三角函恒等变换章节专题复习

合集下载

三角函数与三角恒等变换复习PPT优秀课件

三角函数与三角恒等变换复习PPT优秀课件


偶函数
A sin( x ) 的图象(A>0, 2、函数 y
第一种变换:
>0 )
y sin( x )
y sin x
图象向左( 向右(
0
)或
1 1)或缩短( 1)到原来的 横坐标伸长( 0 纵坐标不变
纵坐标伸长(A>1 )或缩短( 0<A<1 )到原来的A倍


例3:已知函数
2 2 y sin x 2 sin x cos x 3 cos x , x R ,
求:⑴函数的最小正周期;⑵函数的单增区间;⑶函数的最大值 及相应的x的值; ⑷函数的图象可以由函数 的图象经过怎样的变换得到。 y 2 sin 2 x ,x R
2 2 2 y sin x 2 sin x cos x 3 cos x 1 sin 2 x 2 cos x 解: 1 sin 2 x cos 2 x 1 2 2 sin( 2 x ) 4 2 ⑴ T 2 3 k x k , k Z ⑵由 2 k 2 x 2 k , 得
3 函数的单增区间为 [ k , k ]( k Z ) 8 8 2 x 2 k , 即 x k ( k Z ) 时 , y 2 2 ⑶当 最大值 4 2 8 y 2 sin( 2 x ) 2x 图象向左平移 8 个单位 ⑷ y 2sin 4
1
2 -1
o
2

3 2
2 x

2 -1

3 2
2 x
R [-1,1] T=2
R


[-1,1] T=2

高三一轮复习:三角函数恒等变换(二)

高三一轮复习:三角函数恒等变换(二)

高三一轮复习:三角函数恒等变换(二)1、已知函数)cos(3)(ϕω+=x x f (02<<-ϕπ,0>ω)的最小正周期为π,且其图象经过点)0,125(π (1)求函数)(x f 的解析式;(2)若函数)62()(π+=x f x g ,)2,0(,πβα∈,且,423)(,1)(==βαg g 求)(βα-g 的值.2、已知函数)(2cos cos sin 2)(R x x x x x f ∈+=(1)求)(x f 的最小正周期和最大值;(2)若θ为锐角,且32)8(=+πθf ,求θ2tan 的值.3、设函数()sin cos f x m x x =+()x R ∈的图象经过点,12π⎛⎫⎪⎝⎭. (1)求()f x 的解析式,并求函数的最小正周期;(2)若32()45f πα+=且(0,)2πα∈,求(2)4f πα-的值.4、已知函数()2sin 22cos2,f x x x x R =+∈.(1)求38f π⎛⎫⎪⎝⎭的值; (2) 求()f x 的最大值和最小正周期; (3)若3282f απ⎛⎫-=⎪⎝⎭,α是第二象限的角,求sin 2α.【参考答案】1、解:(1)π=T ,πωπ=∴2,2=∴ω 0)1252cos(3)125(=+⋅=ϕππf ,即0)65cos(3=+ϕπ 又 02<<-ϕπ,65653πϕππ<+<∴,265πϕπ=+∴,解得3πϕ-= )32cos(3)(π-=∴x x f (2)x x x f x g cos 3)33cos(3)62()(=-+=+=πππ 1c o s 3)(==ααg ,31cos =∴α 423c o s 3)(==ββg ,42cos =∴β 又 )2,0(,πβα∈322c o s 1s i n 2=-=∴αα,414cos 1sin 2=-=ββ )s i n s i n c o s (c o s 3)c o s(3)(βαβαβαβα+=-=-∴g 4742)4143224231(3+=⋅+⋅⋅= 2、解:(1) )4sin 2cos 4cos 2(sin 2)222cos 222(sin 22cos 2sin )(ππx x x x x x x f +=⋅+⋅=+=)42sin(2π+=x ∴最小正周期ππ==22T ,最大值为2 (2) 322cos 2)22sin(2)442sin(2)8(==+=++=+θπθππθπθf 312cos =∴θ 20πθ<< ,πθ<<∴20 ∴3222cos 12sin 2=-=θθ,222cos 2sin 2tan ==∴θθθ3、解:(1)函数()sin cos f x m x x =+()x R ∈的图象经过点π2⎛⎫ ⎪⎝⎭,1 sin cos 122m ππ∴+= ,1m ∴= …………………….2分()sin cos 2sin()4f x x x x π∴=+=+ …………………….3分 ∴函数的最小正周期2T π= ……………………4分(2)32()2sin()2sin()2cos 44425f ππππαααα+=++=+==………6分 3cos 5α∴= 又因为(0,)2πα∈ 24sin 1cos 5αα∴=-=…………………………………………………………9分 242(2)2sin(2)2sin 222sin cos 44425f πππααααα∴-=-+===………12分 4、解:(1))42sin(2)2cos 4sin 2sin 4(cos 2)2cos 222sin 22(2)(πππ+=+=+=x x x x x x f 0sin 2)4832sin(2)83(==+⨯=∴ππππf ……… 3分 (2))42sin(2)2cos 4sin 2sin 4(cos 2)2cos 222sin 22(2)(πππ+=+=+=x x x x x x f )(x f ∴的最大值为2,最小正周期为ππ==22T .……… 7分 (3) 由(2)知: )42sin(2)(π+=x x f,23sin 2)82(==-∴απαf 即,43sin =α……… 9分 又因为α是第二象限的角, 413)43(1sin 1cos 22-=--=--=∴αα…11分.839)413(432cos sin 22sin -=-⨯⨯==∴ααα……… 13分。

专题复习02 三角函数 三角恒等变换(难点)(解析版)

专题复习02 三角函数 三角恒等变换(难点)(解析版)

专题02三角函数 三角恒等变换(难点)一、单选题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2πϕ≤),满足06f π⎛⎫-= ⎪⎝⎭且对于任意的x ∈R 都有2()3f x f x π⎛⎫=- ⎪⎝⎭,若()f x 在52,369ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( ) A .5 B .7C .9D .11【答案】C 2.设函数()cos (0)4f x x πωω⎛⎫=-> ⎪⎝⎭,已知()f x 在[[0,2]π有且仅有4个零点,下述四个结论:①()1f x =在[0,2]π有且仅有2个零点;②()1f x =-在[0,2]π有且仅有2个零点;③ω的取值范围是1519,88⎡⎫⎪⎢⎣⎭;④()f x 在0,10π⎛⎫⎪⎝⎭单调递增,其中正确个数是( )A .0个B .1个C .2个D .3个【答案】D 【解析】 由[0,2]xπ时,得到,2444x πππωπω⎡⎤-∈--⎢⎥⎣⎦,根据()f x 在[[0,2]π有且仅有4个零点,则24ππω-在第4个零点和第5个零点之间,然后利用余弦函数的性质求解.当[0,2]xπ时,,2444x πππωπω⎡⎤-∈--⎢⎥⎣⎦,因为()f x 在[[0,2]π有且仅有4个零点, 所以24ππω-在第4个零点和第5个零点之间,所以792242ππππω≤-<, 解得151988ω<≤,故③正确; 当()1f x =时,2,4x k k Z πωπ-=∈,又924244x πππππωω-≤-≤-<,0,1,2k ∴=,结合cos y x =知()1f x =最多有3个零点,故①错误;当()1f x =-时,2,4x k k Z πωππ-=+∈,又924244xπππππωω-≤-≤-<, 0,1k ∴=,结合cos y x =()1f x =-有且仅有2个零点,故②正确;当0,10x π⎛⎫∈ ⎪⎝⎭时,,44104x πππωπω⎛⎫-∈-- ⎪⎝⎭,因为151988ω<≤,所以,1041680πωπππ⎡⎤-∈--⎢⎥⎣⎦,则0104πωπ-<,所以()f x 在0,10π⎛⎫⎪⎝⎭单调递增,故④正确; 故选:D 【点睛】关键点点睛:本题关键是利用整体思想,根据()f x 在[[0,2]π有且仅有4个零点,确定792242ππππω≤-<,求得ω的范围,其他问题迎刃而解. 3.已知函数()()sin f x x ωϕ=+(0>ω,ϕπ<)的部分图像如图所示,若存在120x x π≤<≤,满足()()1234f x f x ==,则()12cos x x -=( )A .7B 7C .34D .34-【答案】C 【解析】根据图象求出函数的解析式,结合对称性求出2123x x π=-,然后利用三角函数的诱导公式进行转化,即可求解.由图象可得函数的周期为13762()2121212T ππππ=⨯-=⨯=,即2wππ=,解得2w =, 又由当7135121226x πππ+==时,函数55()sin(2)166f ππϕ=⨯+=-,即532,32k k Z ππϕπ+=+∈,即2,6k k Z πϕπ=-∈, 当0k=时,6πϕ=-,即()sin(2)6f x x π=-,因为存在120x x π≤<≤,满足()()1234f x f x ==, 所以1112666x πππ-≤-≤,则11222,266x x ππθθ=-=-关于2π对称, 即12226622x x πππ-+-=,可得2123x x π=-,且13sin(2)64x π-=, 则()1212cos cos(2)3x x x π-=-, 设126x πα-=,则126x πα=+,即3sin 4α=,则()121223cos cos(2)cos()cos()sin 36324x x x ππππααα-=-=+-=-==. 故选:C. 【点睛】本题主要考查了三角函数值的计算,结合条件求出函数的解析式,利用三角函数的对称性以及三角函数的诱导公式进行转化是解答的关键,试题综合性强,属于中档试题.4.筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明代科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.将筒车抽象为一个几何图形(圆),筒车的半径为2m ,筒车的轴心O 到水面的距离为1m ,筒车每分钟按逆时针转动2圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,设盛水筒M 从0P 运动到点P 时所用时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m ).若以筒车的轴心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy (如图2),则h 与t 的函数关系式为( )A .2sin 1156h t ππ⎛⎫=-+⎪⎝⎭,[)0,t ∈+∞B .2sin 1156h t ππ⎛⎫=++⎪⎝⎭,[)0,t ∈+∞ C .2sin 16h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞ D .2sin 16h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞ 【答案】A 【解析】首先先求以OP 为终边的角为156t ππ-,再根据三角函数的定义求点P 的纵坐标,以及根据图形表示()h t .06xOP π∠=,所以0OP 对应的角是6π-,由OP 在()t s 内转过的角为226015t t ππ⨯=, 可知以Ox 为始边,以OP 为终边的角为156t ππ-,则点P 的纵坐标为2sin 156t ππ⎛⎫-⎪⎝⎭,所以点P 距水面的高度()h m 表示为()t s 的函数是2sin 1156h t ππ⎛⎫=-+⎪⎝⎭.故选:A 【点睛】关键点点睛:本题的关键读懂题意,并能抽象出函数关系,关键是求以OP 在()t s 内转过的角为226015t t ππ⨯=,再求以OP 为终边的角为156t ππ-.5.已知函数()()x f x ωϕ=+(0>ω)的一个对称中心为,04π⎛⎫ ⎪⎝⎭,且将()y f x =的图象向右平移6π个单位所得到的函数为偶函数.若对任意ω,不等式22226m fm πω⎡⎤⎛⎫+⋅-> ⎪⎢⎥⎝⎭⎣⎦恒成立,则实数m 的取值范围是( ) A .94,55⎛⎫-⎪⎝⎭B .49,55⎛⎫-⎪⎝⎭ C .94,,55⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭D .49,,55⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由,04π⎛⎫⎪⎝⎭是对称中心,可得()4k k Z ωπϕπ+=∈,由平移后的函数为偶函数可得62()k Z k πωϕππ+-+=∈,可求得ω的关系式及min ω,由6f π⎛⎫-= ⎪⎭⎝22m m ω+>恒成立,转化为()22min m m ω-<恒成立,结合min ω可求得实数m 的取值范围.,04π⎛⎫⎪⎝⎭是函数()()x f x ωϕ=+(0>ω)的一个对称中心, ()4k k Z ωπϕπ∴+=∈①()y f x =的图像向右平移6π个单位得到的函数为6x y ωωϕπ⎛⎫=-+ ⎪⎝⎭, in 62s x y ωωϕ⎛⎫=-+ ⎪⎝π⎭为偶函数,62()k Z k ϕπωππ+∴-+=∈②由①②可知,1225()k k Z πω=ππ∈+-,解得:()1()25k k Z ω6-=∈又662f k ππϕπω⎛⎫⎛⎫+= π⎛⎫-=-=+ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭所以对任意ω,不等式22226m fm πω⎡⎤⎛⎫+⋅-> ⎪⎢⎥⎝⎭⎣⎦恒成立,即22m m ω+>恒成立 即()22minm m ω-<恒成立,又()1()25k k Z ω6-=∈且0>ω,min 5ω∴=6 225m m 6⎛⎫∴-< ⎪⎝⎭,解得:455m 9-<<所以实数m 的取值范围是49,55⎛⎫- ⎪⎝⎭ 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题, 不等式恒成立问题常见方法: ①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图像在()y g x = 上方即可);③讨论最值()min 0f x ≥或()max 0f x ≤恒成立.6.设cos50cos127cos 40cos37a =︒⋅︒+︒⋅︒,)sin 56cos562b =︒-︒,221tan 391tan 39c -︒=+︒,()21cos802cos 5012d =︒-︒+,则a ,b ,c ,d 的大小关系是( ) A .a b d c >>> B .c a b d >>> C .b a d c >>> D .a c b d >>>【答案】D 【解析】化简得到cos77a =︒,cos 79b =︒,cos 78c =︒,cos80d =︒,得到答案.cos50cos127cos 40cos37sin 40sin 37cos 40cos37cos77a =︒⋅︒+︒⋅︒=-︒︒+︒⋅︒=︒;)sin 45sin sin 5566cos c 56os 45cos56cos101cos79b =︒︒-︒︒=-︒==︒-︒︒; 22221tan 39cos 39sin 39cos781tan 39c -︒==︒-︒=︒+︒; ()222cos 1cos 40cos 50cos80802cos 5012d =︒=︒--︒=︒+︒. 根据余弦函数的单调性知:a c b d >>>. 故选:D . 【点睛】本题考查了三角恒等变换,三角函数的单调性,意在考查学生的综合应用能力. 7.将函数()3cos 3f x x π⎛⎫=-⎪⎝⎭的图象上的所有点的横坐标缩短为原来的12,纵坐标不变,再把所得的图象向左平移3π个单位长度,然后再把所得的图象向下平移1个单位长度,得到函数()gx 的图象,若()()1216g x g x =,且[]12,2,2x x ππ∈-,则122x x -的最大值为( )A .133π B .103π C .52π D .256π 【答案】A 【解析】根据三角函数平移变换,先求得()gx 的解析式.根据()()1216g x g x =,可知()()124g x g x ==-,即12cos 21,cos 2133x x ππ⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭.根据[]12,2,2x x ππ∈-可分别求得12x 的最大值和2x 的最小值,即可求得122x x -的最大值.根据平移变换将函数()3cos 3f x x π⎛⎫=-⎪⎝⎭的图象上的所有点的横坐标缩短为原来的12,纵坐标不变,再把所得的图象向左平移3π个单位长度,然后再把所得的图象向下平移1个单位长度, 可得()3cos 213gx x π⎛⎫=+- ⎪⎝⎭由()()1216gx g x =,可知()()124g x g x ==- 即12cos 21,cos 2133x x ππ⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭[]12,2,2x x ππ∈-所以12111311132,,2,333333x x ππππππ⎡⎤⎡⎤+∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦123x π+的最大值为3π,223x π+的最小值为3π-则12x 的最大值为83π,2x 的最小值为53π- 所以122x x -的最大值为8513333πππ⎛⎫--= ⎪⎝⎭故选:A 【点睛】本题考查了三角函数图象的平移变换,三角函数性质的综合应用,利用函数的最值求参数的取值情况,属于难题. 8.设函数()cos()cos()f x m x n x αβ=+++,其中m 、n 、α、β为已知实常数,x ∈R ,有下列四个命题:(1)若(0)02f f ⎛⎫==⎪⎝⎭π,则()0f x =对任意实数x 恒成立;(2)若(0)0f =,则函数()f x 为奇函数;(3)若02f ⎛⎫= ⎪⎝⎭π,则函数()f x 为偶函数;(4)当22(0)02f f ⎛⎫=≠ ⎪⎝⎭π时,若12()()0f x f x ==,则122x x k π-=(k Z ∈);则上述命题中,正确的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】利用两角和的余弦公式化简()f x 表达式. 对于命题(1),将(0)0,02f f π⎛⎫==⎪⎝⎭化简得到的表达式代入上述()f x 表达式,可判断出(1)选项的真假; 对于命题(2)选项,将(0)0f =化简得到的表达式代入上述()f x 表达式,可判断出()f x 为奇函数,由此判断出(2)选项的真假;对于命题(3)选项,将()02f π=化简得到的表达式代入上述()f x 表达式,可判断出()f x 为偶函数,由此判断出(3)选项的真假; 对于命题(4)选项,根据22(0)02f f π⎛⎫+≠ ⎪⎝⎭、()()120f x f x ==,求得()f x 的零点的表达式,进而判断出(4)选项的真假.()(cos cos sin sin )(cos cos sin sin )f x m x x n x x ααββ=-+-(cos cos )cos (sin sin )sin m n x m n x αβαβ=+-+不妨设()()11221122()cos cos cos sin sin sin f x k k x k k x αααα=+-+.1212,,,k k αα为已知实常数.若(0)0f =,则得1122cos cos 0k k αα+=;若()02f π=,则得1122sin sin 0k k αα+=.于是当(0)02f f ⎛⎫== ⎪⎝⎭π时,()0f x =对任意实数x 恒成立,即命题(1)是真命题; 当(0)0f =时,()1122()sin sin sin f x k k x αα=-+,它为奇函数,即命题(2)是真命题; 当()02f π=时,()1122()cos cos cos f x k k x αα=+,它为偶函数,即命题(3)是真命题;当22(0)02f f π⎛⎫+≠ ⎪⎝⎭时,令()0f x =,则()()11221122cos cos cos sin sin sin 0k k x k k x αααα+-+=,上述方程中,若cos 0x =,则sin 0x =,这与22cos sin 1x x +=矛盾,所以cos 0x ≠.将该方程的两边同除以cos x 得11221122cos cos tan sin sin k k x k k αααα+=+,令11221122cos cos sin sin k k t k k αααα+=+ (0t ≠),则 tan x t =,解得 arctan x k t π=+ (k Z ∈).不妨取11arctan x k t π=+,22arctan x k t π=+ (1k Z ∈且2k Z ∈),则()1212x x k k π-=-,即12x x k π-= (k Z ∈),所以命题(4)是假命题.故选:C 【点睛】本题考查两角和差公式,三角函数零点,三角函数性质,重点考查读题,理解题和推理变形的能力,属于中档题型.二、多选题9.已知函数()|cos 2|cos ||f x x x =+,有下列四个结论,其中正确的结论为( )A .()f x 在区间33,42ππ⎡⎤⎢⎥⎣⎦上单调递增 B .π是()f x 的一个周期C .()f x 的值域为2⎡⎤⎢⎥⎣⎦D .()f x 的图象关于y 轴对称【答案】CD 【解析】代入特殊值检验,可得A 错误;求得(+)f x π的表达式,即可判断B 的正误;分段讨论,根据x 的范围,求得cos x 的范围,利用二次函数的性质,即可求得()f x 的值域,即可判断C 的正误;根据奇偶性的定义,即可判断()f x 的奇偶性,即可判断D 的正误,即可得答案.对于A :因为33,42x ππ⎡⎤∈⎢⎥⎣⎦,所以32,32x ππ⎡⎤∈⎢⎥⎣⎦,555()cos cos ()cos 2cos 04242f f ππππππ=+=-=+=, 所以5()()4f f ππ<,所以()f x 在区间33,42ππ⎡⎤⎢⎥⎣⎦上不是单调递增函数,故A 错误; 对于B :|cos2(|cos ||cos2cos ||cos2cos ||())x x x f x x x x ππππ=++=++≠+++, 所以π不是()f x 的一个周期,故B 错误;对于C :|cos2(|cos |2|cos2cos ||=((2)2))x x x f f x x x πππ=++=+++,所以()f x 的周期为2π,当[0,]4x π∈时,cos x ∈,2()|cos2|cos ||cos2cos 2cos 1cos f x x x x x x x =+=+=-+∈;当3[,]44x ππ∈时,cos [22x ∈-,2()|cos2|cos ||cos2cos 12cos cos f x x x x x x x =+=-+=-+9[]8∈;当35[,]44x ππ∈时,cos [1,x ∈-,2()|cos2|cos ||cos2cos 2cos 1cos f x x x x x x x =+=+=-+[2∈-;当57[,]44x ππ∈时,cos [22x ∈,2()|cos2|cos ||cos2cos 12cos cos f x x x x x x x =+=-+=-+9[]28∈-;当7[,2]4x ππ∈时,cos x ∈,2()|cos2|cos ||cos2cos 2cos 1cos f x x x x x x x =+=+=-+∈;综上:()f x 的值域为2⎡⎤⎢⎥⎣⎦,故C 正确; 对于D :()|cos(2)|cos |()||cos 2|cos ||()f x x x x x f x -=-+-=+=,所以()f x 为偶函数,即()f x 的图象关于y 轴对称,故D 正确, 故选:CD 【点睛】解题的关键是根据的()f x 解析式,结合函数的奇偶性、周期性求解,考查分类讨论,化简计算的能力,综合性较强,属中档题. 10.设函数()|cos ||cos2|f x x a x b =+++,,a b ∈R ,则( )A .()f x 的最小正周期可能为2π B .()f x 为偶函数C .当0ab时,()f x 的最小值为2D .存a ,b 使()f x 在0,2π⎛⎫⎪⎝⎭上单调递增【答案】BCD【解析】 A .分析()2f x f x π⎛⎫=+ ⎪⎝⎭是否恒成立;B .分析函数定义域,根据()(),f x f x -的关系判断是否为偶函数;C .采用换元法,将()f x 写成分段函数的形式,然后分析每一段函数的取值范围,由此确定出最小值;D .分析1a b ==-时的情况,根据复合函数的单调性判断方法进行分析判断.A .因为cos cos 2sin cos 2222f x x a x b x a x b πππ⎛⎫⎛⎫⎛⎫+=+++++=-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()011,12f a b f a b π⎛⎫=+++=-+⎪⎝⎭,所以()02f f π⎛⎫= ⎪⎝⎭不一定成立, 所以()2f x f x π⎛⎫=+ ⎪⎝⎭不恒成立,所以()f x 的最小正周期不可能为2π,故错误;B .因为()f x 的定义域为R ,关于原点对称;又因为()()()()cos cos 2cos cos 2f x x a x b x a x b f x -=-++-+=+++=, 所以()f x 为偶函数,故正确;C .因为0ab,所以()cos cos2f x x x =+,所以()2cos 2cos 1f x x x =+-令[]cos 1,1x t =∈-,记[]221,1,1y t t t =+-∈-,所以222221,1,221,21,0,221,,12t t t t t t y t t t t t t ⎧⎡--∈--⎪⎢⎪⎣⎭⎪⎡⎫⎪--+∈⎪⎢⎪⎪⎪⎣⎭=⎨⎡⎪-++∈⎢⎪⎣⎭⎪⎪⎤⎪+-∈⎥⎪⎣⎦⎩,当1,t ⎡∈-⎢⎣⎭时,22219192122482482y t t t ⎛⎫⎛⎫=--=-->---= ⎪ ⎪ ⎪⎝⎭⎝⎭,当t ⎡⎫∈⎪⎢⎪⎣⎭时,222191921224848y t t t ⎛⎫⎛⎫=--+=-++≥-++= ⎪ ⎪ ⎪⎝⎭⎝⎭当2t ⎡∈⎢⎣⎭时,222191921224848y t t t ⎫⎛⎫=-++=--+>--+=⎪ ⎪⎪⎝⎭⎝⎭,当2t ⎤∈⎥⎣⎦时,22219192122482482y t t t ⎛⎫⎛⎫=+-=+-≥+-= ⎪ ⎪ ⎪⎝⎭⎝⎭,综上可知:()2cos 2cos 1f x x x =+-cos t x ==D .取1a b ==-,所以()|cos 1||cos21|f x x x =-+-,所以()1cos 1cos2f x x x =-+-,所以()22cos cos 3f x x x =--+,所以()21252cos 48f x x ⎛⎫=-++ ⎪⎝⎭,又因为cos y x =在0,2π⎛⎫ ⎪⎝⎭上单调递减,且0,2x π⎛⎫∈ ⎪⎝⎭时,()cos 0,1x ∈,且2125248y t ⎛⎫=-++ ⎪⎝⎭在()0,1t ∈时单调递减,根据复合函数的单调性判断方法可知:()21252cos 48f x x ⎛⎫=-++ ⎪⎝⎭在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以存在1a b ==-使()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,故正确,故选:BCD. 【点睛】思路点睛:复合函数()()f g x 的单调性的判断方法:(1)先分析函数定义域,然后判断外层函数的单调性,再判断内层函数的单调性; (2)当内外层函数单调性相同时,则函数为递增函数; (3)当内外层函数单调性相反时,则函数为递减函数.11.如图,已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,2πϕ≤)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,3OCB π∠=,||2OA =,3AD =.则下列说法正确的有( ).A .()f x 的最小正周期为12B .6πϕ=-C .()f x 的最大值为163D .()f x 在区间(14,17)上单调递增【答案】ACD 【解析】3sin |2A πϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据221||AD =,可得方程22228(1)243A sin πϕω-+=,进而解出ω,ϕ,A .判断出结论.解:由题意可得:||3|OB OC =,∴3sin |2A πϕω=+,sin(2)0ωϕ+=,(2,0)A ,(2B πω+,0),(0,sin )C A ϕ.(12D πω∴+,sin )2A ϕ, 221||AD =,∴22228(1)243A sin πϕω-+=, 把|sin |)3A πϕω=+代入上式可得:2()2240ππωω-⨯-=,0>ω. 解得6πω=,6πω∴=,可得周期212T ωπ==.sin()03πϕ∴+=,||2πϕ,解得3πϕ=-.可知:B 不对.∴3sin()|263A π-=+,0A >,解得163A =.∴函数16()sin()363f x x ππ=-, 可知C 正确.(14,17)x ∈时,()(263x πππ-∈,5)2π,可得:函数()f x 在(14,17)x ∈单调递增. 综上可得:ACD 正确. 故选:ACD . 【点睛】本题考查了三角函数方程的解法、三角函数求值、三角函数的图象与性质,考查了推理能力与计算能力,属于较难题. 12.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,则下列说法正确的是( ) A .存在ϕ,使得()f x 是偶函数 B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【解析】根据3()8f x f π⎛⎫≤ ⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案.08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误; 当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫=⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确; 故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力. 三、填空题13.在平面直角坐标系中,对任意角α,设α的终边上异于原点的任意一点P 的坐标为(,)x y ,它与原点的距离是r .我们规定:比值,,r r xx y y分别叫做角α的正割、余割、余切,分别记作sec α,csc α,cot α,把sec ,csc ,cot y x y x y x ===分别叫做正割函数、余割函数、余切函数,则下列叙述正确的有___________(填上所有正确的序号)①3cot14π=; ②sin csc 1αα⋅=;③sec y x =的定义域为{}|,Z x x k k π≠∈;④22sec csc 4αα+;⑤2cot 1cot22cot ααα-=.【答案】②④⑤ 【解析】由题设新定义知:1sec cos αα=,1csc sin αα=,1cot tan αα=,由31cot 34tan 4ππ=、1sin csc sin sin αααα⋅=⋅、1sec =cos y x x =、2224sec csc sin 2ααα+=以及正切二倍角公式,即可判断各项的正误.①31cot134tan4ππ==-,故错误; ②1sin csc sin =1sin αααα⋅=⋅,故正确; ③1sec =cos y x x =,即cos 0x ≠,有|,Z 2x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭,故错误; ④22222221114seccsc 4cos sin cos sin sin 2ααααααα+=+==≥,故正确;⑤212tan cot2,tan 2tan 21tan ααααα==-,所以221tan cot 1cos 22tan 2cot ααααα--==,故正确. 故答案为:②④⑤ 【点睛】关键点点睛:新定义有1sec cos αα=,1csc sin αα=,1cot tan αα=,结合三角恒等变换判断各项的正误.14.已知2()sin ||sin ||f x x x ππ=-,()|ln |g x x =,若对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,则实数m 的取值范围是_________.【答案】2⎡⎫-+∞⎪⎢⎪⎣⎭【解析】先分析题意即()()12min min f x g x ≥,再利用单调性求解()f x 的最小值和()g x 的最小值,解不等式即得结果.依题意,对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,只需()()12min min f x g x ≥. 21,36x ⎡⎤∀∈--⎢⎥⎣⎦时()sin sin sin y x x x πππ==-=-,2,36x πππ⎡⎤--⎢⎣∈⎥⎦,0y <,故当232,x πππ⎡⎤--⎢⎣∈⎥⎦,即212,3x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递增, 当2,6x πππ⎡-∈⎤-⎢⎥⎣⎦,即1261,x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递减. 而函数2()f x x x=-,显然在(),0x ∈-∞单调递减. 故根据复合函数单调性可知,2()sin ||sin ||f x x x ππ=-在212,3x ⎡⎤∈--⎢⎥⎣⎦单调递减,在1261,x ⎡⎤∈--⎢⎥⎣⎦上单调递增,故min 122()sin 11221sin 2f x f ππ⎛⎫=-=-=-= ⎪⎝⎭. 对于12,x e e -⎡⎤∈⎣⎦,()|ln |g x x =,当1,1x e -⎡⎤∈⎣⎦时ln 0x ≤,故()ln g x x =-是单调递减的,当(21,x e ⎤∈⎦时ln 0x >,故()ln g x x =是单调递增的,故min()(1)|ln1|g x g ===.故依题意知,1≥,即2m ≥-.所以实数m的取值范围是2⎡⎫-+∞⎪⎢⎪⎣⎭.故答案为:,2⎡⎫-+∞⎪⎢⎪⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f x g x >成立,故()()12a min m x f x g x >; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x >成立,故()()12min min f x g x >;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x >成立,故()()12max min f x g x >; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.15.关于函数()sin cos |sin cos |f x x x x x =++-,下列说法正确..的是___________(将正确的序号写在横线上)(1)()f x 是以2π为周期的函数; (2)当且仅当52,4x k k Z ππ=+∈时,函数取得最小值 (3)()f x 图像的对称轴为直线,4x k k Z ππ=+∈;(4)当且仅当322,2k x k k Z ππππ+<<+∈时,()0f x <. 【答案】(1)(2)(4) 【解析】由函数解析式,转化为分段函数的形式,并画出其函数图象,结合各分段的函数性质,判断它的周期、最小值及对应的自变量值、对称轴、以及()0f x ≤<对应的区间,即可判断各项的正误.由题设,52sin ,2244()592cos ,2244x k x k f x x k x k ππππππππ⎧+≤≤+⎪⎪=⎨⎪+≤≤+⎪⎩,k Z ∈,∴(2)sin(2)cos(2)|sin(2)cos(2)|sin cos |sin cos |()f x x x x x x x x x f x πππππ+=+++++-+=++-=,所以()f x 周期为2π.由解析式可得()f x 的图象如下:由图知:当且仅当52,4x k k Z ππ=+∈时,函数取得最小值2-()f x 图像的对称轴为直线2,4x k k Z ππ=+∈;当且仅当322,2k x k k Z ππππ+<<+∈时,2()0f x -<. 故答案为:(1)(2)(4).【点睛】关键点点睛:分类讨论并求出()f x 的分段函数形式,进而画出函数图象,应用数形结合的方法判断各项的正误. 16.给出以下命题:①若α、β是第一象限角且αβ<,则tan tan αβ<;②函数sin ,22y x x x ππ⎛⎛⎫=-∈- ⎪ ⎝⎭⎝有三个零点;③函数2sin sin sin 1x xy x +=+是奇函数;④函数1sin 2y x =-的周期是2π;⑤函数2()4sin4cos 1f x x x a =-++-,当2,43x ππ⎡⎤∈-⎢⎥⎣⎦时()0f x =恒有解,则a 的范围是[4,5]-.其中正确命题的序号为____________. 【答案】④⑤ 【解析】根据正切周期性,对①举反例;根据sin x 与x 关系,可解()f x 零点;根据奇函数定义域,判断2sin sin sin 1x xy +=+是非奇非偶函数.对于①,令60,390αβ==,3tan 3,tan tan 303αβ===则①错;对于②,当0,2x π⎛⎫∈ ⎪⎝⎭有sin x x <恒成立,则0,2x π⎛⎫∈ ⎪⎝⎭无零点;又sin y x x =-为奇函数,,02x π⎛⎫∴∈- ⎪⎝⎭,sin y x x =-也无零点;则sin y x x =-只有0x =一个零点,则②错;对于③,求2sin sin sin 1x xy x +=+定义域,sin 1x ≠-则定义域为2,2x x k k Z ππ⎧⎫≠-+∈⎨⎬⎩⎭定义域不关于原点对称,则函数为非奇非偶函数,则③错误; 对于④,函数1sin 2y x =-是函数sin y x =向下平移12个单位,再沿x 轴将下方图像翻折到x 轴上方,故2T π=,则④正确对于⑤,222()4sin 4cos 14cos 4cos 3(2cos 1)4f x x x a x x a x a =-++-=+--=+--当2,43x ππ⎡⎤∈-⎢⎥⎣⎦,1cos ,12x ⎡⎤∴∈-⎢⎥⎣⎦,[]2cos 10,3x ∴+∈,[]2(2cos 1)0,9x ∴+∈使()0f x =恒有解,则2(2cos 1)4x a +=+恒有根[]40,9a ∴+∈,[]4,5a ∴∈-,则⑤正确故答案为:④⑤ 【点睛】本题考查,正切函数周期性、奇偶性定义、翻折变换、三角函数有界性,综合性较强,考查计算能力,有一定难度.四、解答题 17.已知函数()sin cos cos sin f x x x αα=+,()cos cos sin sin g x x x ββ=⋅-⋅,,αβ是参数,x ∈R ,(,)22ππα∈-,(,)22ππβ∈-.(1)若,44ππαβ==,判别()()()h x f x g x =+的奇偶性,若,44ππαβ=-=,判别22()()()h x f x g x =+的奇偶性; (2)若3πα=,()()()t x f x g x =是偶函数,求β;(3)请你仿照问题(1)(2)提一个问题(3),使得所提问题或是(1)的推广或是问题(2)的推广,问题(1)或(2)是问题(3)的特例.(不必证明命题)将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分.【答案】(1)非奇非偶函数;(2)6π;(3)答案见解析. 【解析】化简()f x 和()g x ,(1)化简()h x 的解析式,根据奇偶函数的定义可判断出结果; (2)由()()33t t ππ=-求出6πβ=,再验证()t x 为偶函数; (3)根据(1)或(2)中α和β的值,猜αβ+与αβ-的值与和函数、积函数的奇偶性的关系可得解.()sin cos cos sin f x x x αα=⋅+⋅,()cos cos sin sin g x x x ββ=⋅-⋅ ,()sin()f x x α=+, ()cos()g x x β=+,(1)当,44ππαβ==,所以()sin()cos()sin cos cos sin cos cos sin sin 444444h x x x x x x x ππππππ=+++=++-x =,所以()h x 是偶函数;当,44ππαβ=-=时,221cos(2)1cos(2)22()sin ()cos ()4422x x h x x x ππππ--++=-++=+ 1sin 21sin 21sin 22x x x -+-==-,所以()1sin(2)1sin 2h x x x -=--=+, 因为()()2044h h ππ-+=≠,所以()h x 不是奇函数, 因为()()2sin20442h h πππ--=-=-≠,所以()h x 不是偶函数所以()h x 是非奇非偶函数;(2)因为()()()t x f x g x =⋅为偶函数,所以()()t x t x =-对一切x ∈R 恒成立,所以()()33t t ππ=-,所以()()()()3333f g f g ππππ=--,所以sin()cos()sin()cos()333333ππππππββ++=-+-+,所以cos()03πβ+=,因为(,)22ππβ∈-,所以6πβ=, 当6πβ=时,()sin()cos()36t x x x ππ=++,()sin()cos()36t x x x ππ-=-+-+cos[()]sin[()]2326x x ππππ=--+--+cos()sin()()63x x t x ππ=++=,所以()t x 为偶函数, 综上所述:6πβ=. (3)第一层次,写出任何一种的一个(加法或乘法)均可以, 1、,()()2f xg x παβ+=+是偶函数;2、,()()2f xg x παβ+=-+是奇函数;3、,()()2f xg x παβ-=+是非奇非偶函数;4、,()()2f xg x παβ-=-+是既奇又偶函数;第二层次,写出任何一种的一个(加法或乘法)均可以, 1、33,()()2f xg x παβ+=+是偶函数(数字不分奇偶);2、55,()()2f xg x παβ+=-+是奇函数;44,()()2f xg x παβ+=-+是偶函数(数字只能同奇数);3、55,()()2f xg x παβ-=+是非奇非偶函数(数字不分奇偶,但需相同);4、33,()()2f xg x παβ-=-+是既奇又偶函数(数字只能奇数;22,()()2f xg x παβ-=-+是非奇非偶函数;第三层次,写出逆命题任何一种的一个(加法或乘法)均可以, 1、33()()f x g x +是偶函数(数字不分奇偶,但相同),则2παβ+=;2、55()()f x g x +是奇函数(数字只能正奇数),则 2παβ+=-;22()()f x g x +是偶函数(数字只能正偶数),则 2παβ+=- ;3、33()()f x g x +是偶函数(数字只能正奇数),则2παβ-=-;第四层次,写出充要条件中的任何一种均可以,1、2παβ+=的充要条件是()()f x g x +是偶函数,2、55()()f x g x +是奇函数(数字只能正奇数)的充要条件是2παβ+=-;22()()f x g x +是偶函数(数字只能正偶数)的充要条件是2παβ+=-;3、33()()f x g x +是偶函数(数字只能正奇数)的充要条件是 则2παβ-=-;第五层次,写出任何一种均可以(逆命题,充要条件等均可以), 1、*,2n N παβ+=∈时,()()n n f x g x +都是偶函数;2、*,2n N παβ+=-∈时,n 是正奇数,()()n n f x g x +是奇函数;*,2n N παβ+=-∈时,n 是正偶数,()()n n f x g x +是偶函数;3、*,2n N παβ-=-∈,n 奇数,()()n n f x g x +既奇又偶函数; 4、*,2n N παβ-=-∈,n 偶数,()()n n f x g x +是非奇非偶函数.【点睛】关键点点睛:掌握三角恒等变换公式与三角函数的奇偶性是解题关键. 18.已知函数()()()2sin 0,f x x ωϕωϕπ=+><,()f x 图象上相邻的最高点与最低点的横坐标相差2π,______; (1)①()f x 的一条对称轴3x π=-且()16f f π⎛⎫> ⎪⎝⎭; ②()f x 的一个对称中心5,012π⎛⎫⎪⎝⎭,且在2,63ππ⎡⎤⎢⎥⎣⎦上单调递减;③()f x 向左平移6π个单位得到的图象关于y 轴对称且(0)0f >从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式; (2)在(1)的情况下,令()()1cos 22h x f x x =-,()()g x h h x =⎡⎤⎣⎦,若存在,123x ππ⎡⎤∈⎢⎥⎣⎦使得()()()2230g g x a x a +-+-≤成立,求实数a 的取值范围.【答案】(1)选①②③,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2))⎡+∞⎣. 【解析】(1)根据题意可得出函数()f x 的最小正周期,可求得ω的值,根据所选的条件得出关于ϕ的表达式,然后结合所选条件进行检验,求出ϕ的值,综合可得出函数()f x 的解析式;(2)求得()sin 26h x x π⎛⎫=-⎪⎝⎭,由,123x ππ⎡⎤∈⎢⎥⎣⎦可计算得出()[]0,1h x ∈,进而可得出()1,sin 226g x π⎡⎤⎛⎫∈-- ⎪⎢⎥⎝⎭⎣⎦,由参变量分离法得出()()211a g x g x ≥+++,利用基本不等式求得()()211g x g x +++的最小值,由此可得出实数a 的取值范围.(1)由题意可知,函数()f x 的最小正周期为22T ππ=⨯=,22Tπω∴==. 选①,因为函数()f x 的一条对称轴3x π=-,则()232k k Z ππϕπ⎛⎫⨯-+=+∈ ⎪⎝⎭, 解得()76k k Z πϕπ=+∈, ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=-⎪⎝⎭,则()2sin 2162f f ππ⎛⎫⎛⎫=-=-< ⎪ ⎪⎝⎭⎝⎭,不合乎题意; 若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,则()2sin 2162f f ππ⎛⎫==> ⎪⎝⎭,合乎题意.所以,()2sin 26f x x π⎛⎫=+⎪⎝⎭;选②,因为函数()f x 的一个对称中心5,012π⎛⎫⎪⎝⎭,则()5212k k Z πϕπ⨯+=∈,解得()56k k Z πϕπ=-∈, ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=-⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,52,622x πππ⎡⎤-∈-⎢⎥⎣⎦,此时,函数()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递增,不合乎题意;若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,532,622x πππ⎡⎤+∈⎢⎥⎣⎦, 此时,函数()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减,合乎题意;所以,()2sin 26f x x π⎛⎫=+⎪⎝⎭; 选③,将函数()f x 向左平移6π个单位得到的图象关于y 轴对称,所得函数为2sin 22sin 263y x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由于函数2sin 23y x πϕ⎛⎫=++ ⎪⎝⎭的图象关于y 轴对称,可得()32k k Z ππϕπ+=+∈,解得()6k k Z πϕπ=+∈,ϕπ<,所以,ϕ的可能取值为56π-、6π. 若56π=-ϕ,则()52sin 26f x x π⎛⎫=-⎪⎝⎭,()502sin 16f π⎛⎫=-=- ⎪⎝⎭,不合乎题意; 若6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()02sin 16f π==,合乎题意.所以,()2sin 26f x x π⎛⎫=+⎪⎝⎭; (2)由(1)可知()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 所以,()()11cos 2sin 2cos 22cos 2cos 2262h x f x x x x x x x π⎛⎫=-=+-=+- ⎪⎝⎭12cos 2sin 226x x x π⎛⎫=-=- ⎪⎝⎭,当,123x ππ⎡⎤∈⎢⎥⎣⎦时,0262x ππ≤-≤,()01h x ∴≤≤,所以,()22666h x πππ-≤-≤-,所以,()()()1sin 2,sin 2626g x h h x h x ππ⎡⎤⎡⎤⎛⎫==-∈--⎡⎤ ⎪⎢⎥⎣⎦⎢⎥⎣⎦⎝⎭⎣⎦, ()11,1sin 226g x π⎡⎤⎛⎫∴+∈+- ⎪⎢⎥⎝⎭⎣⎦,2223ππ<<,2362πππ∴<-<sin 216π⎛⎫<-< ⎪⎝⎭, 由()()()2230gg x a x a +-+-≤可得()()()2231g x g x a g x ++≤+⎡⎤⎣⎦,所以,()()()()()()()22122321111g x g x g x a g x g x g x g x ++⎡⎤++⎣⎦≥==+++++, 由基本不等式可得()()211g x g x ++≥=+当且仅当()11,1sin 226g x π⎡⎤⎛⎫+=+- ⎪⎢⎥⎝⎭⎣⎦时,等号成立,所以,a ≥【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.19.已知函数2())2sin 1(0,0)2x f x x πωϕωϕωϕ+⎛⎫++-><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为π2. (1)求()f x 的解析式.(2)求()()sin cos h x f x x x =++的最大值. (3)将函数()f x 的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标变),得到函数()y g x =的图象,当[,]126ππx ∈-时,求函数()g x 的值域. (4)对于第(3)问中的函数()g x ,记方程4()3g x =在4[,]63ππx ∈上的根从小到依次为1x ,2x ,n x ,试确定n 的值,并求1231222n n x x x x x -+++++的值.【答案】(1)()2sin 2f x x =(2)2+3)[-(4)203π【解析】(1)利用三角恒等变换的公式,化简函数()f x 的解析式,利用正弦函数的周期,奇偶性求得函数的解析式;(2)令sin cos t x x =+,利用换元法转化为222y t t =+-,[t ∈求最大值即可;(3)利用函数()sin()f x A x ωϕ=+的图象变换规律,求得函数()g x 的解析式,进而求得函数的值域;(4)由方程4()3g x =,得到2sin(4)33x π-=,根据4[,]63ππx ∈,求得4[,5]33πx ππ-∈,设43x πθ=-,转化为2sin 3θ=,结合正弦函数的图象与性质,即可求解.(1)由题意,函数2())2sin 12x f x x ωϕωϕ+⎛⎫++- ⎪⎝⎭)cos()2sin()6x x x πωϕωϕωϕ=+-+=+-因为函数()f x 图象的相邻两对称轴间的距离为π2,所以T π=,可得2ω=,又由函数()f x 为奇函数,可得()02sin()06f πϕ=-=,所以,6k k Z πϕπ-=∈,因为0πϕ<<,所以6π=ϕ,所以函数()2sin 2f x x =.(2)()()sin cos 2sin 2sin cos h x f x x x x x x =++=++,令sin cos )[4t x x x π=+=+∈,则212sin cos t x x =+,所以222y t t =+-,[t ∈,因为对称轴14t =-, 所以当2t=时,max 22y =+,即()h x 的最大值为22+.(3)将函数()f x 的图象向右平移π6个单位长度,可得2sin(2)3y x π=-的图象,再把横坐标缩小为原来的12,得到函数()2sin(4)3y g x x π==-的图象,当[,]126ππx ∈-时,24[,]333x πππ-∈-, 当432x ππ-=-时,函数()g x 取得最小值,最小值为2-,当433x ππ-=时,函数()g x 取得最大值,最小值为3,故函数()g x 的值域[2,3]-. (4)由方程4()3g x =,即42sin(4)33x π-=,即2sin(4)33x π-=, 因为4[,]63ππx ∈,可得4[,5]33πx ππ-∈, 设43x πθ=-,其中[,5]3πθπ∈,即2sin 3θ=, 结合正弦函数sin y θ=的图象,如图可得方程2sin 3θ=在区间[,5]3ππ有5个解,即5n =,其中122334453,5,7,9θθπθθπθθπθθπ+=+=+=+=,即12233445443,445,447,44933333333x x x x x x x x ππππππππππππ-+-=-+-=-+-=-+-= 解得1223344511172329,,,12121212x x x x x x x x ππππ+=+=+=+=所以122331443552420()()()()2223x x x x x x x x x x x x x π=+++++++=+++++. 【点睛】关键点点睛:解决三角函数图象与性质的综合问题的关键是首先正确的将已知条件转化为三角函数解析式和图象,然后再根据数形结合思想研究函数的性质(单调性、奇偶性、对称性、周期性),进而加深理解函数的极值点、最值点、零点及有界函数等概念.20.已知向量3sin π2a x x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,ππsin ,cos 22b x x ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,函数3()f x a b =⋅-.(1)求()f x 的最小正周期及()f x 图象的对称轴方程;(2)若先将()f x 的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移π3个单位长度得到函数()g x 的图象,求函数()15y g x =-在区间[]π,3π-内的所有零点之和.【答案】(1)最小正周期为π,对称轴方程为5ππ,122k x k =+∈Z ;(2)6π. 【解析】(1)结合向量的数量积的坐标运算,化简求得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,再利用三角函数的图象与性质,即可求解;(2)根据三角函数的图象变换,求得()sin gx x =,结合函数的零点的概念和正弦函数的图象的性质,即可求解.(1)由题意,向量3sin π2a x x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,ππsin ,cos 22b x x ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3()f x a b =⋅-π3ππsin sin cos 2222x x x x ⎛⎫⎛⎫⎛⎫=⋅--⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin cos sin )(sin )x x x x =⋅+-⋅-1sin 2cos 2)2x x =+-πsin 23x ⎛⎫=- ⎪⎝⎭. 可得22ππ2T w π===,即函数的最小正周期为π, 令ππ2π,32x k k -=+∈Z ,解得5ππ,122k x k =+∈Z所以函数()f x 的最小正周期为π,对称轴方程为5ππ,122k x k =+∈Z . (2)由(1)知()πsin 23f x x ⎛⎫=-⎪⎝⎭, 将()f x 的图象上每个点横坐标变为原来的2倍,可得πsin 3y x ⎛⎫=- ⎪⎝⎭,然后将πsin 3y x ⎛⎫=- ⎪⎝⎭向左平移π3个单位长度得到函数()sin g x x =,令1()05g x -=,即1sin 5x =, 由图可知,1sin 5x =在[π,3π]-上有4个零点:1x ,2x ,3x ,4x ,根据对称性有12π22x x +=,345π22x x +=, 所以所有零点和为12346πx x x x +++=.【点睛】本题主要考查了三角函数的图象与性质,三角函数的图象变换,以及向量的数量积运算,函数与方程等知识点的综合应用,着重考查推理与运算能力,属于中档试题. 21.已知向量33cos,sin 22x x a ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,函数()1f x a b m a b =⋅-++,,34x ππ⎡⎤∈-⎢⎥⎣⎦,m R ∈.(1)当0m =时,求6f π⎛⎫⎪⎝⎭的值; (2)若()f x 的最小值为1-,求实数m 的值;(3)是否存在实数m ,使函数()()22449g x f x m =+,,34x ππ⎡⎤∈-⎢⎥⎣⎦有四个不同的零点?若存在,求出m 的取值范围;若不存在,说明理由.。

高三数学复习(第3章 三角函数与三角恒等变换):3.9 三角条件等式的证明

高三数学复习(第3章 三角函数与三角恒等变换):3.9 三角条件等式的证明

高三数学复习(第3章三角函数与三角恒等变换):3.9三角条件等式的证明一、选择题(共3小题,每小题5分,满分10分)1.(5分)已知第二象限角θ满足sinθ﹣12.5cos2θ﹣11.5=0,则的值是()A.B.﹣C.±D.±2.(5分)已知的值是()A.B.2C.1D.3.(5分)()A.充要条件B.必要不充分条件C.充分不必要条件D.即非充分又非必要条件二、填空题(共1小题,每小题4分,满分4分)4.(4分)的值为.三、解答题(共19小题,满分0分)5.求sin220°+cos280°+sin20°cos80°的值.6.已知.7.求证:﹣2cos(α+β)=.8.已知α、β、γ∈(0,),sinα+sinγ=sinβ,cosβ+cosγ=cosα,求β﹣α的值.9.已知:α,β为锐角,且3sin2α+2sin2β=1,3sin2α﹣2sin2β=0.求证:.10.已知A、B、C同时满足sin A+sin B+sin C=0,cos A+cos B+cos C=0,求证:cos2A+cos2B+cos2C 为定值.11.已知:,cosαcosβ=cosα+cosβ,求:的值.12.已知:a sin x+b cos x=0①,A sin2x+B cos2x=C②,其中a,b不同时为0,求证:2abA+(b2﹣a2)B+(a2+b2)C=0.13.已知sin A+sin3A+sin5A=a,cos A+cos3A+cos5A=b.求证:(1)当b≠0时,tan3A=.(2)(1+2cos2A)2=a2+b2.14.已知α、β、γ都是锐角,且cos2α+cos2β+cos2γ=1,求证:.15.已知(﹣)2=tan2α﹣tan2β,求证cosθ=16.已知,α、β为锐角,求证:.17.已知sin2(α+β)=n sin2y,且sin2y≠0n≠1,求证:.18.设θ和φ是方程a cos x+b sin x=c的二个根,且θ±φ≠2kπ(k∈Z),a、b、c≠0,求证:.19.已知sinθ+cosθ=a,sinθ﹣cosθ=b,求证:a2+b2=2.20.已知α+β=,求证:sin(2α+β)tanα+cos(α+2β)cotβ=0.21.已知,求证:y=x2﹣4x+5.22.已知.23.已知cot2α=1+2cot2β,求证:sin2β=2﹣2cos2α.高三数学复习(第3章三角函数与三角恒等变换):3.9三角条件等式的证明参考答案与试题解析一、选择题(共3小题,每小题5分,满分10分)1.(5分)已知第二象限角θ满足sinθ﹣12.5cos2θ﹣11.5=0,则的值是()A.B.﹣C.±D.±【解答】解:sinθ﹣12.5cos2θ﹣11.5=sinθ﹣12.5+25sin2θ﹣11.5=25sin2θ+sinθ﹣24=0解得sinθ=或﹣1(排除)∵θ为第二象限角∴cosθ=﹣=∵θ为第二象限角∴第一或第三象限角∴=±=±故选:D.2.(5分)已知的值是()A.B.2C.1D.【解答】解:===2(4﹣3)=2故选:B.3.(5分)()A.充要条件B.必要不充分条件C.充分不必要条件D.即非充分又非必要条件【解答】解:∵a cos2θ+b sin2θ=当时,a cos2θ+b sin2θ==a当a=b=0时,a cos2θ+b sin2θ=a成立,而不成立.故,是a cos2θ+b sin2θ=a的充分不必要条件故选:C.二、填空题(共1小题,每小题4分,满分4分)4.(4分)的值为.【解答】解:∵sinα+sinβ=,cosα+cosβ=,∴①,②,①+②,得2+2(cosαcosβ+sinαsinβ)=,即cos(α﹣β)=,∴=.故答案为.三、解答题(共19小题,满分0分)5.求sin220°+cos280°+sin20°cos80°的值.【解答】解:原式=sin220°+sin210°+sin20°cos(60°+20°)=sin220°+(1﹣cos20°)+sin20°cos20°﹣sin220°,=(1﹣cos20°)+sin40°﹣=﹣cos20°+(sin40°+cos40°)=﹣cos20°+sin70°=.故答案为.6.已知.【解答】证明:tan2====•=原式得证.7.求证:﹣2cos(α+β)=.【解答】证明:∵sin(2α+β)﹣2cos(α+β)sinα=sin[(α+β)+α]﹣2cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα﹣2cos(α+β)sinα=sin(α+β)cosα﹣cos(α+β)sinα=sin[(α+β)﹣α]=sinβ.两边同除以sinα得﹣2cos(α+β)=.∴原式得证8.已知α、β、γ∈(0,),sinα+sinγ=sinβ,cosβ+cosγ=cosα,求β﹣α的值.【解答】解:由已知,得sinγ=sinβ﹣sinα,cosγ=cosα﹣cosβ.平方相加得(sinβ﹣sinα)2+(cosα﹣cosβ)2=1.∴﹣2cos(β﹣α)=﹣1.∴cos(β﹣α)=.∴β﹣α=±.∵sinγ=sinβ﹣sinα>0,∴β>α.∴β﹣α=.9.已知:α,β为锐角,且3sin2α+2sin2β=1,3sin2α﹣2sin2β=0.求证:.【解答】解:由3sin2α+2sin2β=1,得:3sin2α=cos2β..∴sin22β+cos22β=9sin2αcos2α+9sin4α∴9sin2α=1.∴sinα=(α为锐角)∴sin(α+2β)=sinαcos2β+cosαsin2β=sinα(3sin2α)+cosα(3sinαcosα)=3sinα(sin2α+cos2α)=3sinα=1∴.10.已知A、B、C同时满足sin A+sin B+sin C=0,cos A+cos B+cos C=0,求证:cos2A+cos2B+cos2C 为定值.【解答】证明:先两式变形sinα+sinβ=﹣sinγ,cosα+cosβ=﹣cosγ,再平方,(sinα+sinβ)2=sin2γ,①(cosα+cosβ)2=cos2γ,②①+②化简得cos(α﹣β)=﹣,③②﹣①化简得,cos2γ=cos2α+cos2β+2cos(α+β),④所以cos2α+cos2β+cos2γ=++=+,将④代入=+cos2α+cos2β+cos(α+β)=+cos[(α+β)+(α﹣β)]+cos[(α+β)﹣(α﹣β)]+cos(α+β)=+2cos(α+β)cos(α﹣β)+cos(α+β),将③代入=故cos2A+cos2B+cos2C为定值,值为.11.已知:,cosαcosβ=cosα+cosβ,求:的值.【解答】解:cosαcosβ=cosα+cosβ,可得[cos(α+β)+cos(α﹣β)]=2即:[2cos2﹣1+2cos2﹣1]=令=t上式化为:t2﹣﹣=0t=.所以=.12.已知:a sin x+b cos x=0①,A sin2x+B cos2x=C②,其中a,b不同时为0,求证:2abA+(b2﹣a2)B+(a2+b2)C=0.【解答】证明:则①可写成cos y sin x﹣sin y cos x=0,∴sin(x﹣y)=0∴x﹣y=kπ(k为整数),∴x=y+kπ又sin2x=sin2(y+kπ)=sin2y=2sin y cos y=cos2x=cos2y=cos2y﹣sin2y=代入②,得,∴2abA+(b2﹣a2)B+(a2+b2)C=0.13.已知sin A+sin3A+sin5A=a,cos A+cos3A+cos5A=b.求证:(1)当b≠0时,tan3A=.(2)(1+2cos2A)2=a2+b2.【解答】证明:(1)sin A+sin3A+sin5A=sin A+sin5A+sin3A=2sin cos+sin3A=2sin3A•cos2A+sin3A=sin3A(1+2cos2A),∴sin3A(1+2cos2A)=a①同理有cos3A(1+2cos2A)=b②两式相除,即得tan3A=(2)∵根据(1)sin3A(1+2cos2A)=a,①cos3A(1+2cos2A)=b,②∴①2+②2sin23A(1+2cos2A)2+cos23A(1+2cos2A)2=a2+b2,∴(1+2cos2A)2(sin23A+cos23A)=a2+b2,∴(1+2cos2A )2=a 2+b 2.14.已知α、β、γ都是锐角,且cos 2α+cos 2β+cos 2γ=1,求证:.【解答】解:通过观察、联想:在长方体中,a 2+b 2+c 2=l 2⇒∵α、β、γ是锐角,∴令=cos α,=cos β,=cos γ∴tan α=,tan β,tan γ,∴tan αtan βtan γ.15.已知(﹣)2=tan 2α﹣tan 2β,求证cos θ=【解答】解:因为(﹣)2=tan 2α﹣tan 2β,所以tan 2α﹣2tan αtan βcos θ+tan 2βcos 2θ=sin 2θ(tan 2α﹣tan 2β)即:tan 2α﹣2tan αtan βcos θ+tan 2β=sin 2θtan 2α∴tan 2αcos 2θ﹣2tan αtan βcos θ+tan 2β=0即(tan αcos θ﹣tan β)2=0所以cos θ=16.已知,α、β为锐角,求证:.【解答】证明:∵α、β为锐角,sin β=,∴cos β==,tan β=,∴tan2β==,又tan α=<1,则tan (α+2β)===1,∵α+2β∈(0,),得到α+2β可以为或,根据tan α=,得到α<;tan β=,得到β<,所以α+2β=17.已知sin2(α+β)=n sin2y,且sin2y≠0n≠1,求证:.【解答】解:要证等式成立,只要证=,只要证(n﹣1)sin(α+β+y)•cos(α+β﹣y)=(n+1)sin(α+β﹣y)•cos(α+β+y),即证n{sin(α+β+y)•cos(α+β﹣y)﹣sin(α+β﹣y)•cos(α+β+y)}=即证sin(α+β﹣y)•cos(α+β+y)+sin(α+β+y)•cos(α+β﹣y),即证n sin2y=sin(2α+2β)=sin2(α+β).而n sin2y=sin2(α+β)为已知条件,故要证的等式成立.18.设θ和φ是方程a cos x+b sin x=c的二个根,且θ±φ≠2kπ(k∈Z),a、b、c≠0,求证:.【解答】解:∵θ和φ是方程a cos x+b sin x=c的二个根∴a cosθ+b sinθ=c①a cosφ+b sinφ=c②①﹣②得a(cosθ﹣cosφ)+b(sinθ﹣sinφ)=0∴﹣2a sin sin+2b cos sin=sin(b cos﹣a sin)=0∵θ±φ≠2kπ∴sin≠0∴b cos﹣a sin=0,即=③同理①+②得(a cos+b sin)cos=c④把③代入④得=故.19.已知sinθ+cosθ=a,sinθ﹣cosθ=b,求证:a2+b2=2.【解答】证明:∵sinθ+cosθ=a,sinθ﹣cosθ=b,∴a2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ,b2=sin2θ+cos2θ﹣2sinθcosθ=1﹣2sinθcosθ,∴a2+b2=1+2sinθcosθ+1﹣2sinθcosθ=2;故原式得证.20.已知α+β=,求证:sin(2α+β)tanα+cos(α+2β)cotβ=0.【解答】证明:∵sin(2α+β)tanα+cos(α+2β)cotβ=sin(α+α+β)tanα+cos(α+α+β)cotβ=cosα﹣sinβ=sinα﹣cosβ又∵α+β=∴sinα﹣cosβ=sinα﹣sin(﹣α)=sinα﹣sinα=021.已知,求证:y=x2﹣4x+5.【解答】证明:由x=2+tan得x﹣2=tan=,故(x﹣2)2====﹣1又故(x﹣2)2=y﹣1整理得y=x2﹣4x+5证毕22.已知.【解答】证明:∵∴∴====即=证毕.23.已知cot2α=1+2cot2β,求证:sin2β=2﹣2cos2α.【解答】解:cot2α=1+2cot2β可得就是cos2αsin2β﹣sin2αsin2β=2cos2βsin2α∴cos2αsin2β﹣sin2αsin2β=2(1﹣sin2β)sin2αcos2αsin2β+sin2αsin2β=2sin2α∴sin2β=2sin2α即:sin2β=2﹣2cos2α.所以等式成立.第11页(共11页)。

第三章 三角恒等变换复习-高一数学教材配套学案(人教A版必修4)

第三章 三角恒等变换复习-高一数学教材配套学案(人教A版必修4)

第三章 三角恒等变换知识④思维导图专题④综合串讲专题1三角函数式的求值【例1】已知0<α<π4,0<β<π4,且3sin β=sin (2α+β),4tan α2=1-tan 2α2,求α+β的值. 【分析】 本题主要考查三角函数式的恒等变换及已知三角函数值求角,因为2α+β=α+(α+β),β=(α+β)-α,可先将条件式3sin β=sin (2α+β)展开后求α+β的正切值.【解】∵3sin β=sin (2α+β),即3sin (α+β-α)=sin (α+β+α),整理得2sin (α+β)cos α=4cos (α+β)sin α.即tan (α+β)=2tan α.又4tan α2=1-tan 2α2, ∴tan α=2tan α21-tan 2α2=12, tan (α+β)=2tan α=2×12=1. 又0<α<π4,0<β<π4, ∴α+β∈⎝⎛⎭⎫0,π2, ∴α+β=π4. 【方法总结】三角函数式求值的类型与方法三角函数式的求值主要有三种类型:一是给角求值;二是给值求值;三是给值求角.1. 给角求值:这类题目的解法相对简单,主要是利用所学的诱导公式、同角三角函数的基本关系式、两角和与差的正弦、余弦、正切公式及二倍角公式等,化非特殊角为特殊角,在转化过程中要注意上述公式的正用及逆用.2. 给值求值:这类题目的解法较上类题目灵活、多变,主要解答方法是利用三角恒等变形中的拆角变形及同角三角函数的基本关系式,和、差、倍、半角公式的综合应用.由于此类题目在解答过程中涉及的数学方法及数学思想相对较多,因此也是平时乃至高考考查的一个热点.3. 已知三角函数值求角问题,通常分两步:(1)先求角的某个三角函数值(由题中已知名称和范围确定),确定求所求角的哪种三角函数值,要根据具体题目,结合所给角的范围确定;(2)根据角的范围确定角及角的范围.必要时,可利用值缩小角的范围.几种形式的题目本质上都是“给值求值”,只不过往往求出的值是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.【变式训练1】已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎫2α+π4的值. 【解】 ∵π2≤α<3π2,∴3π4≤α+π4<7π4. ∵cos ⎝⎛⎭⎫α+π4>0,∴3π2<α+π4<7π4. ∴sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4 =-1-⎝⎛⎭⎫352=-45. ∴cos 2α=sin ⎝⎛⎭⎫2α+π2=2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4 =1-2×⎝⎛⎭⎫352=725. ∴cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α =22×⎝⎛⎭⎫-2425-725=-31250. 专题2三角函数式的化简【例2】化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α. 【分析】本题主要考查二倍角公式,同角三角函数的基本关系及角的变换,从角的特点及内在联系上探求.π4-α与π4+α互余,可先用诱导公式减少角的种类.或π4-α与π4+α均化为α的三角函数. 【解】解法一:原式=2cos 2α-12sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·sin 2⎝⎛⎭⎫π4+α =2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·cos 2⎝⎛⎭⎫π4-α=2cos 2α-1sin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1. 解法二:原式=cos 2α2·1-tan α1+tan α(22sin α+22cos α)2 =cos 2αcos α-sin αcos α+sin α·(sin α+cos α)2=cos 2α(cos α-sin α)(cos α+sin α)=cos 2αcos 2α-sin 2α=cos 2αcos 2α=1. ,【方法总结】三角函数式化简的分类与解题技巧1.三角函数式的化简,主要有以下几类:(1)三角的和式,基本思路是降幂、消项和逆用公式;(2)三角的分式,基本思路是分子与分母的约分和逆用公式,最终变成整式或较简式子;(3)二次根式,则需要运用倍角公式的变形形式.在具体过程中体现的则是化归的思想,是一个“化异为同”的过程,涉及切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”“单角化复角”“复角化复角”等具体手段,以实现三角函数式的化简.2. 化简三角函数式时:(1)若切函数、弦函数共存时,可利用切化弦;(2)若含分式三角函数的问题,一般需分子、分母化简后出现公因式,以便于约分.【变式训练2】化简sin ⎝⎛⎭⎫α+π42cos 2α2+2sin α2cos α2-1. 【解】原式=sin αcosπ4+cos αsin π4cos α+sin α=22(sin α+cos α)cos α+sin α=22. 专题3三角恒等式的证明【例3】求证:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=tan x 2. 【分析】本题主要考查二倍角公式及其变形应用,因等式右端为tan x 2,故可将左边的角4x ,2x ,x 化为x 2的形式. 【解】∵左边=2sin 2xcos 2x 2cos 22x ·cos 2x 2cos 2x ·cos x 2cos 2x 2=2sin 2x·cos 22x·cos x 2cos 22x·2cos 2x·2cos 2x 2=sin 2x 2cos x·2cos 2x 2=2sin x 2cos x 22cos 2x 2=sin x 2cos x 2=tan x 2=右边, ∴等式成立.【方法总结】三角函数等式的证明策略三角函数等式的证明包括无条件三角函数等式的证明和有条件三角函数等式的证明.对于无条件三角函数等式的证明,要认真分析等式两边三角函数式的特点,找出差异,化异角为同角,化异次为同次,化异名为同名,寻找证明的突破口.对于有条件三角函数等式的证明,要认真观察条件式与被证式的区别与联系,灵活使用条件等式,通过代入法、消元法等方法进行证明.【变式训练3】求证:3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A .【证明】∵左边=3-4cos 2A +2cos 2 2A -13+4cos 2A +2cos 2 2A -1=⎝⎛⎭⎫1-cos 2A 1+cos 2A 2=⎝⎛⎭⎫2sin 2 A 2cos 2 A 2=(tan 2 A )2 =tan 4 A =右边.∴3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A . 专题4三角函数与平面向量的综合应用【例4】设a =(1+cos α,sin α),b =(1-cos β,sin β),c =(1,0),α∈(0,π),β∈(π,2π),a 与c 的夹角为θ1,b 与c 的夹角为θ2,且θ1-θ2=π6,求sin α-β4的值. 【分析】 利用向量的夹角公式得三角函数式,然后利用三角函数知识得出角之间的关系.【解】 由题意知|a |=(1+cos α)2+sin 2α=2cos α2, |b |=(1-cos β)2+sin 2β=2sin β2,|c |=1. 又a·c =1+cos α=2cos 2α2,b·c =1-cos β=2sin 2β2, ∴cos θ1=a·c |a||c|=cos α2,cos θ2=b·c |b||c|=sin β2. ∵α∈(0,π),∴α2∈⎝⎛⎭⎫0,π2,∴θ1=α2. 又β∈(π,2π),∴β2∈⎝⎛⎭⎫π2,π,即0<β2-π2<π2. 由cos θ2=sin β2=cos ⎝⎛⎭⎫β2-π2,得θ2=β2-π2. 由θ1-θ2=π6,得α2-⎝⎛⎭⎫β2-π2=π6, ∴α-β2=-π3,∴α-β4=-π6. ∴sin α-β4=sin ⎝⎛⎭⎫-π6=-12. 【方法总结】三角函数与平面向量的解题策略三角函数与平面向量相结合包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往比较基础,所涉及的三角函数往往是讨论三角函数的图象与性质,以及三角函数的化简、求值.【变式训练4】在平面直角坐标系xOy 中,已知向量m =(22,-22),n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 【解】(1)∵m =(22,-22),n =(sin x ,cos x ),且m ⊥n , ∴m ·n =(22,-22)·(sin x ,cos x )=22sin x -22cos x =sin ⎝⎛⎭⎫x -π4=0. 又x ∈⎝⎛⎭⎫0,π2,∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=0,即x =π4,∴tan x =tan π4=1. (2)由(1)知cos π3=m ·n |m |·|n |=sin ⎝⎛⎭⎫x -π4(22)2+(-22)2·sin 2x +cos 2x =sin ⎝⎛⎭⎫x -π4,∴sin ⎝⎛⎭⎫x -π4=12. 又x -π4∈⎝⎛⎭⎫-π4,π4,∴x -π4=π6,即x =5π12.。

三角恒等变换复习

三角恒等变换复习
2
cos cos 1 [cos( ) cos( )]
2
sin sin 1 [cos( ) cos( )]
2
(2)和差化积公式
sin sin 2sin cos
2
2
sin sin 2cos sin
2
2
cos cos 2cos cos
函数名的变化,合理选择公式进行变形,同时注意三角变换
技巧的运用.(给角求值,给值求值,给值求角)
[典例]
已知函数 f(x)=2cos2x+4
3sin
x 2cos
x 2·cos x.
(1)求函数 f(x)的最小正周期;
(2)求函数 f(x)在区间 -π6,π4上的值域.
[解]
(1)f(x)=2cos2x+4
用已知角表示.
例3 :已知 A、B、C是△ABC三内角,向量
m (1 , 3) , n (cos A , sin A) , m n 1 .
(1)求角
A;(2)若
1 sin2B cos2 B sin2
B
3
,

tanC
.
解:(1) m n 1 ,
(1 , 3 ) (cos A , sin A) 1 ,
tan( )
tan tan . 1 tan tan
tan( ) tan tan .
1 tan tan
2、辅助角公式
asin x bcosx
a
a2 b2 (
sin x a2 b2
这个公式
有什么作 用?
b cos x)
a2 b2
a2 b2 (cos sin x sin cos x)

3 sin A cos A 1 ,

三角恒等变换专题复习带答案

三角恒等变换专题复习教学目标:1、能利用单位圆中的三角函数线推导出 απαπ±±,2的正弦、余弦、正切的诱导公式;2、理解同角三角函数的基本关系式:;3、可熟练运用三角函数见的基本关系式解决各种问题; 教学重难点:可熟练运用三角函数见的基本关系式解决各种问题 基础知识一、同角的三大关系:① 倒数关系 tan α•cot α=1 ② 商数关系 sin cos αα= tan α ; cos sin αα= cot α ③ 平方关系 22sin cos 1αα+=温馨提示:1求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解;来源:学+科+网2利用上述公式求三角函数值时,注意开方时要结合角的范围正确取舍“±”号;二、诱导公式口诀:奇变偶不变,符号看象限用诱导公式化简,一般先把角化成,2k z α+∈的形式,然后利用诱导公式的口诀化简如果前面的角是90度的奇数倍,就是 “奇”,是90度的偶数倍,就是“偶”;符号看象限是,把α看作是锐角,判断角2k πα+在第几象限,在这个象限的前面三角函数的符号是 “+”还是“--”,就加在前面;用诱导公式计算时,一般是先将负角变成正角,再将正角变成区间0(0,360)的角,再变到区间00(0,180)的角,再变到区间00(0,90)的角计算;三、和角与差角公式 :sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=变 用 tan α±tan β=tan α±β1 tan αtan β四、二倍角公式:sin 2α= 2sin cos αα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-五、注意这些公式的来弄去脉这些公式都可以由公式cos()cos cos sin sin αβαβαβ±=推导出来;六、注意公式的顺用、逆用、变用;如:逆用sin cos cos sin sin()αβαβαβ±=± 1sin cos sin 22ααα=变用22cos 1cos 2αα+=22cos 1sin 2αα-= 21cos 4cos 22αα+= 七、合一变形辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式;()22sin cos αααϕA +B =A +B +,其中tan ϕB=A. 八、万能公式ααα2tan 1tan 22sin += ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=九、用αsin ,αcos 表示2tanααααααsin cos 1cos 1sin 2tan-=+=十、积化和差与和差化积积化和差 )]sin()[sin(cos sin βαβαβα-++=; )]sin()[sin(sin cos βαβαβα--+=;)]cos()[cos(cos cos βαβαβα-++=; )]cos()[cos(sin sin βαβαβα--+=.和差化积 2cos2sin2sin sin ϕθϕθϕθ-+=+2sin 2cos 2sin sin ϕθϕθϕθ-+=- 2cos 2cos 2cos cos ϕθϕθϕθ-+=+ 2sin 2sin 2cos cos ϕθϕθϕθ-+=-十一、方法总结1、三角恒等变换方法观察角、名、式→三变变角、变名、变式1 “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=α+β-β=α-β+β, 2α=α+β+ α-β, 2α=β+α-β-α,α+β=2·错误! , 错误! = α-错误!-错误!-β等.2“变名”指的是切化弦正切余切化成正弦余弦sin cos tan ,cot cos sin αααααα==, 3“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等; 2、恒等式的证明方法灵活多样①从一边开始直接推证,得到另一边,一般地,如果所证等式一边比较繁而另一边比较简时多采用此法,即由繁到简.②左右归一法,即将所证恒等式左、右两边同时推导变形,直接推得左右两边都等于同一个式子. ③比较法, 即设法证明: "左边-右边=0" 或" 错误! =1";④分析法,从被证的等式出发,逐步探求使等式成立的充分条件,一直推到已知条件或显然成立的结论成立为止,则可以判断原等式成立.例题精讲例1 已知α为第四象限角,化简:ααααααcos 1cos 1sin sin 1sin 1cos +-++-解:1因为α为第四象限角所以原式=αααααα2222cos 1)cos 1(sin sin 1)sin 1(cos --+-- ()ααααααααααsin cos cos 1sin 1sin cos 1sin cos sin 1cos -=---=--+-=例2 已知360270<<α,化简α2cos 21212121++ 解:360270<<α,02cos,0cos <>∴αα所以原式2111cos211cos 22222αα++=+21cos cos cos 222ααα+===- 例3 tan20°+4sin20°解:tan20°+4sin20°=0020cos 40sin 220sin +=0sin(6040)2sin 40cos 20-+00003340sin 403cos 20223cos 20+=== 例4 05天津已知727sin()2425παα-==,求sin α及tan()3πα+.解:解法一:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==, 解得 259sin 2=α,即53sin ±=α 由1027)4sin(=-πα可得57cos sin =-αα由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限于是53sin =α,从而5457sin cos -=-=αα 以下同解法一小结:1、本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系均含α进行转换得到.2、在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例 5 已知,,A B C 为锐角ABC ∆的三个内角,两向量(22sin ,cos sin )p A A A =-+,(sin cos ,q A A =-1sin )A +,若p 与q 是共线向量.1求A 的大小;2求函数232sin cos()2C By B -=+取最大值时,B 的大小. 解:122// 2(1)(1+)- p q sinA sinA sin A cos A ∴-=22220 120cos A cos A cos A ∴+=∴+= 1cos 2A 2∴=-0<2A<π,002A 120 A=60∴=∴200A=60 B+C=120∴ 2013y=2sin B+cos(602B)1cos 2B+cos 2B sin 2B 22-=-+31 =sin 2B cos 2B+1=sin(2B )1226π--+ , 2B B 623πππ-=当时,即=. 小结:三角函数与向量之间的联系很紧密,解题时要时刻注意例6 设关于x 的方程sinx +3cosx +a =0在0, 2π内有相异二解α、β.1求α的取值范围; 2求tan α+β的值. 解: 1∵sinx +3cosx =221sinx +23cosx =2 sinx +3π, ∴方程化为sinx +3π=-2a.∵方程sinx +3cosx +a =0在0, 2π内有相异二解, ∴sinx +3π≠sin 3π=23 .又sinx +3π≠±1 ∵当等于23和±1时仅有一解, ∴|-2a |<1 . 且-2a≠23. 即|a |<2且a ≠-3.∴ a 的取值范围是-2, -3∪-3, 2.2 ∵α、 β是方程的相异解, ∴sin α+3cos α+a =0 ①. sin β+3cos β+a =0 ②. ①-②得sin α- sin β+3 cos α- cos β=0. ∴ 2sin2βα-cos2βα+-23sin2βα+sin2βα-=0, 又sin2βα+≠0, ∴tan2βα+=33.∴tan α+β=2tan22tan22βαβα+-+=3.小结:要注意三角函数实根个数与普通方程的区别,这里不能忘记0, 2π这一条件. 例7 已知函数()x x m x f cos sin 2-=在区间⎪⎭⎫⎝⎛2,0π上单调递减,试求实数m 的取值范围.解:已知条件实际上给出了一个在区间⎪⎭⎫⎝⎛2,0π上恒成立的不等式. 任取∈21,x x ⎪⎭⎫⎝⎛2,0π,且21x x <,则不等式()()21x f x f >恒成立,即>-11cos sin 2x x m 22cos sin 2x x m -恒成立.化简得()()2112sin 2cos cos x x x x m ->- 由2021π<<<x x 可知:0cos cos 12<-x x ,所以()1221cos cos sin 2x x x x m --<上式恒成立的条件为:()上的最小值,在区间⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛--<20cos cos sin 21221πx x x x m . 由于()2sin 2cos 22sin 2sin 22cos 2sin4cos cos sin 22121212121211221x x x x x x x x x x x x x x x x +-=-+--=-- 2sin2cos 2cos 2sin 2sin 2sin 2cos 2cos 221212121x x x x x x x x +⎪⎭⎫ ⎝⎛+=2tan2tan 2tan 2tan 122121x x x x +⎪⎭⎫ ⎝⎛+=且当2021π<<<x x 时,42,2021π<<x x ,所以 12tan ,2tan 021<<x x , 从而 02tan 12tan 12tan 2tan 2tan 2tan1212121>⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x x x , 有 22tan2tan 2tan 2tan 122121>+⎪⎭⎫ ⎝⎛+x x x x , 故 m 的取值范围为]2,(-∞.基础精练1.已知α是锐角,且sin 错误!=错误!,则sin 错误!的值等于A.错误! B .-错误! C.错误! D .-错误!2.若-2π<α<-错误!,则 错误!的值是A .sin 错误!B .cos 错误!C .-sin 错误!D .-cos 错误!3.错误!·错误!等于A.-sinαB.-cosαC.sinαD.cosα4.已知角α在第一象限且cosα=错误!,则错误!等于A.错误!B.错误!C.错误!D.-错误!5.定义运算错误!=ad -bc.若cosα=错误!,错误!=错误!,0<β<α<错误!,则β等于A.错误!B.错误!C.错误!D.错误!6.已知tanα和tan 错误!-α是方程ax 2+bx +c =0的两个根,则a 、b 、c 的关系是A.b =a +cB.2b =a +cC.c =b +aD.c =ab7.设a =错误!sin56°-cos56°,b =cos50°cos128°+cos40°cos38°,c =错误!,d =错误!cos80°-2cos 250°+1,则a,b,c,d 的大小关系为A.a >b >d >cB.b >a >d >cC.d >a >b >cD.c >a >d >b8.函数y =错误!sin2x +sin 2x,x ∈R 的值域是A.错误!B.错误!C.错误!D.错误!9.若锐角α、β满足1+错误!tanα1+错误!tanβ=4,则α+β= .10.设α是第二象限的角,tanα=-错误!,且sin 错误!<cos 错误!,则cos 错误!= .11.已知sin-4πx=135,0<x<4π,求)4cos(2cos x x +π的值;12.若),0(,πβα∈,31tan ,507cos -=-=βα,求α+2β;拓展提高1、设函数fx =sin 错误!-错误!-2cos 2错误!+11求fx 的最小正周期.2若函数y =gx 与y =fx 的图像关于直线x =1对称,求当x ∈0,错误!时y =gx 的最大值2.已知向量a =cosα,sinα,b =cosβ,sinβ,|a -b|=错误!1求cosα-β的值;2若0<α<错误!,-错误!<β<0,且sinβ=-错误!,求sinα.3、求证:αβαsin 2sin )(+-2cos α+β=αβsin sin .基础精练参考答案4.C 解析原式=错误!=错误!=错误!=2×cosα+sinα=2×错误!+错误!=错误!. 5.D 解析依题设得:sinα·cosβ-cosα·sinβ=sin α-β=错误!.∵0<β<α<错误!,∴cosα-β=错误!. 又∵cosα=错误!,∴sinα=错误!.sinβ=sinα-α-β=sinα·cosα-β-cosα·sinα-β =错误!×错误!-错误!×错误!=错误!,∴β=错误!.6.C 解析tan tan()4,tan tan(),4b a c a πααπαα⎧+-=-⎪⎪⎨⎪-=⎪⎩∴tan 错误!=tan 错误!-α+α=错误!=1,∴-错误!=1-错误!,∴-b =a -c,∴c =a +b.7.B 解析a =sin56°-45°=sin11°,b =-sin40°cos52°+cos40°sin52°=sin52°-40°=sin12°,c =错误!=cos81°=sin9°,d =错误!2cos 240°-2sin 240°=cos80°=sin10°∴b >a >d >c.8.C 解析y =错误!sin2x +sin 2x =错误!sin2x -错误!cos2x +错误!=错误!sin 错误!+错误!,故选择C. 9. 错误!解析由1+错误!tanα1+错误!tanβ=4,可得错误!=错误!,即tanα+β=错误!. 又α+β∈0,π,∴α+β=错误!.10. -错误!解析:∵α是第二象限的角,∴错误!可能在第一或第三象限,又sin 错误!<cos 错误!,∴错误!为第三象限的角, ∴cos 错误!<0.∵tanα=-错误!,∴cosα=-错误!,∴cos 错误!=- 错误!=-错误!.12.解析∵),0(,πβα∈,507cos -=α∴),0,33(71tan -∈-=α),0,33(31tan -∈-=β∴),65(,ππβα∈,α+2β)3,25(ππ∈,又tan2β=43tan 1tan 22-=-ββ,12tan tan 12tan tan )2tan(-=-+=+βαβαβα,来源:Zxxk ∴α+2β=411π拓展提高参考答案1、解析 1fx =sin 错误!cos 错误!-cos 错误!sin 错误!-cos 错误!x =错误!sin 错误!x -错误!cos 错误!x=错误!sin 错误!x -错误!,故fx 的最小正周期为T =错误!=82法一:在y =g x 的图象上任取一点 x,gx,它关于x =1的对称点2-x,gx.由题设条件,点2-x ,gx 在y =fx 的图象上,从而gx =f2-x =错误!sin 错误!2-x -错误! =错误!sin 错误!-错误!x -错误!=错误!cos 错误!x +错误!,当0≤x≤错误!时, 错误!≤错误!x +错误!≤错误!,因此y =gx 在区间0,错误!上的最大值为gx max =错误!cos 错误!=错误!.法二:因区间0,错误!关于x =1的对称区间为错误!,2,且y =gx 与y =fx 的图象关于x =1对称,故y =gx 在0,错误!上的最大值为y =fx 在错误!,2上的最大值,由1知fx =错误!sin 错误!x -错误!, 当错误!≤x ≤2时,-错误!≤错误!x -错误!≤错误!,因此y =gx 在0,错误!上的最大值为gx max =错误!sin 错误!=错误!.2、解析1∵a =cos α,sinα,b =cosβ,sinβ, ∴a -b =cosα-cosβ,sinα-sinβ. ∵|a -b|=错误!,∴错误!=错误!, 即2-2cosα-β=错误!,∴cosα-β=错误!.2∵0<α<错误!,-错误!<β<0,∴0<α-β<π,∵cosα-β=错误!,∴sinα-β=错误! ∵sin β=-错误!,∴cosβ=错误!,∴sinα=sinα-β+β=sinα-βcosβ+cosα-βsinβ=错误!·错误!+错误!·-错误!=错误!。

三角恒等变换(复习)

三角恒等变换(复习)【学习目标】1.掌握两角和与差的正弦、余弦、正切公式及二倍角公式的推导,并了解公式间的联系2.掌握三角恒等变换的方法;3.会利用三角恒等变换解决三角函数问题。

【重点、难点】灵活的运用三角公式进行三角恒等变换解决三角函数问题。

【知识梳理】1、sin() =sin()=__________________cos()cos()_________________tan()tan()__________________sin 2=cos2==__________2、公式变形:tan tan tan 1 tan tan 。

3、常值变换:如1sin 2 x cos2 x ; 1tan ; 1 sin cos 0等,42(sin x cos x) 2 1 2sin x cos x 1 2sin 2x4、巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()(),2() () , 2() () ,2,2 222等),5、辅助角公式: a sin x b cosx a2b(2 sin( x ) 其中φ角所在的象限a b 的符号确定,φ角的值由tan b确定)由,a6、三角函数次数的降升:降幂公式:cos21cos2, sin 2 1 cos 2;22升幂公式: 1 cos 22cos2, 1cos 22sin 2。

【课前自测】1、 cos150 cos30 0sin15 0 sin 300 _____sin83 0cos230cos830sin 230_____2、tan200 tan4003 tan 200 tan400 ____1 tan150____3、 1 tan154、下列各式中,值为1的是2A sin15 cos15B cos 2 sin 2Ctan 22.5 D 1 cos3012121 tan2 22.525、已知tan3,则2sin coscos2____4【例题讲解】例 1、已知 sin12,cos()4 , 和 均为锐角,求 cos135变式、 已知 0,且 cos( ) 1, sin(2)2,求2293cos( ) .例 2、 ( 1) .函数 f ( x)sin x 3 cos x 的最大值 ,最小值 。

必修4第三章--三角恒等变换复习(学生用)

7. 函数 的图像的一条对称轴方程是 ( )
A、 B、 C、 D、
9. 已知 ,则 的值为 ( )
A、 B、 C、 D、
二、填空题10. =____________
12.已知 ,则 的值为
`
三、解答题
14.(本题满分12分)已知 ,且 ,求 的值。
15.(本题满分14分)已知α为第二象限角,且sinα= 求 的值.
;;

3.半角公式(扩角降幂公式)
;
;
.
4.三角函数式的化简

常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
5.辅助角公式

题型5:三角函数求值
例7.已知函数 .
(1)求 的最小正周期;(2)当 时,求 的最小值以及取得最小值时x的集合.
)
A层拓展提升:求 那么 的值
@
^
四、达标检测
一、选择题
1. 已知 ,则 的值为( )
A. B. C. D.
2.在 则这个三角形的形状是( )
%
A.锐角三角形B.钝角三角形 C.直角三角形D.等腰三角形
三角恒等变换
一.基本要求:
1.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;
2.能运用上述公式进行简单的恒等变换(包括引导导出积1.两角和与差的三角函数
;;


2.二倍角公式(缩角升幂公式)
16、(本题满分14分)已知函数 的最大值是2,试确定常数 的值.

三角恒等变换和三角函数性质专题

三角恒等变换和三角函数 性质专题
知识梳理 1.正弦、余弦、正切函数图像与性质
函数
y=sinx
y=cosx
y=tanx
图像
定义域 值域 奇偶性 最小正周期
单调性
R
[-1,1] 奇函数 2π
在[-������+2kπ,������+2kπ](k∈Z)上递增.
2
2
在[������+2kπ,3������+2kπ](k∈Z)上递减
2
x=-������+2kπ,k∈Z时,y取得最小值-1
2
x=2kπ,k∈Z时,y取得最大值1. 无最值
x=π+2kπ,k∈Z时,y取得最小值-1
对称中心:(kπ,0)(k∈Z). 对称轴:x=������+kπ(k∈Z)
2
对称中心:(������+kπ,0)(k∈Z).
2
对称轴:x=kπ(k∈Z)
2
2
R [-1,1] 偶函数 2π
在[-π+2kπ,2kπ](k∈Z)上递增. 在[2kπ,π+2kπ](k∈Z)上递减
{x|x≠������+kπ,k∈Z}
2
R 奇函数 π
在 ( - ������ + kπ , ������ + kπ)(k ∈ Z)
2
2
上递增
最值 对称性
x=������+2kπ,k∈Z时,y取得最大值1.
例4.已知f ������
= sin
������
+
������ 6
+ sin
������

������ 6
+������������������������ + ������的最大值为1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与解三角形(3)
------主要题型
热点1 三角函数的图象与性质
要进行五点法作图、图象变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换.
类型一:能化为形如
sin()y A x k ωϕ=++(或cos()y A x k ωϕ=++或tan()y A x k ωϕ=++)的形式
案例1.已知函数
2()cos sin())3f x x x x x R π=∙+∈
(Ⅰ)若02
π
α
<<
,且sin α=
()f α; (Ⅱ)求
()f x 的最小正周期与函数的单调区间;
(Ⅲ)求()f x 在区间[,]44
ππ
-上的最大值和最小值
案例1的引申(一)已知函数())f x x ωϕ+(0,)2
2
π
π
ωϕ>-
≤<
的图象关于直线3
x π
=
对称,且图象上相邻两个
最高点的距离为π
(Ⅰ)求ω和ϕ的值; (Ⅱ)若()2f α=
2()6

πα<<,求3cos()2πα+的值
案例1的引申(二)已知向量(,cos2)a m x =,(sin 2,)b x n =,函数()f x a b =∙,且()y f x =的图象过点(
12
π
和点
2(
,2)3
π
- (Ⅰ)求m ,n 的值; (Ⅱ)将
()y f x =的图象向左平移(0)ϕϕπ<<个单位后得到函数()y g x =的象图,若()y g x =图象上各最高点到点(0,3)
的距离的最小值为1,求()y g x =的单调递增区间
类型二:不能转化为类型一而要转化为形如2sin sin y a x b x c =++
(或
2cos cos y a x b x c =++或2tan tan y a x b x c =++)型。

案例2.(2014年天津卷15)已知函数
2()2cos2sin 4cos f x x x x =+-
(Ⅰ)求()3
f π
的值; (Ⅱ)求()f x 的最大值和最小值。

总结:(一)凡涉及到三角函数中求周期、最值、单调性、解不等式、方程等问题,一般要转化为类型一。

像这类题主要涉及到的知识点有: ①
sin()sin cos cos sin αβαβαβ
±=±;
cos()cos cos sin sin αβαβαβ
±=的展开或逆用;②
1
sin cos sin 22
x x x
=;
22cos sin cos 2x x x -=;
21cos 2sin 2
x
x -=

21cos 2cos 2
x
x +=
;442222cos sin (cos sin )(cos sin )cos2x x x x x x x
-=+-=;
4422222211cos 4cos sin (cos sin )2cos sin 1sin 2124
x
x x x x x x x -+=+-=-=-





sin cos )a x b x x ϕ+=+或sin cos )a x b x x ϕ+=+的形式,其中ϕ为辅助角,通常ϕ取特
殊角,即两角和与差的正、余弦展开式的“逆用”;④注意角的二倍的相对性;⑤注意换元或整体思想的转化。

(二)像这类是复合型的二次函数,利用二次函数的单调性即可求解,解决这类题主要知识点是利用:2
2sin
cos 1x +=与
22cos212sin 2cos 1x x x =-=-变形互化。

转化为正弦或余弦或正切作为整体的复合型二次函数
热点2 解三角形
从近几年全国卷来看,高考命题强化了解三角形的考查力度,着重考查正弦定理、余弦定理的综合应用,求解的关键是实施边角互化,同时结合三角恒等变换进行化简与求值.
1.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin B
sin C ;
(2)若AD =1,DC =2
2,求BD 和AC 的长.
2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin 2B =3b sin A . (1)求B ;
(2)若cos A =1
3,求sin C 的值.
2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c , 已知2cos 2
A
2
+()cos B -3sin B cos C =1.
(1)求角C 的值;
热点3 三角恒等变换与解三角形的综合问题
以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.
1.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫
x +π4.
(1)求f (x )的单调区间;
(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫
A 2=0,a =1,求△ABC 面积的最
大值.
2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a +b c =cos (A +C )
cos C
. (1)求角C 的大小;
(2)若c =3,求使△ABC 周长最大时a ,b 的值.
补充训练:
3.设向量(
)
()3sin cos cos cos a x x b x x =
=,,,,记()f x a b =⋅.
⑴求函数()f x 的最小正周期;
⑵画出函数()f x 在区间111212ππ⎡⎤
-⎢⎥⎣⎦
,的简图,并指出该函数的图象可由()sin R y x x =∈的图象经过怎样的平移和伸
缩变换得到?
⑶若63ππx ⎡⎤
∈-⎢⎥⎣⎦
,,函数()()g x f x m =+的最小值为2,试求出函数()g x 的最大值并指出x 取何值时,函数()g x 取
得最大值.。

相关文档
最新文档