北师大版高中数学必修三第一章统计§1
新版高中数学北师大版必修3课件:第一章统计 1.1

随堂演练
1234
随堂演练
3.为了了解某地参加计算机水平测试的5 000名学生的成绩,从中抽 取了200名学生的成绩进行统计分析,在这个问题中,总体是 . 答案:参加计算机水平测试的5 000名学生的成绩
§1 从普查到抽样
-1-
目标导航
1.了解普查的意义. 2.结合具体的问题情境,理解抽样的必要性和重要性.
知识梳理
1.普查 普查是指一个国家或一个地区专门组织的一次性大规模的 全面调查,目的是详细地了解某项重要的国情、国力.当普查的对 象很少时,普查无疑是一项非常好的调查方式.当普查的对象很多 时,普查的工作量就很大,要耗费大量的人力、物力与财力,并且组 织工作繁重、时间长.更值得注意的是,在很多情况下,普查工作难 以实现. 【做一做1】 下列调查中,必须采用普查的是( ) A.调查某品牌电视机的市场占有率 B.调查某电视连续剧在全国的收视率 C.调查高一(1)班的男女同学的比例 D.调查某型号炮弹的射程 答案:C
方案二:抽样调查.普查不一定能实现,因为有个别学校由于各种 原因不能完成体检,而全校班级很多,情况也不相同,要得到较准确 的数据,可以到学校找出学生的学籍号,每隔一定的人数抽出一名 进行调查,这样抽出的样本才会有代表性.(答案不唯一)
典例透析
题型一
题型二
题型三
题型四
易错辨析
易错点:因对总体、个体、样本的理解不透而致错 【例4】 为了调查参加运动会的1 000名运动员的平均年龄,从中
【高中课件】北师大版必修3高中数学第一章统计整合课件ppt.ppt

②样频本数容量=频率,此关系式的变形为频频数率=样本容量,样本容量×频率= 频数.
专题一 专题二 专题三
(2)对于样本数据较少,且分布较为集中的一组数据:若数据是两位整 数,则将十位数字作茎,个位数字作叶;若数据是三位整数,则将百位、十位数 字作茎,个位数字作叶.样本数据为小数时做类似处理.
轿车 A 轿车 B 轿车 C
舒适型 100
150
z
标准型 300
450
600
按类用分层抽样的方法在这个月生产的轿车中抽取 50 辆,其中有 A 类 轿车 10 辆.
(1)求 z 的值; (2)用分层抽样的方法在 C 类轿车中抽取一个容量为 5 的样本.
专题一 专题二 专题三
解:(1)设该厂本月生产轿车 n 辆,由题意得5������0 = 1001+0300,所以 n=2 000, 则 z=2 000-100-300-150-450-600=400.
+
(������2-������)2
+
…
+
(������������ -������)2]
意义:标准差和方差都是描述一组数据围绕平均数波动的程度的量,方差越小,数据越稳定;方差越大,
数据波动越大.
定义:散点图中的点分布在一条直线附近
相关关系
线性相关
回归方程������ = ������������ + ������
折线统计图:清晰地反映数据的变化情况
扇形统计图:清楚地表示各部分在总体中所占的百分比
统计图表
频率分布表:明晰表达频率分布情况的表格
频率分布直方图:每个小矩形的面积是相应各组的频率
2019-2020学年北师大版高中数学必修三课件:第1章 统计1-3

第17页
【解析】 用甲、乙两组成绩的十位数字表示茎,竖线左边 表示甲组成绩的个位数字,竖线右边表示乙组成绩的个位数 字.茎叶图如图所示.
从上面的茎叶图看,甲组成绩较集中,即甲组成绩更整齐一 些.
第18页
探究 2 (1)茎叶图适用于样本数据较少,且数位基本相同的 情形,三位数以上的数据不太方便,当叶中数据重复时,一定要 重复记录.
§3 统 计 图 表
第1页
要点 1 条形统计图、折线统计图、扇形统计图 (1)条形统计图:用一定单位长度表示一定的数量,并根据 数量的多少画出___长_短__不_同__的__直_条___,然后把这些直条按一定的顺 序排列起来.
第2页
(2)折线统计图:用一定单位长度表示一定的数量,并根据 数量的多少描出__各_点___,然后把各点用线段顺次连接起来,形成 折线,用__折__线_的__升__降__来表示数量之间的关系及变化趋势.
(2)茎叶图由所有数据构成,没有损失任何样本信息.可以 在抽样过程中随时记录,特别适合体育活动中的数据统计.
第19页
思考题 2 在某电脑杂志上的一篇文章,每个句子的字数 如下所示:
10,28,31,17,23,27,18,15,26,24,20,19,36, 27,14,25,15,22,11,24,17.
由图知,甲博客更受欢迎.
第24页
探究 3 根据需要选取合适的统计图表. 思考题 3 有两位射击运动员,在一次射击比赛中各射靶
10 次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 你能根据以上数据分析两位运动员的水平吗?
第25页
北师大版高中数学必修3课件1.3统计图表课件(数学北师大必修3)

请你用适当的方式统计上述数据,然后加以分析比较。
北京师范大学出版社 高二 | 必修3
(三)、探究:茎叶图 甲
8 6 5 8 8 4 0 7 5 0 0 2 0 0 1 2 3 0 0 1 2 2 2 8 3 4 3 4 7 8
乙
3
1
8
4
5
2
3
8
北京师范大学出版社 高二 | 必修3
茎叶图:
当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两
北京师范大学出版社 高二 | 必修3
小结 1.求极差 2.决定组距与组数
频率分布直方图 应用
步骤
3.将数据分组 4.列频率分布表
5.画频率分布直方图
特点:折线统计图能够清晰的反映数据的变化趋势或情况。
注意:折线统计图是把条形统计图各个长方形上边的中点用线段连接
起来得到的。
北京师范大学出版社 高二 | 必修3
制作折线统计图的步骤:
1、根据图纸大小,画出两条互相垂直的射线。(注意:水平射线的下方和竖直 射线左边须留有一定的空白,注明直条数量和统计的内容) 2、适当分配各点在横轴的位置,确定各点的间隔。 3、在纵轴上根据数量的大小确定单位长度。 4、根据数量的大小描出各点,然后把各点用线段 顺次连接起来,形成折线。
北京师范大学出版社 高二 | 必修3
制作扇形统计图的步骤:
1、画一个圆。 2、按各组成部分所占比例算出各个扇形的圆心角度数。 3、根据算出的各圆心角的度数画出各个扇形,并标明相应的百分比,
各比例的名称可以注明在图上,也可以用图例标明。
(注意:各扇形可以用不同颜色表示,也可以用斜线、网状等不同线形 表示)
北京师范大学出版社 高二 | 必修3
北师大版高中数学必修三第一章统计§1.docx

高中数学学习材料鼎尚图文*整理制作第一章统计§1从普查到抽样课时目标 1.了解普查与抽样调查的概念.2.明确普查与抽样调查的优缺点.1.统计的概念统计是研究如何合理收集、整理、分析数据的学科.2.普查(1)定义:普查是指一个________或一个________专门组织的__________大规模的全面调查,目的是为了详细地了解________重要的国情、国力.(2)普查的主要特点:①所取得的资料更加全面、________;②主要调查在特定时段的社会经济现象总体的________.(3)普查的对象________时,普查无疑是一项非常好的调查方式.3.抽样调查(1)定义:通常情况下,从调查对象中______________抽取一部分,进行__________,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查,其中,调查对象的全体称为________,被抽取的一部分称为________.(2)抽样调查最突出的优点①____________.②______________________.一、选择题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是()A.200个表示发芽天数的数值B.200个球根C.无数个球根发芽天数的数值集合D.无法确定2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是()A.40 B.50C.120 D.1503.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是1004.若要调查某城市家庭的收入情况,在该问题中,总体是()A.某城市B.某城市的所有家庭的收入C.某城市的所有人口D.某城市的工薪阶层5.对于下列调查:①测定海洋中微生物的含量;②某种灯泡使用寿命的测定;③入学报考者的学历调查;④全国人口普查.其中不属于样本调查的是()A.①②B.③④C.②③D.①④6.下列调查,比较适用普查而不适用抽样调查方式的是()A.为了了解中央电视台春节联欢晚会的收视率B.为了了解初三年级某班的每个学生周末(星期六)晚上的睡眠时间C.为了了解夏季冷饮市场上一批冰淇淋的质量情况D.为了考察一片试验田某种水稻的穗长情况题号123456答案二、填空题7.抽样调查一定要保证________原则,尽可能地避免人为因素的干扰,并且要保证每个个体以相同的可能性被抽取到.8.(1)对某班学生视力作一个调查;(2)某汽车生产厂要对所生产的某种品牌的轿车的抗碰撞情况进行检验;(3)联合国教科文组织要对全世界适龄儿童的入学情况做一个调查.对于上述3个实际问题所应选用的调查方法分别为__________、____________、____________.9.某公司新上市一款MP4,为了调查产品在用户中受欢迎的情况,采用什么形式调查为好____________(填“普查”或“抽样调查”).三、解答题10.儿童的喂养及辅食添加是影响儿童生长发育、身体健康的重要因素,喂养不当及辅食添加不正确,容易导致儿童贫血及其他疾病,影响儿童生长发育.为了了解农村儿童的喂养、辅食添加情况、发现存在的问题、确定儿童的喂养及辅食添加的促进措施,欲在该地农村进行一次农村3岁以下儿童的喂养、辅食添加情况和贫血相关因素的调查研究.请给出一个合理的调查方案.(该地区共10个县)11.为调查小区平均每户居民的月用水量,下面是2名同学设计的方案:学生甲:我把这个用水量调查表放在互联网上,只要登陆网站的人就可以看到这张表,他们填的表可以很快地反馈到我的电脑中,这样就可以很快估算出小区平均每户居民的月用水量;学生乙:我给我们居民小区的每一个住户发一张用水调查表,只要一两天就可以统计出小区平均每户居民的月用水量.请你分析上述2名学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?能力提升12.春节前夕,质检部门检查一箱装有2 500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是()A.总体是指这箱2 500件包装食品B.个体是一件包装食品C.样本是按2%抽取的50件包装食品D.样本容量是5013.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.校医务室若从高一年级中抽取50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果会怎样?该问题中的总体和样本是什么?普查与抽样调查是我们调查问题常用的方法,它们各有优缺点.普查一般适用于:总体容量不大,要获取详实、系统和全面的信息;而抽样调查一般适用于:大批量检验,且检验对检验对象具有破坏性.答案知识梳理2.(1)国家地区一次性某项(2)①系统②数量(3)很少 3.(1)按照一定的方法调查或观测总体样本(2)①迅速、及时②节约人力、物力和财力作业设计1.A2.C[由于样本容量即样本的个数,抽取的样本的个数为40×3=120.]3.D[此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.] 4.B 5.B 6.B7.随机性8.普查抽样调查抽样调查9.抽样调查10.解可采用如下抽样:先从该地区10个县中随机抽取4个县,再在随机抽取的各县中随机抽取5个乡(镇),在随机抽取的乡(镇)中再随机抽取5个行政村,在被抽中的行政村中各抽取24户有3岁以下儿童的住户,在样本户的3岁以下儿童中随机抽取1名儿童.当抽样村符合要求的家庭不足24户时,将其全部调查,不够的户在邻村补齐(邻村是指距离最近的非抽样村).(根据实际情况,也可有其他合理的抽样)11.解学生甲的方法得到的样本不能够反映不上网的居民的用水情况,它是一种方便样本,所得到的样本代表性差,不能很准确地获得平均每户居民的月用水量;学生乙的方法实际上是普查,花费的人力、物力更多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量.12.D[质检部门关心的是食品的质量,所以质检部门检查的也是食品的质量,得到的数据也是食品的质量.因此,无论总体还是个体还是样本都是指食品的质量,故A、B、C错.]13.解由于学生的身高会随着年龄的增长而增高,校医务室想了解全校高中学生的身高情况,在抽样时应当关注高中各年级学生的身高,并且还要分性别进行抽查.如果只抽取高一的学生,结果一定是片面的.这个问题涉及的调查对象的总体是某校全体高中学生的身高,其中准备抽取的50名学生的身高是样本.。
新版高中数学北师大版必修3课件:第一章统计 1.3.2

知识梳理
(2)折线统计图:折线统计图是在直角坐标系中用点表示各种情况 的数据后,通过用直线段连接相邻点形成的一条折线,用折线表示 数据的一种统计图.折线统计图不仅可以表示数量的多少,还直观 地反映了数量的增减情况,变化趋势.由于画折线统计图时要描点, 因此总体所分的情况不宜太多,否则比较麻烦.一般来说,折线统计 图与条形统计图的作用比较相近,优缺点也相近.
题型一
题型二
典例透析
解:(1)作出茎叶图如图所示,其中中间的数字表示每株树苗高度 的十位数,两边的数字分别表示个位数.
(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且 可以看出每组中的具体数据.
(3)通过观察茎叶图,可以发现甲批树苗比乙批树苗的高度整齐.
题型一
题型二
典例透析
反思茎叶图在样本数据较少、数值相对集中,且数据有两位有效数 字时比较适用.画茎叶图时,叶只有一位数,一般左侧的叶按照从大 到小的顺序写,右侧的叶按照从小到大的顺序写,相同的数据要重 复记录,不能遗漏.
1234
随堂演练
3.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从 该图中得到( ) A.条形统计图 B.茎叶图 C.扇形统计图 D.折线统计图 答案:B
1234
4.数据8,51,33,39,38,23,26,28,13,16,14的茎叶图是 ( )
随堂演练
答案:A
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
试用茎叶图表示以上数据. 错解:茎叶图如图所示.
题型一
题型二
典例透析
错因分析:一般地,茎应按从小到大的顺序从上往下写,仅有个位 数的,十位数字写0.重复出现的数字要重复写.
高中数学 第一章 统计教案 北师大版必修3
第一章统计§1从普查到抽样(教师用书独具)●三维目标1.知识与技能(1)了解并掌握:普查、抽样调查、总体、样本、个体这些基本概念.(2)在调查中,会选择合理的调查方式.2.过程与方法(1)初步经历数据的收集、处理过程,发展学生初步的统计意识和数据处理能力.(2)通过数据收集的学习,培养学生应用、分析、判断能力.3.情感、态度与价值观(1)通过小组合作调查研究,培养学生的合作意识和处理问题的能力.(2)通过解决身边的实际问题,让学生认识数学与人类生活的密切联系及对人类历史发展的作用.●重点难点(1)掌握普查与抽样调查的区别与联系.(2)掌握总体、样本及个体间关系.(3)获取数据时,选择哪种调查方式较好,何时用普查,何时用抽样调查,并能说明理由 .(4)应用意识的培养,设计方案教学时要注意初高中知识的链接,抓住知识的切入点,从学生原有的认知水平入手,逐步引入、渗透、将重、难点逐一化解.(教师用书独具)●教学建议高中统计的学习,是在初中统计的基础上的深化与延伸.在教学中,引导学生复习初中统计学习的内容,在此基础上对高中统计学习的主要内容和重点给出学生做分析,以此从整体上把握本章的内容.充分分析和利用教材的实例,指导学生认识到抽样调查的必要性.围绕问题,让学生讨论如何进行抽样才能使得样本具有代表性.●教学流程设置情境,提出如人口普查,收视调查等问题,引发学生的兴趣和问题意识⇒引导学生明确普查与抽样的必要性,掌握普查与抽样调查的区别与联系⇒通过例1及变式训练,使学生理解总体、样本等概念,突出了重点⇒通过例2及变式训练,使学生掌握调查方式的选取,选择普查还是抽样调查的关键是什么,从而强化了重点⇒通过例3及变式训练,使学生学会调查方案的设计,获得运用数学方法探索问题和解决问题的途径,突破难点⇒课堂小结,总结升华,让学生对知识有一个系统的认识,突出重点,抓住关键⇒完成当堂双基达标检测落实各个知识点,突出重点,强化难点课标解读1.了解普查的意义和抽样调查的概念,理解抽样调查的必要性和重要性(重点).2.体会普查和抽样调查的各自的优点和区别,会对一些实际问题进行合理的抽样调查.(难点).普查【问题导思】1.我国常进行的普查有哪些?(举例)【提示】人口普查、农业普查、工业普查等.2.普查还被称作什么调查?【提示】整体调查或全面调查.普查是为了了解总体的一般情况,对所有的对象都无一例外地进行调查,也称整体调查或全面调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.当普查的对象很多时,普查的工作量就很大,要耗费大量的人力、物力与财力,并且组织工作繁重、时间长.更值得注意的是,在很多情况下,普查工作难以实现.抽样调查继“三聚氰胺”、“瘦肉精”、“染色馒头”等国内食品安全事件的不断曝光,食品安全问题越业越受到人们的关注,也得到各级政府部门的重视.食品质量检测人员对某品牌牛奶的抽检合格率是99.9%,你知道这一数据是怎么得到的吗?【提示】检测人员是不可能逐个检查的,是抽取少量的牛奶来检查得到的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查,其中,调查对象的全体称为总体,被抽取的一部分称为样本.普查与抽样调查的比较调查方法特点普查抽样调查优点①所取得的资料更加全面、系统;②调查特定时段的总体的信息①迅速、及时;②节约人力、物力、财力,对个体信息的了解更详细缺点耗费大量的人力、物力、财力获取的信息不够全面、系统适用范围总体容量不大,要获取详实、系统、全面的信息①大批量检验;②破坏性检验;③不必要普查等总体、样本等概念辨析题2013年某部门从某校高三1 256名学生中抽取300名学生进行身高的统计分析.下列说法正确的是( )A.1 256名学生是总体B.每个被抽取的学生是个体C.抽取的300名学生的身高是一个样本D.抽取的300名学生的身高是样本的容量【思路探究】对照总体、个体、样本及样本的容量的概念加以判断.【自主解答】研究的对象是学生的身高情况,故总体为1 256名学生的身高,样本容量为300,个体为每个被抽取的学生的身高,综上,C正确.【答案】 C解决此类问题的关键是分清有关概念:总体是研究对象的全体,总体中的所有个体数目为总体容量,组成总体的每个对象称为个体,从总体中抽取若干个个体称为样本,样本中个体的个数称为样本容量,要弄清概念的实质.现从80件产品中随机抽出20件进行质量检验.下列说法正确的是( ) A.80件产品是总体B.20件产品是样本C.样本容量是80 D.样本容量是20【解析】总体是80件产品的质量,样本是抽取的20件产品的质量,总体容量是80,样本容量为20.【答案】 D调查方式的选取标检验,应当选用何种调查方式?为什么?【思路探究】从调查所需时间和费用,以及是否具有破坏性考虑选择何种调查方式.【自主解答】应该用抽样调查的方法对该批小包装饼干进行卫生达标检验.采用普查的方法来检验食品是否卫生达标是不合适的,因为这里检查的目的是决定是否让这批小包装饼干出售,而普查的结果却使得这批小包装饼干完全不能出售,与检查的目的相违背.一般地,如果检验具有破坏性,则需要通过抽样调查来推断总体的特征.1.对总体进行调查,选择普查还是抽样调查关键是看调查的目的和两种调查方式的各自特点.2.一般地,总体数较多或调查中对产品具有破坏性时,多采用抽样调查.3.很多情况下,普查难以实现,在通常情况下,总是通过抽样调查来代替普查.假如你是某印刷厂的一名质检人员,负责对《新坐标》的印刷质量进行检查.你应该采用“普查”还是“抽样调查”,试说明理由.【解】如果对每一份《新坐标》都进行检查在理论上是可行的,但是实际上是不可行的.《新坐标》单科的发行量都在100万册以上,若普查要浪费大量的人力和物力,得不偿失,故应采取抽样调查的方式检查图书的印刷质量.调查方案的设计下面是三位同学为电视台设计的调查方案:同学A:我把这张《春节联欢晚会收视率调查表》放至互联网的某网站上,只要上网登录该网站的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中,这样我就可以很快地统计出收视率了.同学B:给我们居民小区的每一个住户发一个是否在除夕晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选取一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三位同学设计的调查方案是否能获得比较准确的收视率?为什么?【思路探究】判断A,B,C三位同学的设计调查方案是否能获得较准确的收视率,关键是看他们的样本是否具有代表性,即看每个个体被抽到的机会是否相同.【自主解答】调查的总体是所有可能看电视的人群.同学A的设计方案考虑的人群是上网且登录某网站的人群,那些不能上网或不登录该网站的人就排除在外,故用此方法抽取的样本代表性差.同学B的设计方案考虑的人群是小区居民,有一定的片面性,故抽取的样本代表性差.同学C的设计方案考虑的人群是那些有电话的人群,有一定的片面性,因此抽取的样本代表性差.总之,这三种调查方案都有一定的片面性,不能得到比较准确的收视率,他们获得的样本代表性差.1.在统计活动中,需要对统计方案进行仔细的设计,以避免一些外界因素的干扰或人为因素的影响.2.根据调查问题的特点设计抽样调查的不同方案,应遵循的原则是:抽取的部分个体具有广泛的代表性,能很好的代表总体,否则调查结果与实际情况不相符.2013年春季,某知名的全国性服装连锁店进行了一项关于当年秋季服装流行色的民意调查,调查者通过向顾客发放饮料,并让顾客通过挑选饮料瓶的颜色来对自己喜欢的服装颜色“投票”,根据这次调查结果,在某大城市A,服装颜色的众数(大多数人的选择)为红色,而当年全国服装协会发布的是咖啡色,这个结果是否意味着A城市的人比其他城市的人较少倾向于选择咖啡色?你认为这两种调查的差异是由什么引起的?【解】这个结果意味着A城市中,光顾这家服装连锁店的人比其他城市的人较少倾向于选择咖啡色.由于光顾服装连锁店的人是一种比较容易得到的样本,不一定能代表A城市其他人群的想法,而A城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点,从而带来了调查结果的差异.概念模糊致误(2013·合肥检测)从某年级的1 000名学生中抽取125名学生进行体重的统计分析.下列说法正确的是( )A.1 000名学生是总体B.每个被抽查的学生是个体C.抽查的125名学生的体重是一个样本D.抽取的125名学生的体重是样本容量【错解】 B【错因分析】不清楚抽样调查的是学生的体重而不是学生.【防范措施】 1.正确理解总体、样本、样本容量、个体的定义.2.仔细审题,分析好各个选项.【正解】 C选择普查还是抽样调查的依据是调查的目的以及两种调查方式优缺点的比较,一般来说对于必须全部检验的问题一定要用普查的方法;若调查具有一定的破坏性或难度相当大,可以用抽样调查的方法.1.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是( )A.40 B.50C.120 D.150【解析】每班3人,共40个班.故样本中的个体数为3×40=120.即样本容量为120.【答案】 C2.下列调查时,必须采用“抽样调查”的是( )A.调查某城市今年7月份的温度变化情况B.调查某一品牌5万包袋装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班50名学生100米短跑的成绩【解析】检查袋装鲜奶的质量,具有破坏性,不宜用普查方式.【答案】 B3.为了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是( )A.总体 B.总体容量C.总体的一个样本 D.样本容量【解析】200个零件的长度为总体的一个样本.【答案】 C4.有人说“如果抽样方法设计得好,对样本进行视力调查与对24 300名学生进行视力普查的结果会差不多,而且对于教育部门掌握学生视力状况来说,因为节省了人力、物力和财力,抽样调查更可取”,你认为这种说法有道理吗?为什么?【解】这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查的结果接近于普查的结果,因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.一、选择题1.为了了解某地参加计算机水平测试的5 000名学生的成绩,从中抽取了200名学生的成绩进行统计分析,在这个问题中5 000名学生成绩的全体是( )A.总体B.个体C.从总体中抽取的一个样本D.样本的容量【解析】依据抽样调查的要求可知选A.【答案】 A2.抽样调查在抽取调查对象时( )A.按一定的方法抽取B.随便抽取C.全部抽取D.根据个人的爱好抽取【解析】根据抽样调查的要求,可知选A.【答案】 A3.下列调查方式合适的是( )A.要了解一批电视机的使用寿命,采用普查方式B.要了解收看中央电视台的“法制报道”栏目的情况,采用普查方式C.要保证“神舟十号”载人飞船发射成功,对重要零件采取抽查方式D.要了解外国人对“上海世博会”的关注度,可采取抽样调查方式【解析】检测电视机的寿命,具有破坏性,不宜用普查方式,故A不正确;由于收视观众较多,分布广,所以B不正确;对于“神舟十号”重要零件,数量不大,且至关重要,所以适合普查,因此C不正确;故选D.【答案】 D4.(2013·南昌检测)下列调查中属于抽样调查的是( )①每隔5年进行一次人口普查;②某商品的质量优劣;③某报社对某个事件进行舆论调查;④高考考生的身体检查.A.②③B.①④C.③④ D.①②【解析】①④为普查,②③为抽样调查.【答案】 A5.下面问题可以用普查的方式进行调查的是( )A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.检验10件产品的质量D.检验一批汽车的使用寿命【解析】A不能用普查的方式调查,因为这种试验具有破坏性;B用普查的方式无法完成;C可以用普查的方式进行调查;D该试验具有破坏性,且需要耗费大量的时间,在实际生产中无法应用.【答案】 C二、填空题6.为了准确调查我国某一时期的人口总量、人口分布、民族人口、城乡人口、受教育的程度、迁徒流动、就业状况等多方面的情况,需要用________的方法进行调查.【解析】要获得系统、全面、准确的信息,在对总体没有破坏的前提下,普查无疑是一个非常好的方法,要求全面、准确调查人口的状况,应当用普查的方法进行调查.【答案】普查7.检验员为了检查牛奶中是否含有黄曲霉素MI,应采用________的方法检验.【解析】这是大批量的破坏性检验,不可能进行普查,应当采取抽样调查的方法检验.【答案】抽样调查8.为了了解某班学生的会考合格率,要从该班70人中选30人进行考察分析.在这个问题中,70人的会考成绩的全体是________,样本是________,样本容量是________.【解析】由总体、样本、样本容量的定义知:70人的会考成绩的全体是总体,样本是30人的会考成绩.样本容量是30.【答案】总体30人的会考成绩30三、解答题9.某市有7万名学生参加学业水平测试,要想了解这7万名学生的数学成绩,从中抽取了1 000名学生的数学成绩.(1)在此项调查中总体是什么?(2)在此项调查中个体是什么?(3)在此项调查中样本是什么?(4)在此项调查中样本容量是什么?【解】(1)总体是7万名学生的数学成绩.(2)个体是7万名学生中每一名学生的数学成绩.(3)样本是从7万名学生的数学成绩中抽取1 000名学生的数学成绩.(4)样本容量是1 000.10.某县有在校高中生6 400人,初中生30 200人,小学生30 300人.该县电教站为了了解本县对计算机的推广及学生掌握的熟练程度,该部门应如何抽取样本?【解】因为影响学生计算机知识的掌握及使用情况的因素是多方面的,不同的乡镇,不同的学校,办学条件也不同,因此在进行抽样时,宜将学生按城、乡及高中、初中、小学分别抽样.另外,三类学生人数相差较大.因此,为了提高样本的代表性,还应考虑他们在样本中所占的比例大小.11.你的班主任想全面了解你班学生的学习和思想状况.请你帮助班主任设计一个调查方案.【解】因为一个班的人数不是太多,为了帮助班主任全面了解班里学生的学习和思想状况,可以采取普查的方法进行调查.可以先设计一个问卷,包括同学们对学习的各种看法,同学们的爱好、心理和思想状况等,然后发放给每一个学生,并全部收回,然后进行统计,这样就可以全面了解每个学生的学习和思想状况了.(教师用书独具)指出下列调查分别适于进行普查,还是适于进行抽样调查.(1)调查除夕之夜我国有多少人观看中央电视台的春节联欢晚会;(2)调查某工厂生产的一万件胶卷中有无不合格产品;(3)调查一万张面值为100元的人民币中有无假币;(4)调查当今中学生中,喜欢听年轻教师讲课的多,还是喜欢听老教师讲课的多.【解】(1)我国人口众多,地域辽阔,要用普查的方式调查有多少人在除夕之夜看了“春节联欢晚会”,需投入大量的人力、财力,实属得不偿失.(2)把未曾使用的胶卷逐个仔细检查,实际是把全部产品报废,显然是愚蠢的设想.(3)一万张人民币,数量虽大,但不应允许有一张假币给人民群众造成经济损失,也不应允许任何制造假币者逃脱法网,况且,用目前的技术手段检查一万张人民币中是否有假币混入,并非难事,也不需太多时间.(4)当今中学生的数量实在太庞大了,又很分散.这四项调查工作,只有第(3)项应以普查的方式进行,其余三项均以抽样调查的方式进行为妥.“三聚氰胺奶粉事件”举国震惊,质检也变得尤为重要,由于总体中的个体数是很大的,检验人员只能从一大批罐装奶粉中进行抽样调查.你能从这个例子出发说明一下抽样调查的必要性吗?【解】如果普查,会很费时费力,等检查完了,奶粉可能变质了,况且检查奶粉具有破坏性,每罐奶粉检查时必须拆开,这样检查就会得不偿失,没有什么意义了.而此时抽样调查就比较理想了.§2抽样方法2.1 简单随机抽样(教师用书独具)●三维目标1.知识与技能理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概论,掌握简单随机抽样的两种方法.2.过程与方法通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力.3.情感、态度与价值观通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质.●重点难点重点:掌握简单随机抽样常见的两种方法(抽签法、随机数法)难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性学生已有的认知基础是,初中学习过统计的基础知识,并对总体、样本、个体等知识有了初步的了解,对为什么要进行抽样已有了感性认识,但对如何实施抽样缺乏系统的了解.对简单随机抽样的概念的认识上,学生对抽签法有感性认识,但对抽样过程的科学、合理、使每个个体被抽到的可能性相等的理解存在差异,因而对概念的本质理解也可能有所差异.在利用抽签法进行简单随机抽样时,学生对此方法比较熟悉,但对程序化或流程图式的解决问题模式接触不多,因而可能出现解题过程的不完善.在利用随机数法进行简单随机抽样时,学生在对物件进行标号时由于位数的不一致而可能产生抽样过程的错误,同时在选号的规则上可能带来一些误差.(教师用书独具)●教学建议考虑到学生的知识水平和理解能力以及课堂教学的信息量,教师可从信息技术和数学知识的有效整合入手,从实际生活中提炼数学素材,从激励学生探究知识入手,通过直观演示,优化教学,使学生在熟悉的知识背景下探求新知.通过视频片断,实例图片,Excel表格的综合应用,丰富学生的体验,给学生多一点空间和时间,把任务角色还给学生,使学生亲历数学发现、创造的过程,获得对数学价值的认识,通过分层激励,让不同层次的学生获得最大进步.●教学流程设置情境,提出问题一锅水饺的味道如何品尝?⇒引导学生结合现实生活中的实际问题,思考讨论得出随机抽样的概念⇒引导学生明确抽样的必要性,掌握抽样的特点及方法突出“等可能性”特征⇒通过例1及变式训练使学生进一步明确随机抽样的特征,明确什么是简单随机抽样⇒通过例2及变式训练使学生掌握抽签法的应用,体会抽签法的“公平性”,突破难点,突出重点⇒通过例3及变式训练使学生掌握随机数法的应用,体会该种方法的科学性与优越性⇒课堂小结,总结升华,让学生对知识有一个系统的认识,突出重点,抓住关键⇒完成当堂双基达标,落实各个知识点,突出重点,强化难点课标解读1.理解简单随机抽样的概念及其两种方法(重点).2.会用简单随机抽样方法解决实际问题(难点).3.抽签法和随机数法的异同(易混点).简单随机抽样的概念【问题导思】1.某月某种商品的销售量、电视剧的收视率等这些数据是如何得到的?【提示】一般是从总体中收集部分个体数据得出结论.2.要判断一锅汤的味道需要把整锅汤都喝完吗?应如何判断?【提示】不需要,只要将锅里的汤“搅拌均匀”品尝一小勺就知道汤的味道.在抽取样本的过程中,要保证每个个体被抽取到的概率相同.这样的抽样方法叫作简单随机抽样.这是抽样中一个最基本的方法.简单随机抽样的方法简单随机抽样{抽签法随机数法简单随机抽样的概念(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.【思路探究】要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.【自主解答】(1)不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的.(2)不是简单随机抽样.因为它是放回抽样,简单随机抽样,可分为不放回抽样和放回抽样,而本章定义中规定的是不放回抽样,所以它不是简单随机抽样.(3)不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.下列问题中,最适合用简单随机抽样方法的是( )A.某电影院有32排座位,每排40个,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽取3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡镇有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,要抽取田地480亩估计全乡田地平均产量【解析】根据简单随机抽样的特点进行判断:A的总体容量较大,用简单随机抽样的方法比较麻烦;B的总体容量较小,用简单随机抽样的方法比较简单、方便;C中由于学校各类人员对这一问题的看法的差异可能很大,不宜采用简单随机抽样;D总体容量较大,且各类田地的产量差别很大,也不易采用简单随机抽样.【答案】 B。
2019-2020学年北师大版高中数学必修三课件:第1章 统计1-2.2
第14页
题型二 系统抽样 例 2 为了了解某地区今年高一学生期末考试数学学科的成 绩,拟从参加考试的 15 000 名学生的数学成绩中抽取容量为 150 的样本,请用系统抽样写出抽取过程.
【思路】 由于总体容量恰被样本容量整除,所以分段间隔 k 15 000 = 150 =100,按系统抽样方法的四个步骤抽取样本.
(4)以 56 作为起始数,然后顺次抽取 156,256,356,…, 14 956,这样就得到容量为 150 的样本.
第16页
探究 2 当总体容量能被样本容量整除时,分段间隔 k=Nn; 当用系统抽样抽取样本时,通常是将起始数 s 加上间隔 k 得到第 2 个个体编号(s+k),再加 k 得到第 3 个个体编号(s+2k),依次 进行下去,直到获取整个样本.
第15页
【解析】 (1)对全体学生的数学成绩进行编号:1,2,3,…, 15 000.
(2)分段:由于样本容量与总体容量的比是 1∶100,我们将 总体平均分为 150 个部分,其中每一部分包含 100 个个体.
(3)在第一部分即 1 号到 100 号用简单随机抽样,抽取一个 号码,比如是 56.
第12页
(2)(2018·广东省湛江市期末)有 1 000 个形状、大小相同 的球,其中红球 500 个,黄球 300 个,绿球 200 个,若采用按颜
色分层抽样的方法随机抽取 100 个球进行分析,则应抽取红球的
个数为( ) A.20
B.30
C.50
D.100
第13页
【解析】 采用按颜色分层抽样的方法抽取 100 个球时,抽 样比为1100000=110,故应抽取红球的个数为 500×110=50.
答:不对.因为分层抽样是从各层独立地抽取个体,而系统抽 样各段上抽取时是按事先定好的规则进行的,各层编号有联系,不 是独立的,故系统抽样不同于分层抽样.
高中数学 第一章 统计 知识整合第一节和第二节课件 北师大版必修3
7.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问 题.
8.会作两个相关联变量数据的散点图,会利用散点图认识变量间的相关关 系.
9.了解最小二乘法(chéngfǎ)的思想,能根据给出的线性回归方程系数公 式建立线性回归方程.
10.了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题 .
第十一页,共30页。
2.有20们同学,编号从1~20,现在从中抽取(chōu qǔ)4人
的作文卷进行调查,用系统抽样方法确定所抽的编号为( )
A.5,10,15,20
B.2,6,10,14
C.2,4,6,8
D.5,8,11,14
【解析】 将20分成4个组,每组5个号,间隔等距离为5.
【答案】 A
第十二页,共30页。
统计 (tǒngjì)
第一页,共30页。
1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样. 3.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率 折线图、茎叶图,理解它们各自的特点(tèdiǎn). 4.理解样本数据的标准差的意义和作用,会计算数据标准差. 5.能从样本数据中提取基本的数字特征(如平均数,标准差),并给出合理 的解释. 6.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体 的基本数字特征,理解用样本估计总体的思想.
即不放回抽 样
将总体分成几层, 分层进行抽取
联系
适用范围
总体个数较 少
在起始部分取 样时,采用简 单随机抽样
总体个数较 多
分层抽样时, 采用简单随机 抽样或系统抽 样
总体由差异 明显的几部 分组成
2020秋新版高中数学北师大版必修3课件:第一章统计 1.6-1.7 .pptx
目标导航
知识梳理
典例型透析
随堂演练
题型一
题型二
题型三
题型四
解:(1)风景区是这样计算的:调整前的平均价格为
10+10+15+20+25 5
=
16(元),调整后的平均价格为
5+5+15+25+30 5
=
16(元).
因为调整前后的平均价格不变,日平均人数不变,所以日平均总
收入不变.
(2)游客是这样计算的,原日平均总收入:
(3)游客的说法较能反映整体实际.
-9-
§6 统计活动:结婚年龄的变化 §7 相关性
目标导航
题型一
题型二
题型三
题型四
知识梳理
典例型透析
随堂演练
反思1.统计活动中的数据分析,可以分析数据中的平均值、方差、 标准差、中位数、众数等数字特征,从而全面把握总体情况.
2.统计活动中的数据分析,可以采取图表来分析,如条形统计图、 扇形统计图、折线统计图、频率分布直方图等.这样得到的结果更 直观,更能体现出各部分所占的份额.
-4-
§6 统计活动:结婚年龄的变化 §7 相关性
目标导航
知知识识梳梳理理
典型透析
随堂演练
3.变量之间的相关关系 从散点图上看,如果两个变量之间存在着某种关系,这些点会有 一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似, 这样近似的过程称为曲线拟合.若两个变量x和y的散点图中,所有点 看上去都在一条直线附近波动,则称变量间是线性相关的.若所有 点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非 线性相关的.如果所有的点在散点图中没有显示任何关系,则称变 量间是不相关的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章统计
§1 从普查到抽样
课时目标
1.了解普查与抽样调查的概念.
2.明确普查与抽样调查的优缺点.
1.统计的概念
统计是研究如何合理收集、整理、分析数据的学科.
2.普查
(1)定义:普查是指一个________或一个________专门组织的__________大规模的
全面调查,目的是为了详细地了解________重要的国情、国力.
(2)普查的主要特点:①所取得的资料更加全面、________;②主要调查在特定时
段的社会经济现象总体的________.
(3)普查的对象________时,普查无疑是一项非常好的调查方式.
3.抽样调查
(1)定义:通常情况下,从调查对象中______________抽取一部分,进行__________,
获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查,其中,调查对象的全体称为________,被抽取的一部分称为________.
(2)抽样调查最突出的优点
①____________.
②______________________.
一、选择题
1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是( )
A.200个表示发芽天数的数值
B.200个球根
C.无数个球根发芽天数的数值集合
D.无法确定
2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )
A.40B.50
C.120D.150
3.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )
A.1000名运动员是总体
B.每个运动员是个体
C.抽取的100名运动员是样本
D.样本容量是100
4.若要调查某城市家庭的收入情况,在该问题中,总体是( )
A.某城市
B.某城市的所有家庭的收入
C.某城市的所有人口
D.某城市的工薪阶层
5.对于下列调查:
①测定海洋中微生物的含量;②某种灯泡使用寿命的测定;③入学报考者的学历调查;④全国人口普查.
其中不属于样本调查的是( )
A.①②B.③④C.②③D.①④
6.下列调查,比较适用普查而不适用抽样调查方式的是( )
A.为了了解中央电视台春节联欢晚会的收视率
B.为了了解初三年级某班的每个学生周末(星期六)晚上的睡眠时间
C.为了了解夏季冷饮市场上一批冰淇淋的质量情况
二、填空题
7.抽样调查一定要保证________原则,尽可能地避免人为因素的干扰,并且要保证每个个体以相同的可能性被抽取到.
8.(1)对某班学生视力作一个调查;
(2)某汽车生产厂要对所生产的某种品牌的轿车的抗碰撞情况进行检验;
(3)联合国教科文组织要对全世界适龄儿童的入学情况做一个调查.
对于上述3个实际问题所应选用的调查方法分别为__________、____________、____________.
9.某公司新上市一款MP4,为了调查产品在用户中受欢迎的情况,采用什么形式调查为好____________(填“普查”或“抽样调查”).
三、解答题
10.儿童的喂养及辅食添加是影响儿童生长发育、身体健康的重要因素,喂养不当及辅食添加不正确,容易导致儿童贫血及其他疾病,影响儿童生长发育.为了了解农村儿童的喂养、辅食添加情况、发现存在的问题、确定儿童的喂养及辅食添加的促进措施,欲在该地农村进行一次农村3岁以下儿童的喂养、辅食添加情况和贫血相关因素的调查研究.请给出一个合理的调查方案.(该地区共10个县)
11.为调查小区平均每户居民的月用水量,下面是2名同学设计的方案:
学生甲:我把这个用水量调查表放在互联网上,只要登陆网站的人就可以看到这张表,他们填的表可以很快地反馈到我的电脑中,这样就可以很快估算出小区平均每户居民的月用水量;
学生乙:我给我们居民小区的每一个住户发一张用水调查表,只要一两天就可以统计出小区平均每户居民的月用水量.
请你分析上述2名学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?
能力提升
12.春节前夕,质检部门检查一箱装有2500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是( )
A.总体是指这箱2500件包装食品
B.个体是一件包装食品
C.样本是按2%抽取的50件包装食品
D.样本容量是50
13.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.校医务室若从高一年级中抽取50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果会怎样?该问题中的总体和样本是什么?
普查与抽样调查是我们调查问题常用的方法,它们各有优缺点.普查一般适用于:总体容量不大,要获取详实、系统和全面的信息;而抽样调查一般适用于:大批量检验,且检验对检验对象具有破坏性.
答案
知识梳理
2.(1)国家地区一次性某项(2)①系统
②数量(3)很少 3.(1)按照一定的方法调查或观测总体样本(2)①迅速、及时②节约人力、物力和财力
作业设计
1.A
2.C[由于样本容量即样本的个数,抽取的样本的个数为40×3=120.]
3.D[此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.] 4.B 5.B 6.B
7.随机性
8.普查抽样调查抽样调查
9.抽样调查
10.解可采用如下抽样:先从该地区10个县中随机抽取4个县,再在随机抽取的各县中随机抽取5个乡(镇),在随机抽取的乡(镇)中再随机抽取5个行政村,在被抽中的行政村中各抽取24户有3岁以下儿童的住户,在样本户的3岁以下儿童中随机抽取1名儿童.当抽样村符合要求的家庭不足24户时,将其全部调查,不够的户在邻村补齐(邻村是指距离最近的非抽样村).(根据实际情况,也可有其他合理的抽样)
11.解学生甲的方法得到的样本不能够反映不上网的居民的用水情况,它是一种方便样本,所得到的样本代表性差,不能很准确地获得平均每户居民的月用水量;
学生乙的方法实际上是普查,花费的人力、物力更多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量.
12.D[质检部门关心的是食品的质量,所以质检部门检查的也是食品的质量,得到的数据也是食品的质量.因此,无论总体还是个体还是样本都是指食品的质量,故A、B、C错.]
13.解由于学生的身高会随着年龄的增长而增高,校医务室想了解全校高中学生的身高情况,在抽样时应当关注高中各年级学生的身高,并且还要分性别进行抽查.如果只抽取高一的学生,结果一定是片面的.
这个问题涉及的调查对象的总体是某校全体高中学生的身高,其中准备抽取的50名学生的身高是样本.。