.(8分)若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.【解答】解:(1),①﹣②得,x﹣y=﹣2m+3﹣4=﹣2m﹣1;(2)由题意,得﹣2m﹣1>﹣8,解得m<,∵m为正整数,∴m=1、2或3.21.(12分)在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩,如图是购门票时,小明与他爸爸的对话.(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.【解答】解:(1)设小明他们一共去了x个成人,则去了(12﹣x)个学生,根据题意得:35x+35×0.5(12﹣x)=350,解得:x=8,∴12﹣x=4.答:小明他们一共去了8个成人,4个学生.(2)若12人按16人购买团体票,则需16×35×60%=336(元),∵350>336,∴小明他们购买16张团体票更省钱.22.(12分)某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【解答】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50﹣y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50﹣y=12;当y=39,50﹣y=11;当y=40,50﹣y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).故第二次购买方案中,方案一商家获利最多.23.(14分)阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:;(2)若为自然数,则满足条件的x值有个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?【解答】解:(1)由2x+y=5,得y=5﹣2x(x、y为正整数).所以,即0<x<∴当x=1时,y=3;当x=2时,y=1.即方程的正整数解是或.(只要写出其中的一组即可)(2)同样,若为自然数,则有:0<x﹣2≤6,即2<x≤8.当x=3时,;当x=4时,;当x=5时,;当x=8时,.即满足条件x 的值有4个,故选C .(3)设购买单价为3元的笔记本m 本,单价为5元的钢笔n 支.则根据题意得:3m +5n=35,其中m 、n 均为自然数. 于是有:, 解得:, 所以0<m <.由于n=7﹣m为正整数,则为正整数,可知m 为5的倍数. ∴当m=5时,n=4;当m=10时,n=1.答:有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.赠送:初中数学几何模型举例 【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为M FEB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。

龙海市石码片2018年七年级下期中数学试卷及答案

龙海市石码片2018年七年级下期中数学试卷及答案

2016-2017学年福建省漳州市龙海市石码片七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=02.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥ C.④;②;③ D.①;②;③3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=05.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.17.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为.12.写出一个以为解的二元一次方程是.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.14.若是方程组的解,则3a+b的值为.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y厘米,则列出的方程组为.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是.19.若不等式组恰有两个整数解,则m的取值范围是.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.24.已知方程组与有相同的解,求m、n的值.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?2016-2017学年福建省漳州市龙海市石码片七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=0【考点】86:解一元一次方程.【专题】11 :计算题.【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.2.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥ C.④;②;③ D.①;②;③【考点】84:一元一次方程的定义.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x ﹣10>﹣5中,一元一次方程的是(①),二元一次方程的是(⑤),一元一次不等式的是(⑥),故选A【点评】此题考查了一元一次方程、二元一次方程,以及一元一次不等式的定义,熟练掌握各自的定义是解本题的关键.3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【考点】C2:不等式的性质;83:等式的性质.【专题】17 :推理填空题.【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【解答】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点评】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0【考点】83:等式的性质.【分析】根据移项的定义,分别判断各项可得出答案.【解答】解:A、由﹣2y﹣5=﹣1+y移项得:﹣2y﹣y=5﹣1,故本选项正确;B、由﹣3x=﹣6的两边同时除以﹣3得:x=2,故本选项错误;C、由y=2的两边同时乘以10得:y=10,故本选项错误;D、由2(1﹣2x)+3=0去括号得:﹣2+4x+3=0,故本选项错误;故选:A.【点评】本题考查了等式的性质,学生不仅需要熟悉解方程的步骤,更需要熟悉解方程每步的含义.移项的本质是等式的性质1:等式两边同加(或减)同一个数(或式子),结果仍相等.5.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.【考点】34:同类项.【分析】根据同类项的定义进行选择即可.【解答】解:∵﹣63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.【点评】本题考查了同类项,掌握同类项的定义是解题的关键.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.1【考点】97:二元一次方程组的解.【分析】先把m看作是常数,解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①﹣②得:y=m+2③,把③代入②得:x=m﹣3,∵x+y=﹣3,∴m﹣3+m+2=﹣3,∴m=﹣1.故选C.【点评】本题实质是解二元一次方程组,先用m表示出x,y的值后,再求解关于m的方程,解方程组关键是消元.7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元【考点】8A:一元一次方程的应用.【专题】12 :应用题.【分析】商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x 元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.【解答】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选B.【点评】本题考查一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价﹣进价列方程求解.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【解答】解:根据等量关系(1),盒身的个数×2=盒底的个数,可得;2×10x=40y;根据等量关系(2),制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组.故选C.【点评】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人【考点】C9:一元一次不等式的应用.【分析】设参加合影的同学人数为x人,由题意可得不等关系得:(一张底片的钱+x张相片的钱)÷人数<0.6,根据不等关系列出不等式,解不等式可得答案.【解答】解:设参加合影的同学人数为x人,由题意得:<0.6,∵x为正整数∴0.8+0.4x<0.6x,解得:x>4,∴至少5人,故选:C.【点评】本题主要考查一元一次不等式的应用,关键是理解题意,根据题意找出不等关系,列出不等式.10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a【考点】C3:不等式的解集.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,可得答案.【解答】解:∵不等式组无解,∴b≤a,故选:D.【点评】本题主要考查不等式组的解集的确定,熟练掌握口诀:“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为﹣9 .【考点】88:同解方程.【分析】根据同解方程的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:由3x=2(x﹣2)解得x=﹣4,将x=﹣4代入2x﹣m=1,得﹣8﹣m=1,解得m=﹣9,故答案为:﹣9.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.12.写出一个以为解的二元一次方程是x+y=5 .【考点】92:二元一次方程的解.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如x+y=5.答案不唯一.故答案是:x+y=5.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为x<2 .【考点】C5:一元一次不等式的定义.【分析】根据一元一次不等式的定义,可得a,的值,根据解不等式,可得答案.【解答】解:由题意,得2+a=1,解得a=﹣1,5a﹣3x2+a>1﹣5﹣3x>1,解得x<2,故答案为:x<2.【点评】本题考查了一元一次不等式的定义,利用一元一次不等式的定义得出a的值是解题关键.14.若是方程组的解,则3a+b的值为﹣3 .【考点】97:二元一次方程组的解.【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:把代入方程组,得,解得,3a+b=﹣3,故答案为:﹣3.【点评】本题考查了二元一次方程组的解,利用方程的解满足方程得出关于a,b的方程组是解题关键.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是k≥2 .【考点】C6:解一元一次不等式;97:二元一次方程组的解.【分析】两方程相加得出x+y=3k﹣3,根据x+y≥1得出关于k的不等式,解之可得.【解答】解:两方程相加可得3x+3y=3k﹣3,∴x+y=k﹣1,∵x+y≥1,∴k﹣1≥1,解得:k≥2,故答案为:k≥2.【点评】本题主要考查解一元一次不等式的能力,根据题意列出关于k的不等式是解题的关键.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故答案是:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为2<x<4 .【考点】CB:解一元一次不等式组;2C:实数的运算.【专题】23 :新定义.【分析】首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.【解答】解:∵a△b=ab﹣a﹣b+1,∴3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:2<x<4.故答案为2<x<4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是0、1、2、3 .【考点】C7:一元一次不等式的整数解;97:二元一次方程组的解.【分析】将代入方程组,得,解之得出a、b的值,代入不等式可得关于x的不等式,解之即可得.【解答】解:将代入方程组,得:,解得:,∴不等式为﹣2x+6≥0,解得:x≤3,∴该不等式的非负整数解为0、1、2、3,故答案为:0、1、2、3.【点评】本题主要考查解二元一次方程组和一元一次不等式的能力,熟练掌握解方程组和不等式的基本步骤和方法是解题的关键.19.若不等式组恰有两个整数解,则m的取值范围是0≤m<1 .【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m﹣2<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣2<﹣1,解得:0≤m<1恰有两个整数解,故答案为0≤m<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).【考点】98:解二元一次方程组;86:解一元一次方程.【专题】521:一次方程(组)及应用.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出x的值是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)1﹣=去分母,可得:6﹣2(1+2x)=3(x﹣1)去括号,可得:6﹣2﹣4x=3x﹣3移动,合并同类项,可得:7x=7解得x=1.(2)②×2﹣①×3,可得:y=6×2﹣5×3=﹣3,把y=﹣3代入①,可得:x=7,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组、解一元一次方程组的方法,要熟练掌握,注意代入法和加减法在解二元一次方程组中的应用.21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)去分母得:20﹣5(x﹣7)>2(4x+3)+10,20﹣5x+35>8x+6+10,﹣5x﹣8x>16﹣35﹣20,﹣13x>﹣39,x<3,在数轴上表示为:;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集等知识点,能求出不等式或不等式组的解集是解此题的关键.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?【考点】8A:一元一次方程的应用.【分析】这些学生有多少名,根据图书的总数不变即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这些学生有x名,根据题意得:3x+20=5x﹣26,解得:x=23.答:这些学生有23名.【点评】本题考查了一元一次方程的应用,根据图书的总数不变列出关于x的一元一次方程是解题的关键.23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.【考点】C6:解一元一次不等式;85:一元一次方程的解.【分析】解方程得出x=﹣,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:x+2k=5x+5k+1,x﹣5x=5k+1﹣2k,﹣4x=3k+1,x=﹣,∵方程x+2k=5(x+k)+1的解是负数,∴﹣<0.解得:k>﹣.【点评】本题主要考查解方程和一元一次不等式的能力,根据题意得出关于k的不等式是解题的关键.24.已知方程组与有相同的解,求m、n的值.【考点】97:二元一次方程组的解.【分析】根据方程组的解相同,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:由题意,得,解得,把代入,得,解得,答:m的值为4,n的值为﹣1.【点评】本题考查了二元一次方程组的解,利用方程组的解相同得出关于m,n的方程组是解题关键.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.【考点】CB:解一元一次不等式组;97:二元一次方程组的解.【分析】(1)将a看做常数解关于x、y的方程,依据方程的解为正数得出关于a的不等式组,解之可得;(2)根据绝对值的性质取绝对值符号,合并同类项可得.【解答】解:(1),①+②,得:x=﹣4a+5,①﹣②,得:y=a+4,∵方程的解为正数,∴,解得:﹣4<a<;(2)由(1)知﹣4a+5>0且a+4>0,∴原式=﹣4a+5﹣a﹣4=﹣5a+1.【点评】本题主要考查解二元一次方程组和一元一次不等式及绝对值的性质,根据题意列出关于a的不等式组是解题的关键.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨,可以列出相应的二元一次方程组,从而解答本题;(2)、(3)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,则,解得,12.5≤x≤15,第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;第三种方案;当a=15时,20﹣a=5,即购买A型污水处理设备15台,购买B型污水处理设备5台;(3)如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;因为第一种方案所需资金:13×12+7×10=226万元;第二种方案所需资金:14×12+6×10=228万元;第三种方案所需资金:15×12+5×10=230万元;∵226<228<230,∴选择第一种方案所需资金最少,最少是226万元.【点评】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.。

龙海市石码片2019-2020学年七年级下册期中数学测试卷(附详细答案)

2019-2020学年福建省漳州市龙海市石码片七年级(下)期中测试卷数学一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=02.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥ B.④;⑤;⑥C.④;②;③ D.①;②;③3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=05.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.17.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为.12.写出一个以为解的二元一次方程是.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.14.若是方程组的解,则3a+b的值为.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y厘米,则列出的方程组为.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是.19.若不等式组恰有两个整数解,则m的取值范围是.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.24.已知方程组与有相同的解,求m、n的值.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?2019-2020学年福建省漳州市龙海市石码片七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=0【考点】86:解一元一次方程.【专题】11 :计算题.【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.2.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥ B.④;⑤;⑥C.④;②;③ D.①;②;③【考点】84:一元一次方程的定义.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中,一元一次方程的是(①),二元一次方程的是(⑤),一元一次不等式的是(⑥),故选A【点评】此题考查了一元一次方程、二元一次方程,以及一元一次不等式的定义,熟练掌握各自的定义是解本题的关键.3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【考点】C2:不等式的性质;83:等式的性质.【专题】17 :推理填空题.【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【解答】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点评】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0【考点】83:等式的性质.【分析】根据移项的定义,分别判断各项可得出答案.【解答】解:A、由﹣2y﹣5=﹣1+y移项得:﹣2y﹣y=5﹣1,故本选项正确;B、由﹣3x=﹣6的两边同时除以﹣3得:x=2,故本选项错误;C、由y=2的两边同时乘以10得:y=10,故本选项错误;D、由2(1﹣2x)+3=0去括号得:﹣2+4x+3=0,故本选项错误;故选:A.【点评】本题考查了等式的性质,学生不仅需要熟悉解方程的步骤,更需要熟悉解方程每步的含义.移项的本质是等式的性质1:等式两边同加(或减)同一个数(或式子),结果仍相等.5.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.【考点】34:同类项.【分析】根据同类项的定义进行选择即可.【解答】解:∵﹣63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.【点评】本题考查了同类项,掌握同类项的定义是解题的关键.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.1【考点】97:二元一次方程组的解.【分析】先把m看作是常数,解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①﹣②得:y=m+2③,把③代入②得:x=m﹣3,∵x+y=﹣3,∴m﹣3+m+2=﹣3,∴m=﹣1.故选C.【点评】本题实质是解二元一次方程组,先用m表示出x,y的值后,再求解关于m的方程,解方程组关键是消元.7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元【考点】8A:一元一次方程的应用.【专题】12 :应用题.【分析】商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x 元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.【解答】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选B.【点评】本题考查一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价﹣进价列方程求解.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【解答】解:根据等量关系(1),盒身的个数×2=盒底的个数,可得;2×10x=40y;根据等量关系(2),制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组.故选C.【点评】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人【考点】C9:一元一次不等式的应用.【分析】设参加合影的同学人数为x人,由题意可得不等关系得:(一张底片的钱+x张相片的钱)÷人数<0.6,根据不等关系列出不等式,解不等式可得答案.【解答】解:设参加合影的同学人数为x人,由题意得:<0.6,∵x为正整数∴0.8+0.4x<0.6x,解得:x>4,∴至少5人,故选:C.【点评】本题主要考查一元一次不等式的应用,关键是理解题意,根据题意找出不等关系,列出不等式.10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a【考点】C3:不等式的解集.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,可得答案.【解答】解:∵不等式组无解,∴b≤a,故选:D.【点评】本题主要考查不等式组的解集的确定,熟练掌握口诀:“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为﹣9 .【考点】88:同解方程.【分析】根据同解方程的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:由3x=2(x﹣2)解得x=﹣4,将x=﹣4代入2x﹣m=1,得﹣8﹣m=1,解得m=﹣9,故答案为:﹣9.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.12.写出一个以为解的二元一次方程是x+y=5 .【考点】92:二元一次方程的解.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如x+y=5.答案不唯一.故答案是:x+y=5.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为x<2 .【考点】C5:一元一次不等式的定义.【分析】根据一元一次不等式的定义,可得a,的值,根据解不等式,可得答案.【解答】解:由题意,得2+a=1,解得a=﹣1,5a﹣3x2+a>1﹣5﹣3x>1,解得x<2,故答案为:x<2.【点评】本题考查了一元一次不等式的定义,利用一元一次不等式的定义得出a的值是解题关键.14.若是方程组的解,则3a+b的值为﹣3 .【考点】97:二元一次方程组的解.【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:把代入方程组,得,解得,3a+b=﹣3,故答案为:﹣3.【点评】本题考查了二元一次方程组的解,利用方程的解满足方程得出关于a,b的方程组是解题关键.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是k≥2 .【考点】C6:解一元一次不等式;97:二元一次方程组的解.【分析】两方程相加得出x+y=3k﹣3,根据x+y≥1得出关于k的不等式,解之可得.【解答】解:两方程相加可得3x+3y=3k﹣3,∴x+y=k﹣1,∵x+y≥1,∴k﹣1≥1,解得:k≥2,故答案为:k≥2.【点评】本题主要考查解一元一次不等式的能力,根据题意列出关于k的不等式是解题的关键.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故答案是:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为2<x<4 .【考点】CB:解一元一次不等式组;2C:实数的运算.【专题】23 :新定义.【分析】首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.【解答】解:∵a△b=ab﹣a﹣b+1,∴3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:2<x<4.故答案为2<x<4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是0、1、2、3 .【考点】C7:一元一次不等式的整数解;97:二元一次方程组的解.【分析】将代入方程组,得,解之得出a、b的值,代入不等式可得关于x的不等式,解之即可得.【解答】解:将代入方程组,得:,解得:,∴不等式为﹣2x+6≥0,解得:x≤3,∴该不等式的非负整数解为0、1、2、3,故答案为:0、1、2、3.【点评】本题主要考查解二元一次方程组和一元一次不等式的能力,熟练掌握解方程组和不等式的基本步骤和方法是解题的关键.19.若不等式组恰有两个整数解,则m的取值范围是0≤m<1 .【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m﹣2<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣2<﹣1,解得:0≤m<1恰有两个整数解,故答案为0≤m<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).【考点】98:解二元一次方程组;86:解一元一次方程.【专题】521:一次方程(组)及应用.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出x的值是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)1﹣=去分母,可得:6﹣2(1+2x)=3(x﹣1)去括号,可得:6﹣2﹣4x=3x﹣3移动,合并同类项,可得:7x=7解得x=1.(2)②×2﹣①×3,可得:y=6×2﹣5×3=﹣3,把y=﹣3代入①,可得:x=7,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组、解一元一次方程组的方法,要熟练掌握,注意代入法和加减法在解二元一次方程组中的应用.21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)去分母得:20﹣5(x﹣7)>2(4x+3)+10,20﹣5x+35>8x+6+10,﹣5x﹣8x>16﹣35﹣20,﹣13x>﹣39,x<3,在数轴上表示为:;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集等知识点,能求出不等式或不等式组的解集是解此题的关键.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?【考点】8A:一元一次方程的应用.【分析】这些学生有多少名,根据图书的总数不变即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这些学生有x名,根据题意得:3x+20=5x﹣26,解得:x=23.答:这些学生有23名.【点评】本题考查了一元一次方程的应用,根据图书的总数不变列出关于x的一元一次方程是解题的关键.23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.【考点】C6:解一元一次不等式;85:一元一次方程的解.【分析】解方程得出x=﹣,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:x+2k=5x+5k+1,x﹣5x=5k+1﹣2k,﹣4x=3k+1,x=﹣,∵方程x+2k=5(x+k)+1的解是负数,∴﹣<0.解得:k>﹣.【点评】本题主要考查解方程和一元一次不等式的能力,根据题意得出关于k的不等式是解题的关键.24.已知方程组与有相同的解,求m、n的值.【考点】97:二元一次方程组的解.【分析】根据方程组的解相同,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:由题意,得,解得,把代入,得,解得,答:m的值为4,n的值为﹣1.【点评】本题考查了二元一次方程组的解,利用方程组的解相同得出关于m,n的方程组是解题关键.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.【考点】CB:解一元一次不等式组;97:二元一次方程组的解.【分析】(1)将a看做常数解关于x、y的方程,依据方程的解为正数得出关于a的不等式组,解之可得;(2)根据绝对值的性质取绝对值符号,合并同类项可得.【解答】解:(1),①+②,得:x=﹣4a+5,①﹣②,得:y=a+4,∵方程的解为正数,∴,解得:﹣4<a<;(2)由(1)知﹣4a+5>0且a+4>0,∴原式=﹣4a+5﹣a﹣4=﹣5a+1.【点评】本题主要考查解二元一次方程组和一元一次不等式及绝对值的性质,根据题意列出关于a的不等式组是解题的关键.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨,可以列出相应的二元一次方程组,从而解答本题;(2)、(3)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,则,解得,12.5≤x≤15,第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;第三种方案;当a=15时,20﹣a=5,即购买A型污水处理设备15台,购买B型污水处理设备5台;(3)如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;因为第一种方案所需资金:13×12+7×10=226万元;第二种方案所需资金:14×12+6×10=228万元;第三种方案所需资金:15×12+5×10=230万元;∵226<228<230,∴选择第一种方案所需资金最少,最少是226万元.【点评】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.。

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。

2017-2018学年福建省漳州市龙海二中七年级(下)期中数学试卷(解析版)

2017-2018学年福建省漳州市龙海二中七年级(下)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.方程4x-1=3的解是()A. B. C. D.2.解方程-1=时,去分母正确的是()A. B. C. D.3.“x的2倍与3的差不大于8”列出的不等式是()A. B. C. D.4.在数轴上表示不等式x≥-2的解集,正确的是()A. B.C. D.5.不等式组的解集是()A. B. C. D. 无解6.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A. 3场B. 4场C. 5场D. 6场7.已知是方程组的解,则a、b的值为()A. ,B. ,C. ,D. ,8.若不等式组无解,则m的取值范围是()A. B. C. D.9.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A. B. C. D.10.若a>b,且c为有理数,则下列各式正确的是()A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.已知方程mx-2=3x的解为x=-1,则m=______.12.写出一个解为的二元一次方程组是______.13.方程3x+y=7,用x的代数式表示y,则y=______.14.不等式13-3x>0的正整数解是______.15.如果4x-5y=0,且x≠0,那么的值是______。

16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距______千米.三、计算题(本大题共2小题,共36.0分)17.(1)-=1.(2)(3).18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?四、解答题(本大题共5小题,共50.0分)19.当x取何值时,代数式与的差大于1.20.解不等式组,并把它们的解集在数轴上表示出来.21.若关于x、y的二元一次方程组的解满足x-y>-8.(1)用含m的代数式表示x-y.(2)求满足条件的m的所有正整数值.22.在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩,如图是购门票时,小明与他爸爸的对话.(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.23.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴ 则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:______;(2)若为自然数,则满足条件的x值有______个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?答案和解析1.【答案】A【解析】解:4x-1=3∴4x=4,∴x=1,故选A.根据解一元一次方程的方法可以求得方程4x-1=3的解,从而可以解答本题.本替考查解一元一次方程,解答本题的关键是明确解一元一次方程的方法.2.【答案】B【解析】解:去分母得:3x-6=2(x-1),故选:B.所有项同时乘以最小公倍数即可去分母.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.3.【答案】A【解析】解:根据题意,得2x-3≤8.故选:A.理解:不大于8,即是小于或等于8.应注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.【答案】C【解析】解:∵不等式x≥-2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥-2中是大于等于,∴折线应向右折,∴可排除D.故选:C.根据在数轴上表示不等式解集的方法利用排除法进行解答.本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.5.【答案】A【解析】解:不等式组的解集是:0<x<1,故选:A.根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,即可解答.本题考查了不等式的解集,解决本题的关键是熟记求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.6.【答案】C【解析】解:设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.7.【答案】B【解析】解:∵是方程的解,∴把代入方程组,得,∴.故选B.所谓“方程组”的解,指的是该数值满足方程组中的每一方程.本题将解代回方程组,即可求出a,b.解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法.8.【答案】D【解析】解:∵不等式组无解.∴m≤3.故选D.解出不等式组的解集(含m的式子),与不等式组无解比较,求出m 的取值范围.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.9.【答案】B【解析】【分析】此题考查了二元一次方程组的应用,关键是根据图形找出其中的等量关系,列出方程组,用到的知识点是长方形的面积公式.先设每个小长方形的长为xcm,宽为ycm,根据大长方形的宽为8cm,5个小长方形的宽等于3个小长方形的长,列出方程组,再进行求解即可.【解答】解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:,则每一个小长方形的面积为5×3=15(cm2);故选B.10.【答案】D【解析】解:①∵c为有理数,可以是正数也可以是负数,∴A、B都错误;②如果c=0,c2=0,C选项错误;③如果c≠0,c2>0,∴ac2>bc2,如果c=0,ac2=bc2,∴a2ac2≥bc2,D正确.故选D.根据不等式的基本性质2:不等式的两边同时乘以一个正数,不等号的方向不改变;不等式的基本性质3:不等式的两边同时乘以一个负数,不等号的方向改变解答即可.本题主要考查不等式的基本性质和平方数非负数,要注意a=0时的特殊情况,容易出现选C的错误.11.【答案】1【解析】【分析】本题考查了一元一次方程的解,解题的关键是:把方程的解代入原方程,等式左右两边相等.将x=-1代入原方程可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:∵方程mx-2=3x的解为x=-1,∴-m-2=-3,解得:m=1.故答案为1.12.【答案】【解析】解:根据题意得:.故答案为:由2+3=5,2-3=-1列出方程组即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.13.【答案】-3x+7【解析】解:方程3x+y=7,解得:y=-3x+7,故答案为:-3x+7把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.【答案】1,2,3,4【解析】解:不等式的解集是x<,因而不等式的正整数解是1,2,3,4.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.正确解不等式,求出解集是解诀本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.15.【答案】【解析】解:∵4x-5y=0,∴5y=4x,∴===.故答案为:.由4x-5y=0,可得5y=4x,然后将4x代换5y,即可求得答案.此题考查了分式的化简求值问题.注意整体思想的应用是关键.16.【答案】504【解析】解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A港和B港相距x千米,则从A港顺流行驶到B港所用时间为小时,从B港返回A港用小时,根据题意列方程求解.本题的相等关系,逆流航行时间-顺流航行时间=3.注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系.17.【答案】解:(1)去分母得:3(x-3)-2(2x+1)=6,去括号得:3x-9-4x-2=6,移项得:3x-4x=6+9+2,合并得:-x=17,解得:x=-17;(2),②-①得:2x=10,解得:x=5,把x=5代入①得:y=2,则方程组的解为;(3),①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=2,则方程组的解为.【解析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可;(3)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50-y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50-y=12;当y=39,50-y=11;当y=40,50-y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60-50)+12(80-65)=560(元);商家售方案二的利润:39(60-50)+11(80-65)=555(元);商家售方案三的利润:40(60-50)+10(80-65)=550(元).故第二次购买方案中,方案一商家获利最多.【解析】此题考查了一元一次方程及一元一次不等式组的应用,解答本题的关键是仔细审题,根据题意所述的等量关系及不等关系,列出不等式,难度一般.(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.19.【答案】解:依题意得:->1,2x+8-9x+3>6,-7x>-5,x<.即当x<时,代数式与的差大于1.【解析】根据题意列出关于x的一元一次不等式->1,先去分母,然后通过移项、合并同类项、化系数为1进行解答即可.本题考查了解一元一次不等式.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.20.【答案】解:解不等式3x-1≤2x+1,得:x≤2,解不等式-2x<8,得:x>-4,所以不等式组的解集是:-4<x≤2,表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】解:(1),①-②得,x-y=-2m+3-4=-2m-1;(2)由题意,得-2m-1>-8,解得m<,∵m为正整数,∴m=1、2或3.【解析】(1)直接把两式相减即可得出结论;(2)根据(1)中x-y的表达式列出关于m的不等式,求出m的取值范围即可.本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.22.【答案】解:(1)设小明他们一共去了x个成人,则去了(12-x)个学生,根据题意得:35x+35×0.5(12-x)=350,解得:x=8,∴12-x=4.答:小明他们一共去了8个成人,4个学生.(2)若12人按16人购买团体票,则需16×35×60%=336(元),∵350>336,∴小明他们购买16张团体票更省钱.【解析】(1)设小明他们一共去了x个成人,则去了(12-x)个学生,根据总钱数=35×成人人数+35×0.5×学生数即可得出关于x的一元一次方程,解之即可得出结论;(2)计算出16张团体票的价钱,与350元进行比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系总钱数=35×成人人数+35×0.5×学生数列出关于x的一元一次方程;(2)计算出购买16张团体票的钱数.23.【答案】;【解析】解:(1)由2x+y=5,得y=5-2x(x、y为正整数).所以,即0<x<∴当x=1时,y=3;当x=2时,y=1.即方程的正整数解是或.(只要写出其中的一组即可)(2)同样,若为自然数,则有:0<x-2≤6,即2<x≤8.当x=3时,;当x=4时,;当x=5时,;当x=8时,.即满足条件x的值有4个,故选C.(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=35,其中m、n均为自然数.于是有:,解得:,所以0<m<.由于n=7-m为正整数,则为正整数,可知m为5的倍数.∴当m=5时,n=4;当m=10时,n=1.答:有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.根据题意可知,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解.解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数.。

福建省漳州市龙海市石码片2018年七年级下期中数学试卷及答案

2017-2018学年福建省漳州市龙海市石码片七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=02.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥ C.④;②;③ D.①;②;③3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=05.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.17.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为.12.写出一个以为解的二元一次方程是.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.14.若是方程组的解,则3a+b的值为.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y厘米,则列出的方程组为.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是.19.若不等式组恰有两个整数解,则m的取值范围是.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.24.已知方程组与有相同的解,求m、n的值.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?2016-2017学年福建省漳州市龙海市石码片七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1 B.x=﹣1 C.x=2 D.x=0【考点】86:解一元一次方程.【专题】11 :计算题.【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.2.下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥ C.④;②;③ D.①;②;③【考点】84:一元一次方程的定义.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x ﹣10>﹣5中,一元一次方程的是(①),二元一次方程的是(⑤),一元一次不等式的是(⑥),故选A【点评】此题考查了一元一次方程、二元一次方程,以及一元一次不等式的定义,熟练掌握各自的定义是解本题的关键.3.下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【考点】C2:不等式的性质;83:等式的性质.【专题】17 :推理填空题.【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【解答】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点评】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4.下列方程变形属于移项的是()A.由﹣2y﹣5=﹣1+y,得﹣2y﹣y=5﹣1 B.由﹣3x=﹣6,得x=2C.由y=2,得y=10 D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0【考点】83:等式的性质.【分析】根据移项的定义,分别判断各项可得出答案.【解答】解:A、由﹣2y﹣5=﹣1+y移项得:﹣2y﹣y=5﹣1,故本选项正确;B、由﹣3x=﹣6的两边同时除以﹣3得:x=2,故本选项错误;C、由y=2的两边同时乘以10得:y=10,故本选项错误;D、由2(1﹣2x)+3=0去括号得:﹣2+4x+3=0,故本选项错误;故选:A.【点评】本题考查了等式的性质,学生不仅需要熟悉解方程的步骤,更需要熟悉解方程每步的含义.移项的本质是等式的性质1:等式两边同加(或减)同一个数(或式子),结果仍相等.5.若﹣63a3b4与81a x+1b x+y是同类项,则x、y的值为()A.B.C.D.【考点】34:同类项.【分析】根据同类项的定义进行选择即可.【解答】解:∵﹣63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.【点评】本题考查了同类项,掌握同类项的定义是解题的关键.6.若关于x,y的方程组的解满足x+y=﹣3,则m的值为()A.﹣2 B.2 C.﹣1 D.1【考点】97:二元一次方程组的解.【分析】先把m看作是常数,解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①﹣②得:y=m+2③,把③代入②得:x=m﹣3,∵x+y=﹣3,∴m﹣3+m+2=﹣3,∴m=﹣1.故选C.【点评】本题实质是解二元一次方程组,先用m表示出x,y的值后,再求解关于m的方程,解方程组关键是消元.7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.95元B.90元C.85元D.80元【考点】8A:一元一次方程的应用.【专题】12 :应用题.【分析】商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x 元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.【解答】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选B.【点评】本题考查一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价﹣进价列方程求解.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【解答】解:根据等量关系(1),盒身的个数×2=盒底的个数,可得;2×10x=40y;根据等量关系(2),制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组.故选C.【点评】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.9.几位同学拍了一张合影,已知冲洗一张底片需要0.8元,洗一张相片需要0.4元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足0.6元,则参加合影的同学人数()A.至少4人B.至多4人C.至少5人D.至多5人【考点】C9:一元一次不等式的应用.【分析】设参加合影的同学人数为x人,由题意可得不等关系得:(一张底片的钱+x张相片的钱)÷人数<0.6,根据不等关系列出不等式,解不等式可得答案.【解答】解:设参加合影的同学人数为x人,由题意得:<0.6,∵x为正整数∴0.8+0.4x<0.6x,解得:x>4,∴至少5人,故选:C.【点评】本题主要考查一元一次不等式的应用,关键是理解题意,根据题意找出不等关系,列出不等式.10.若不等式组无解,则有()A.b>a B.b<a C.b=a D.b≤a【考点】C3:不等式的解集.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,可得答案.【解答】解:∵不等式组无解,∴b≤a,故选:D.【点评】本题主要考查不等式组的解集的确定,熟练掌握口诀:“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣m=1和方程3x=2(x﹣2)的解相同,则m的值为﹣9 .【考点】88:同解方程.【分析】根据同解方程的定义,可得关于m的方程,根据解方程,可得答案.【解答】解:由3x=2(x﹣2)解得x=﹣4,将x=﹣4代入2x﹣m=1,得﹣8﹣m=1,解得m=﹣9,故答案为:﹣9.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.12.写出一个以为解的二元一次方程是x+y=5 .【考点】92:二元一次方程的解.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如x+y=5.答案不唯一.故答案是:x+y=5.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.13.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为x<2 .【考点】C5:一元一次不等式的定义.【分析】根据一元一次不等式的定义,可得a,的值,根据解不等式,可得答案.【解答】解:由题意,得2+a=1,解得a=﹣1,5a﹣3x2+a>1﹣5﹣3x>1,解得x<2,故答案为:x<2.【点评】本题考查了一元一次不等式的定义,利用一元一次不等式的定义得出a的值是解题关键.14.若是方程组的解,则3a+b的值为﹣3 .【考点】97:二元一次方程组的解.【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:把代入方程组,得,解得,3a+b=﹣3,故答案为:﹣3.【点评】本题考查了二元一次方程组的解,利用方程的解满足方程得出关于a,b的方程组是解题关键.15.关于x,y的二元一次方程组的解满足x+y≥1,则k的取值范围是k≥2 .【考点】C6:解一元一次不等式;97:二元一次方程组的解.【分析】两方程相加得出x+y=3k﹣3,根据x+y≥1得出关于k的不等式,解之可得.【解答】解:两方程相加可得3x+3y=3k﹣3,∴x+y=k﹣1,∵x+y≥1,∴k﹣1≥1,解得:k≥2,故答案为:k≥2.【点评】本题主要考查解一元一次不等式的能力,根据题意列出关于k的不等式是解题的关键.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故答案是:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为2<x<4 .【考点】CB:解一元一次不等式组;2C:实数的运算.【专题】23 :新定义.【分析】首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.【解答】解:∵a△b=ab﹣a﹣b+1,∴3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:2<x<4.故答案为2<x<4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是0、1、2、3 .【考点】C7:一元一次不等式的整数解;97:二元一次方程组的解.【分析】将代入方程组,得,解之得出a、b的值,代入不等式可得关于x的不等式,解之即可得.【解答】解:将代入方程组,得:,解得:,∴不等式为﹣2x+6≥0,解得:x≤3,∴该不等式的非负整数解为0、1、2、3,故答案为:0、1、2、3.【点评】本题主要考查解二元一次方程组和一元一次不等式的能力,熟练掌握解方程组和不等式的基本步骤和方法是解题的关键.19.若不等式组恰有两个整数解,则m的取值范围是0≤m<1 .【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为m﹣2<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣2<﹣1,解得:0≤m<1恰有两个整数解,故答案为0≤m<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共74分)20.解下列方程(组).(1)1﹣=;(2).【考点】98:解二元一次方程组;86:解一元一次方程.【专题】521:一次方程(组)及应用.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出x的值是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)1﹣=去分母,可得:6﹣2(1+2x)=3(x﹣1)去括号,可得:6﹣2﹣4x=3x﹣3移动,合并同类项,可得:7x=7解得x=1.(2)②×2﹣①×3,可得:y=6×2﹣5×3=﹣3,把y=﹣3代入①,可得:x=7,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组、解一元一次方程组的方法,要熟练掌握,注意代入法和加减法在解二元一次方程组中的应用.21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)去分母得:20﹣5(x﹣7)>2(4x+3)+10,20﹣5x+35>8x+6+10,﹣5x﹣8x>16﹣35﹣20,﹣13x>﹣39,x<3,在数轴上表示为:;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集等知识点,能求出不等式或不等式组的解集是解此题的关键.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分5本,则还缺26本,这些学生有多少名?【考点】8A:一元一次方程的应用.【分析】这些学生有多少名,根据图书的总数不变即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这些学生有x名,根据题意得:3x+20=5x﹣26,解得:x=23.答:这些学生有23名.【点评】本题考查了一元一次方程的应用,根据图书的总数不变列出关于x的一元一次方程是解题的关键.23.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.【考点】C6:解一元一次不等式;85:一元一次方程的解.【分析】解方程得出x=﹣,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:x+2k=5x+5k+1,x﹣5x=5k+1﹣2k,﹣4x=3k+1,x=﹣,∵方程x+2k=5(x+k)+1的解是负数,∴﹣<0.解得:k>﹣.【点评】本题主要考查解方程和一元一次不等式的能力,根据题意得出关于k的不等式是解题的关键.24.已知方程组与有相同的解,求m、n的值.【考点】97:二元一次方程组的解.【分析】根据方程组的解相同,可得关于m,n的方程组,根据解方程组,可得答案.【解答】解:由题意,得,解得,把代入,得,解得,答:m的值为4,n的值为﹣1.【点评】本题考查了二元一次方程组的解,利用方程组的解相同得出关于m,n的方程组是解题关键.25.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+5|﹣|a+4|.【考点】CB:解一元一次不等式组;97:二元一次方程组的解.【分析】(1)将a看做常数解关于x、y的方程,依据方程的解为正数得出关于a的不等式组,解之可得;(2)根据绝对值的性质取绝对值符号,合并同类项可得.【解答】解:(1),①+②,得:x=﹣4a+5,①﹣②,得:y=a+4,∵方程的解为正数,∴,解得:﹣4<a<;(2)由(1)知﹣4a+5>0且a+4>0,∴原式=﹣4a+5﹣a﹣4=﹣5a+1.【点评】本题主要考查解二元一次方程组和一元一次不等式及绝对值的性质,根据题意列出关于a的不等式组是解题的关键.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨,可以列出相应的二元一次方程组,从而解答本题;(2)、(3)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,则,解得,12.5≤x≤15,第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;第三种方案;当a=15时,20﹣a=5,即购买A型污水处理设备15台,购买B型污水处理设备5台;(3)如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;因为第一种方案所需资金:13×12+7×10=226万元;第二种方案所需资金:14×12+6×10=228万元;第三种方案所需资金:15×12+5×10=230万元;∵226<228<230,∴选择第一种方案所需资金最少,最少是226万元.【点评】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年七年级数学下期中试卷(龙海市石码片含答案和解释)2016-2017学年福建省漳州市龙海市石码片七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1.x=2D.x=02.下列方程:①x﹣1=1;②x+=2z;③2x﹣1<;④3﹣2=2;⑤2x﹣=0;⑥x﹣10>﹣中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥.④;②;③D.①;②;③3.下列式子正确的是()A.若<,则x<B.若bx>b,则x>.若= ,则x=D.若x=,则x=4.下列方程变形属于移项的是()A.由﹣2﹣=﹣1+,得﹣2﹣=﹣1B.由﹣3x=﹣6,得x=2.由=2,得=10D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0.若﹣63a3b4与81ax+1bx+是同类项,则x、的值为()A.B..D.6.若关于x,的方程组的解满足x+=﹣3,则的值为()A.﹣2B.2.﹣1D.17.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.9元B.90元.8元D.80元8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,张制盒底,得方程组()A.B..D.9.几位同学拍了一张合影,已知冲洗一张底片需要08元,洗一张相片需要04元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足06元,则参加合影的同学人数()A.至少4人B.至多4人.至少人D.至多人10.若不等式组无解,则有()A.b>aB.b<a.b=aD.b≤a二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣=1和方程3x=2(x﹣2)的解相同,则的值为.12.写出一个以为解的二元一次方程是.13.如果a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.14.若是方程组的解,则3a+b的值为.1.关于x,的二元一次方程组的解满足x+≥1,则的取值范围是.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和厘米,则列出的方程组为.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是.19.若不等式组恰有两个整数解,则的取值范围是.三、解答题(共74分)20.解下列方程(组).(1)1﹣= ;(2).21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出;(2)求不等式组的整数解.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分本,则还缺26本,这些学生有多少名?23.已知关于x的方程x+2=(x+)+1的解是负数,求的取值范围.24.已知方程组与有相同的解,求、n的值.2.已知关于x,的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+|﹣|a+4|.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水160吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于400吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度谈谈你会选择哪种方案并说明理由?2016-2017学年福建省漳州市龙海市石码片七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1.x=2D.x=0【考点】86:解一元一次方程.【专题】11 :计算题.【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.2.下列方程:①x﹣1=1;②x+=2z;③2x﹣1<;④3﹣2=2;⑤2x﹣=0;⑥x﹣10>﹣中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A.①;⑤;⑥B.④;⑤;⑥.④;②;③D.①;②;③【考点】84:一元一次方程的定义.【专题】21:一次方程(组)及应用;24:一元一次不等式(组)及应用.【分析】利用一元一次方程的定义判断即可.【解答】解:下列方程:①x﹣1=1;②x+=2z;③2x﹣1<;④3﹣2=2;⑤2x﹣=0;⑥x﹣10>﹣中,一元一次方程的是(①),二元一次方程的是(⑤),一元一次不等式的是(⑥),故选A【点评】此题考查了一元一次方程、二元一次方程,以及一元一次不等式的定义,熟练掌握各自的定义是解本题的关键.3.下列式子正确的是()A.若<,则x<B.若bx>b,则x>.若= ,则x=D.若x=,则x=【考点】2:不等式的性质;83:等式的性质.【专题】17 :推理填空题.【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【解答】解:∵若<,则a>0时,x<,a<0时,x>,∴选项A不符合题意;∵若bx>b,则b>0时,x>,b<0时,x<,∴选项B不符合题意;∵若= ,则x=,∴选项符合题意;∵若x=,且=0,则x=或x≠,∴选项D不符合题意.故选:.【点评】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4.下列方程变形属于移项的是()A.由﹣2﹣=﹣1+,得﹣2﹣=﹣1B.由﹣3x=﹣6,得x=2.由=2,得=10D.由﹣2(1﹣2x)+3=0,得﹣2+4x+3=0【考点】83:等式的性质.【分析】根据移项的定义,分别判断各项可得出答案.【解答】解:A、由﹣2﹣=﹣1+移项得:﹣2﹣=﹣1,故本选项正确;B、由﹣3x=﹣6的两边同时除以﹣3得:x=2,故本选项错误;、由=2的两边同时乘以10得:=10,故本选项错误;D、由2(1﹣2x)+3=0去括号得:﹣2+4x+3=0,故本选项错误;故选:A.【点评】本题考查了等式的性质,学生不仅需要熟悉解方程的步骤,更需要熟悉解方程每步的含义.移项的本质是等式的性质1:等式两边同加(或减)同一个数(或式子),结果仍相等..若﹣63a3b4与81ax+1bx+是同类项,则x、的值为()A.B..D.【考点】34:同类项.【分析】根据同类项的定义进行选择即可.【解答】解:∵﹣63a3b4与81ax+1bx+是同类项,∴x+1=3,x+=4,∴x=2,=2,故选D.【点评】本题考查了同类项,掌握同类项的定义是解题的关键.6.若关于x,的方程组的解满足x+=﹣3,则的值为()A.﹣2B.2.﹣1D.1【考点】97:二元一次方程组的解.【分析】先把看作是常数,解关于x,二元一次方程组,求得用表示的x,的值后,再代入3x+2=19,建立关于的方程,解出的数值.【解答】解:,①﹣②得:=+2③,把③代入②得:x=﹣3,∵x+=﹣3,∴﹣3++2=﹣3,∴=﹣1.故选.【点评】本题实质是解二元一次方程组,先用表示出x,的值后,再求解关于的方程,解方程组关键是消元.7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获得20%,则该商品的进价是()A.9元B.90元.8元D.80元【考点】8A:一元一次方程的应用.【专题】12 :应用题.【分析】商品的实际售价是标价×90%=进货价+所得利润(20%•x).设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解这个方程即可求出进货价.【解答】解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选B.【点评】本题考查一元一次方程的实际应用,解决本题的关键是根据题目给出的条,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价﹣进价列方程求解.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有l20张白铁皮,设用x张制盒身,张制盒底,得方程组()A.B..D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【解答】解:根据等量关系(1),盒身的个数×2=盒底的个数,可得;2×10x=40;根据等量关系(2),制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+=120,故可得方程组.故选.【点评】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.9.几位同学拍了一张合影,已知冲洗一张底片需要08元,洗一张相片需要04元,现在冲洗了一张底片,然后给每个人洗了一张相片,平均每人分摊的钱不足06元,则参加合影的同学人数()A.至少4人B.至多4人.至少人D.至多人【考点】9:一元一次不等式的应用.【分析】设参加合影的同学人数为x人,由题意可得不等关系得:(一张底片的钱+x张相片的钱)÷人数<06,根据不等关系列出不等式,解不等式可得答案.【解答】解:设参加合影的同学人数为x人,由题意得:<06,∵x为正整数∴08+04x<06x,解得:x>4,∴至少人,故选:.【点评】本题主要考查一元一次不等式的应用,关键是理解题意,根据题意找出不等关系,列出不等式.10.若不等式组无解,则有()A.b>aB.b<a.b=aD.b≤a【考点】3:不等式的解集.【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,可得答案.【解答】解:∵不等式组无解,∴b≤a,故选:D.【点评】本题主要考查不等式组的解集的确定,熟练掌握口诀:“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共9小题,每小题4分,共36分)11.若方程2x﹣=1和方程3x=2(x﹣2)的解相同,则的值为﹣9.【考点】88:同解方程.【分析】根据同解方程的定义,可得关于的方程,根据解方程,可得答案.【解答】解:由3x=2(x﹣2)解得x=﹣4,将x=﹣4代入2x﹣=1,得﹣8﹣=1,解得=﹣9,故答案为:﹣9.【点评】本题考查了同解方程,利用同解方程得出关于的方程是解题关键.12.写出一个以为解的二元一次方程是x+=.【考点】92:二元一次方程的解.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如x+=.答案不唯一.故答案是:x+=.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.13.如果a﹣3x2+a>1是关于x的一元一次不等式,则其解集为x <2.【考点】:一元一次不等式的定义.【分析】根据一元一次不等式的定义,可得a,的值,根据解不等式,可得答案.【解答】解:由题意,得2+a=1,解得a=﹣1,a﹣3x2+a>1﹣﹣3x>1,解得x<2,故答案为:x<2.【点评】本题考查了一元一次不等式的定义,利用一元一次不等式的定义得出a的值是解题关键.14.若是方程组的解,则3a+b的值为﹣3.【考点】97:二元一次方程组的解.【分析】根据方程组的解满足方程组,可得关于,n的方程组,根据解方程组,可得答案.【解答】解:把代入方程组,得,解得,3a+b=﹣3,故答案为:﹣3.【点评】本题考查了二元一次方程组的解,利用方程的解满足方程得出关于a,b的方程组是解题关键.1.关于x,的二元一次方程组的解满足x+≥1,则的取值范围是≥2.【考点】6:解一元一次不等式;97:二元一次方程组的解.【分析】两方程相加得出x+=3﹣3,根据x+≥1得出关于的不等式,解之可得.【解答】解:两方程相加可得3x+3=3﹣3,∴x+=﹣1,∵x+≥1,∴﹣1≥1,解得:≥2,故答案为:≥2.【点评】本题主要考查解一元一次不等式的能力,根据题意列出关于的不等式是解题的关键.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和厘米,则列出的方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据图示可得:长方形的长可以表示为x+2,长又是7厘米,故x+2=7,长方形的宽可以表示为2x,或x+3,故2x=3+x,整理得x=3,联立两个方程即可.【解答】解:根据图示可得,故答案是:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于2而小于6,则x的取值范围为2<x<4.【考点】B:解一元一次不等式组;2:实数的运算.【专题】23 :新定义.【分析】首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.【解答】解:∵a△b=ab﹣a﹣b+1,∴3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:2<x<4.故答案为2<x<4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.18.方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是0、1、2、3.【考点】7:一元一次不等式的整数解;97:二元一次方程组的解.【分析】将代入方程组,得,解之得出a、b的值,代入不等式可得关于x的不等式,解之即可得.【解答】解:将代入方程组,得:,解得:,∴不等式为﹣2x+6≥0,解得:x≤3,∴该不等式的非负整数解为0、1、2、3,故答案为:0、1、2、3.【点评】本题主要考查解二元一次方程组和一元一次不等式的能力,熟练掌握解方程组和不等式的基本步骤和方法是解题的关键.19.若不等式组恰有两个整数解,则的取值范围是0≤<1.【考点】:一元一次不等式组的整数解.【分析】先求出不等式的解集,根据题意得出关于的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集为﹣2<x<1,又∵不等式组恰有两个整数解,∴﹣2≤﹣2<﹣1,解得:0≤<1恰有两个整数解,故答案为0≤<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共74分)20.解下列方程(组).(1)1﹣= ;(2).【考点】98:解二元一次方程组;86:解一元一次方程.【专题】21:一次方程(组)及应用.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出x的值是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)1﹣=去分母,可得:6﹣2(1+2x)=3(x﹣1)去括号,可得:6﹣2﹣4x=3x﹣3移动,合并同类项,可得:7x=7解得x=1.(2)②×2﹣①×3,可得:=6×2﹣×3=﹣3,把=﹣3代入①,可得:x=7,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组、解一元一次方程组的方法,要熟练掌握,注意代入法和加减法在解二元一次方程组中的应用.21.(1)解不等式2﹣>+1,并把它的解集在数轴上表示出;(2)求不等式组的整数解.【考点】:一元一次不等式组的整数解;4:在数轴上表示不等式的解集;6:解一元一次不等式;B:解一元一次不等式组.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出即可.【解答】解:(1)去分母得:20﹣(x﹣7)>2(4x+3)+10,20﹣x+3>8x+6+10,﹣x﹣8x>16﹣3﹣20,﹣13x>﹣39,x<3,在数轴上表示为:;(2)∵解不等式①得:x>﹣2,解不等式②得:x≤ ,∴不等式组的解集为﹣2<x≤ ,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集等知识点,能求出不等式或不等式组的解集是解此题的关键.22.把一些图书分给某些学生阅读,如果每人分3本,则剩余20本;如果每人分本,则还缺26本,这些学生有多少名?【考点】8A:一元一次方程的应用.【分析】这些学生有多少名,根据图书的总数不变即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这些学生有x名,根据题意得:3x+20=x﹣26,解得:x=23.答:这些学生有23名.【点评】本题考查了一元一次方程的应用,根据图书的总数不变列出关于x的一元一次方程是解题的关键.23.已知关于x的方程x+2=(x+)+1的解是负数,求的取值范围.【考点】6:解一元一次不等式;8:一元一次方程的解.【分析】解方程得出x=﹣,根据方程的解为负数得出关于的不等式,解之可得.【解答】解:x+2=x++1,x﹣x=+1﹣2,﹣4x=3+1,x=﹣,∵方程x+2=(x+)+1的解是负数,∴﹣<0.解得:>﹣.【点评】本题主要考查解方程和一元一次不等式的能力,根据题意得出关于的不等式是解题的关键.24.已知方程组与有相同的解,求、n的值.【考点】97:二元一次方程组的解.【分析】根据方程组的解相同,可得关于,n的方程组,根据解方程组,可得答案.【解答】解:由题意,得,解得,把代入,得,解得,答:的值为4,n的值为﹣1.【点评】本题考查了二元一次方程组的解,利用方程组的解相同得出关于,n的方程组是解题关键.2.已知关于x,的方程组的解为正数.(1)求a的取值范围;(2)化简|﹣4a+|﹣|a+4|.【考点】B:解一元一次不等式组;97:二元一次方程组的解.【分析】(1)将a看做常数解关于x、的方程,依据方程的解为正数得出关于a的不等式组,解之可得;(2)根据绝对值的性质取绝对值符号,合并同类项可得.【解答】解:(1),①+②,得:x=﹣4a+,①﹣②,得:=a+4,∵方程的解为正数,∴,解得:﹣4<a<;(2)由(1)知﹣4a+>0且a+4>0,∴原式=﹣4a+﹣a﹣4=﹣a+1.【点评】本题主要考查解二元一次方程组和一元一次不等式及绝对值的性质,根据题意列出关于a的不等式组是解题的关键.26.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水160吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于400吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度谈谈你会选择哪种方案并说明理由?【考点】E:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水160吨,可以列出相应的二元一次方程组,从而解答本题;(2)、(3)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水吨,,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,则,解得,12≤x≤1,第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;第三种方案;当a=1时,20﹣a=,即购买A型污水处理设备1台,购买B型污水处理设备台;(3)如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;因为第一种方案所需资金:13×12+7×10=226万元;第二种方案所需资金:14×12+6×10=228万元;第三种方案所需资金:1×12+×10=230万元;∵226<228<230,∴选择第一种方案所需资金最少,最少是226万元.【点评】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条.。

相关文档
最新文档