一阶动态电路的分析

合集下载

一阶动态电路分析

一阶动态电路分析

一阶动态电路分析在一阶动态电路分析中,通常需要考虑以下几个步骤:1.确定电路拓扑结构:首先需要确定电路中的元件和它们的连接方式,以建立电路的拓扑结构。

2.建立电路微分方程:根据电路中的元件和连接方式,可以通过基尔霍夫定律、欧姆定律等来建立电路的微分方程。

对于电容和电感元件,可以利用其电压和电流的关系(即电压-电流特性)得到微分方程。

- 对于电容元件,根据电容的定义(Q=C*dV/dt),可以得到微分方程:C*dV/dt = I,其中C为电容值,V为电容的电压,t为时间,I为电流。

- 对于电感元件,根据电感的定义(V=L*di/dt),可以得到微分方程:L*di/dt = V,其中L为电感值,i为电感的电流,t为时间,V为电压。

3.求解微分方程:根据所建立的微分方程,可以通过分离变量、积分等方法对方程进行求解。

求解过程中需要考虑初始条件,即在其中一时刻电容的电压或电感的电流的初始值。

4.分析电路响应:根据微分方程的解,可以得到电路中电容的电压或电感的电流随时间的变化曲线。

根据这些曲线可以分析电路的稳定状态、暂态响应和频率响应。

在分析电路响应时,可以根据不同的输入信号类型进行分类,常见的输入信号包括:-直流输入:当输入信号为直流信号时,可以将微分方程简化为代数方程进行求解。

此时电路响应主要包括稳态响应和过渡过程。

-正弦输入:当输入信号为正弦信号时,可以利用拉普拉斯变换将微分方程转换为代数方程。

通过求解代数方程和对频率的分析,可以得到电路的频率响应。

-脉冲输入:当输入信号为脉冲信号时,可以将微分方程进行离散化,转化为差分方程进行求解。

此时电路响应主要包括脉冲响应和响应序列的叠加。

总结来说,一阶动态电路分析是通过建立微分方程,求解微分方程,分析电路响应的一种方法。

通过这种方法,可以了解电路的稳定状态、暂态响应和频率响应等特性。

同时,对于不同类型的输入信号,还可以通过不同的数学工具和方法进行求解和分析。

这种分析方法可以广泛应用于电子电路、控制系统等领域的研究和应用中。

第6章 一阶动态电路分析

第6章   一阶动态电路分析

第6章一阶动态电路分析6.1 学习要求(1)掌握用三要素法分析一阶动态电路的方法。

(2)理解电路的暂态和稳态以及时间常数的物理意义。

(3)了解用经典法分析一阶动态电路的方法。

(4)了解一阶电路的零输入响应、零状态响应和全响应的概念。

(5)了解微分电路和积分电路的构成及其必须具备的条件。

6.2 学习指导本章重点:(1)电流、电压初始值的确定。

(2)一阶电路的三要素法分析方法。

(3)时间常数的物理意义及其计算。

本章难点:(1)电流、电压初始值的确定。

(2)一阶电路的三要素法分析方法。

(3)电流、电压变化曲线的绘制。

本章考点:(1)电流、电压初始值的确定。

(2)一阶电路的三要素法分析方法。

(3)时间常数的计算。

(4)电流、电压变化曲线的绘制。

6.2.1 换路定理1.电路中产生过渡过程的原因过渡过程是电路从一个稳定状态变化到另一个稳定状态的中间过程,因为时间极为短暂,又称暂态过程。

电路中产生过渡过程的原因是:(1)内因:电路中的能量不能突变。

电路中的电场能和磁场能不能突变是电路电工技术学习指导与习题解答124 产生过渡过程的根本原因。

(2)外因或条件:换路。

电路工作条件发生变化,如开关的接通或断开,电路连接方式或元件参数突然变化等称为换路。

换路是电路产生过渡过程的外部条件。

2.研究电路过渡过程的意义(1)利用电路的过渡过程改善波形或产生特定的波形。

(2)防止电路产生过电压或过电流损坏用电设备。

3.换路定理与初始值的确定设换路发生的时刻为0=t ,换路前的终了时刻用-=0t 表示,换路后的初始时刻用+=0t 表示。

由于换路是瞬间完成的,因此-0和+0在数值上都等于0。

根据能量不能突变,可以推出电路换路定理为:(1)电容两端电压u C 不能突变,即:)0()0(C C -+=u u(2)电感中的电流i L 不能突变,即:)0()0(L L -+=i i电路中+=0t 时的电流、电压值称为初始值。

初始值的确定步骤如下: (1)求出-=0t 时电路的)0(C -u 和)0(L -i 。

一阶动态电路的三要素法

一阶动态电路的三要素法

一阶动态电路的三要素法一阶动态电路是指电路中只有一个电感或一个电容元件的电路,在分析这种电路时可以使用三要素法。

三要素法是一种基本的电路分析方法,它利用电路中三个基本元件(电源、电感、电容)的电压或电流关系来描述电路中的动态行为。

在使用三要素法时,需要使用线性微分方程来描述电路中的电压和电流关系。

在使用三要素法时,需要按照以下步骤进行分析:1.画出电路图,并确定电路中的电压和电流的参考方向。

2.根据电路图和电压和电流的参考方向,写出电路中的基尔霍夫电流定律和基尔霍夫电压定律等式。

3.根据电路元件的特性方程,写出电感或电容元件的电流和电压之间的关系。

4.将基尔霍夫定律和元件特性方程联立,并进行求解,得到电路中的电流和电压随时间变化的函数关系。

5.根据所求得的电流和电压随时间变化的函数关系,来分析电路的动态行为。

在使用三要素法进行电路分析时,首先需要根据电路图和电压、电流的参考方向写出基尔霍夫定律方程,例如,在一个带有电感元件和电源的串联电路中,可以根据基尔霍夫电压定律写出方程:\[V_L-V_s=0\]其中\(V_L\)是电感元件的电压,\(V_s\)是电源的电压。

接下来,根据电感元件的特性方程写出电感元件的电流和电压之间的关系,例如:\[V_L = L \frac{di_L}{dt}\]其中\(L\)是电感元件的感值,\(di_L\)是电感元件的电流微分,\(dt\)是时间微分。

将基尔霍夫定律方程和元件特性方程联立,并进行求解,可以得到电路中的电流和电压随时间变化的函数关系。

例如,可以得到电感元件的电流随时间变化的函数关系:\[i_L(t) = \frac{V_s}{L} \cdot t + i_L(0)\]其中,\(i_L(0)\)是初始时刻电感元件的电流。

最后,根据所求得的电流和电压随时间变化的函数关系,来分析电路的动态行为。

例如,在一个带有电感元件和电源的串联电路中,可以根据电压随时间变化的函数关系来分析电路中电压的变化情况。

电路分析基础一阶动态电路的时域分析

电路分析基础一阶动态电路的时域分析
一阶动态电路的时域分析
动态电路 的过渡过程
电路的零输入、 零状态分析法
一阶电路响应 的三要素分析法
6.1
一阶电路的三要素分析法
(t=0)
1.过渡过程的的概念
US (t=t1)
R C
uc
-
+
换路:电路结构或参数发生突然变化。
稳态:在指定条件下电路中的电压、电流已 达到稳定值。 暂态:电路换路后从一种稳态到另一种稳态 的过渡过程。
6
iL
6 1H
1 F -
10 uC ( ) 5 55 5V
6 i L ( ) 6 66 3 mA
(3) 时间常数 的计算
对于一阶RC电路
R0C
L 对于一阶RL电路 R0
注意:
对于较复杂的一阶电路, R0为换路后的电路 除去电源和储能元件后,在储能元件两端所求得的 无源二端网络的等效电阻。
uC ( t 0 ) uC ( t 0 ) i L ( t 0 ) i L ( t 0 ) uC (0 ) uC (0 ) i L (0 ) i L (0 )
换路时刻,iC和uL为有限值,uC和iL在该处连续,不可跃变。
除过uC和iL,电路中其他的u、i可以在换路前后发生跃变。
t=0 S R1
+
R1
R3
C
-
U
R2
R2
R3 R0
R0
+
R0 ( R1 // R2 ) R3 R0C
C R0的计算类似于应用戴维 南定理解题时计算电路等效 电阻的方法。即从储能元件 两端看进去的等效电阻。
ቤተ መጻሕፍቲ ባይዱ
-
U0

电路分析基础-4 一阶动态电路

电路分析基础-4 一阶动态电路

WC /J 1
0
1
2 t /s
上 页 下 页
若已知电流求电容电压,有
0 1 i(t ) 1 0
t0 0 t 1s 1 t 2s t 2s
i /A 1 1
2 t /s
-1
当0 t 1s
当 1 t 2s
1 0 1 t uC ( t ) 0dξ 1dξ 0 2t 2t C C 0
1 t uC ( t ) u(1) ( 1)d 4 2t 0.5 1
当 2t
1 t uC ( t ) u( 2) 0d 0 0.5 2
上 页 下 页
电容的串联 +
i
C1
1
C2
2
+ u -+u -

u
Cn
un
i
C eq
-

u
t
-
u u1 u2 un
电容元件与电感元件的比较 电容 C 电感 L 电流 i 磁链
变量
电压 u 电荷 q
关系式
Li q Cu di du u L iC dt dt 1 1 2 1 1 W C Cu 2 q W L Li 2 2 2 2C 2 2L
结论 (1) 元件方程的形式是相似的; (2) 若把 u – i ,q – ,C – L 互换,可由电容元件 的方程得到电感元件的方程; (3) C 和 L称为对偶元件, 、q 等称为对偶元素。
表 明
(1)电容的储能只与当时的电压值有关,电容 电压不能跃变,反映了储能不能跃变;
t
(2)电容储存的能量一定大于或等于零。
上 页 下 页
从 t1 时刻到 t2时刻电容储能的变化量:

一阶动态电路分析

一阶动态电路分析

uC (0 ) uC (0 ) 10V

R1
+
iC t=0
i2
uC C
R2

由此可画出开关S闭合后瞬间即时的等
效电路,如图所示。由图得:
i1(0+)
i1(0 )
US
uC (0 ) R1
10 10 10
0A
i2 (0 )
uC (0 ) R2
10 5
2A
+
R1
+
iC(0+)
i2(0+)
US
uC(0+)
41
t
e2
41
e 0.5t
V
uC uC uC 3e0.5t 4 1 e0.5t 4 e0.5t V
跳转到第一页
6.3.2 一阶电路的零输入响应
1.RC电路的零输入响应
图示电路,换路前开关S置于位置1,电容上已充有电压。t=0 时开关S从位置1拨到位置2,使RC电路脱离电源。根据换路 定理,电容电压不能突变。于是,电容电压由初始值开始,
通过3Ω电阻的电流为:
i 12 uC 12 8 4e0.5t 4 4 e0.5t A
3
3
33
iC
+ 1F -uC
跳转到第一页
6.2.2 三要素分析法
求解一阶电路任一支路电流或电压的三要素公式为:
t
f (t) f () f [ f (0 ) f ()]e
式中,f(0+)为待求电流或电压的初始值,f(∞)为待求电流 或电压的稳态值,τ为电路的时间常数。 对于RC电路,时间常数为:
R R1R2 20 5 4k R1 R2 20 5

一阶动态电路分析例题分析

一阶动态电路分析例题分析

一阶动态电路分析例题分析任务一 动态电路的基本概念[例3-1] 如图所示,V U S 10=,Ω=k R 2,开关K 闭合前,电容不带电,求开关K 闭合后,电容上的电压和电流的初始值。

解:(1)由换路前的稳态电路求得电容两端电压)0(-C u 。

由于换路前电路中电容不带电,所以电容两端的电压为零,即0)0(=-C u(2) 根据换路定律求出)0(+C u 。

0)0()0(==-+C C u u(3)根据换路后的电路列电路方程,求出其它物理量的初态。

V U U u U u S S C S R 100)0()0(==-=-=++得 mA kR u i R C 5210)0()0(===++ [例3-2] 如图所示,已知V U S 12=,Ω=K R 21,Ω=K R 42,mF C 1=,开关动作前电路已处于稳态,0=t 时开关闭合。

求:(1)开关闭合后,各元件电压和电流的初始值,(2)电路重新达到稳态后,电容上电压和电流的稳态值。

解:(1)+=0t 时的初始值○1由换路前的稳态电路求得电容电压的)0(-C u 。

由于换路前开关断开,若电容两端存在电压,电容与电阻2R 形成放电回路,使电容电压下降,所以电路稳态时,电容两端电压为零,即0)0(=-C u○2根据换路定律求出)0(+C u 。

0)0()0(==-+C C u u○3根据换路后电路图,求出其它物理量的初态。

+-S USRCCu 0=t R u C i例 3-1图++ ++-S UC Cu 1R u 2RCi 1R+-+ -2R u+ -1i2i 例3-2换路后电路图+-S UKC Cu 0=t 1R u 2RCi 1R例3-2图+-+ -V u u C R 0)0()0(2==++V U U u U u S S C S R 120)0()0(1==-=-=++mA k R u i R 6212)0()0(111===++ mA kR u i R 040)0()0(222===++mA i i i C 606)0()0()0(21=-=-=+++(2)换路后,∞=t 时的稳态值直流电路中,电路稳态时,电容相当于开路,电路如图所示,所以0)(=∞C i A 。

一阶动态电路分析.pptx

一阶动态电路分析.pptx

t
t
uC (U0 US )e (U0 US )e RC
只存在于暂态过程中, t→∞时uC''→0,称为暂态分量。
τ=RC称为时间常数,决定过渡过程的快慢。
波 形 图:
uC US
U0
0
U0<US
uC U0
U0>US
US
t
t
0
跳转到第一页
电路中的电流为:
iC
C duC dt
US R
t
e
US R
uC (0 ) uC (0 ) 10V

R1
+
iC t=0
i2
uC C
R2

由此可画出开关S闭合后瞬间即时的等
效电路,如图所示。由图得:
i1(0+)
i1(0 )
US
uC (0 ) R1
10 10 10
0A
i2 (0 )
uC (0 ) R2
10 5
2A
+
R1
+
iC(0+)
i2(0+)
US
uC(0+)
R3
R1 R2
+
U

iC
+
C -uC
R0
iC
+
+
C -uC
US

iC
IS
R0
+ C -uC
因此,对一阶电路的分析, 实际上可归结为对简单的RC 电路和RL电路的求解。一阶 动态电路的分析方法有经典 法和三要素法两种。
跳转到第一页
6.2.1 经典分析法
1.RC电路分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶动态电路的分析
作者:刘永军
来源:《科技资讯》 2015年第11期
刘永军
(南京六合中等学校江苏南京 211500)
摘要:动态电路的分析,是中职《电工基础》教学中的一个难点。

在学习过程中,应从基本概念入手,理解电路中瞬态过程出现的原因,掌握换路定律,正确建立暂态、稳态时的电路模型,牢记“三要素”公式,通过典型实例,举一反三,逐步掌握一阶动态电路的分析方法。

关键词:瞬态过程换路定律三要素
中图分类号:TM13 文献标识码:A 文章编号:1672-3791(2015)04(b)-0248-01
1 电路中的瞬态过程
1.1 电路中的瞬态过程及其成因
通过图1所示实验电路,观察开关S闭合后,规格相同的三只白炽灯的发光情况。

S闭合后,D1立即发光;D2由暗变亮;D3由亮变暗,最终熄灭。

此种现象说明:含有电阻支路的白炽灯从不亮到亮不需要时间,含有电容支路的白炽灯由亮到不亮需要一定的时间,含有电感支路的白炽灯由不亮到亮需要一定的时间。

白炽灯的亮与不亮都是稳态。

由上述实验电路可见,电路中由一种稳态到达另一种稳态,也可能需要一定的时间,这一过程称为瞬态过程(暂态过程)。

显然,实验中纯电阻支路没有瞬态过程,而含有动态元件(电容或电感)支路有瞬态过程,这是为什么呢?
对于电感元件,其自感电压,若电感被充磁到一定的电流而不需要时间,则,其功率为;对于电容元件,其充放电电流,若电容被充电到一定电压而不需要时间,则,其功率为。

不管是电容充电还是电感充磁,都是其他形式的能转变成电场能或磁场能,而根据能量守恒,没有无穷大的能量来转变,故电容充电到一定电压或电感充电到一定电流,一定需要时间,即电容的端电压不能突变,电感的电流不能突变,而是有瞬态过程出现。

1.2 换路定律
2 一阶动态电路的分析
只含有一个动态元件的电路,换路后,任一元件的电压或电流的变化规律均可以采用三要素公式法求解,即
2.1 初始值的求解
所谓的初始值即换路后瞬间的值,因电容的电压和电感的电流不能突变,故它们的初始值应根据时的等效电路分析,再利用换路定律求解,这两个初始值常称为独立初始值;对于电容的电流、电感的电压及电阻的电压和电流,它们均是可以突变的,称为非独立初始值,它们必须根据时刻的等效电路来求解。

正确求解初始值的关键是建立正确的电路模型。

时电路为稳态,故电感视为短路,时电路为暂态,电感电流不能突变,示例如图2。

时电路为稳态,电容视为开路;时电路为暂态,电容电压不能突变,电容视为恒压源,示例如图3。

2.稳态值的求解
电路到达新的稳态时,其电路模型的建立方法依旧是电容开路,电感短路。

稳态时、必为零,无需计算。

3.时间常数的求解
电路中瞬态过程的快慢与电路参数有关,时间常数就是反应这一过程快慢的物理量。

理论
上来说,动态电路需要无穷长时间才能达到新的稳态,而实际上,当时,可达稳态值的95%~99%,故工程上一般认为经历后,瞬态过程基本结束。

当时,瞬态过程完成了总量的63.2%,剩
余36.8%未完成。

对于一阶动态电路的分析,除了建立不同时刻电路模型以为,正确的分析直流电路是基础,否则,即使动态元件处理方式正确、三要素公示熟练,最终也不能达到分析出物理量变化规律。

参考文献
[1] 周绍敏.电工基础[M].北京:高等教育出版社,2002.
[2] 王玫.电路原理[M].北京:中国电力出版社,2011.
[3] 张永瑞.电路分析基础[M].西安:西安电子科技大学出版社,2013.。

相关文档
最新文档