正、余弦定理及其应用

合集下载

正余弦定理公式大全

正余弦定理公式大全

正余弦定理公式大全正弦定理和余弦定理是解三角形的两个重要定理,它们在三角形的边和角之间建立了重要的关系,对于解决三角形的边和角问题有着重要的作用。

下面将详细介绍正弦定理和余弦定理的公式以及它们的应用。

1. 正弦定理公式。

在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则正弦定理公式可以表示为:a/sinA = b/sinB = c/sinC = 2R。

其中,R为三角形外接圆半径。

正弦定理的应用非常广泛,可以用来求解三角形的边长或者角度。

通过正弦定理,我们可以很容易地求解出三角形的各个边长或者角度大小,是解决三角形问题的重要工具之一。

2. 余弦定理公式。

在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则余弦定理公式可以表示为:a² = b² + c² 2bccosA。

b² = a² + c² 2accosB。

c² = a² + b² 2abcosC。

余弦定理的应用也非常广泛,可以用来求解三角形的边长或者角度。

与正弦定理相比,余弦定理在某些情况下更加方便和实用,尤其是当我们已知三角形的三边长时,可以直接使用余弦定理来求解三角形的各个角度大小。

3. 正余弦定理的综合应用。

正弦定理和余弦定理是解决三角形问题的重要工具,它们可以相互结合,应用于各种不同的三角形问题中。

通过灵活运用正弦定理和余弦定理,我们可以解决各种不同类型的三角形问题,包括求解三角形的边长、角度大小,以及判断三角形的形状等。

在实际问题中,正弦定理和余弦定理常常需要结合其他几何知识和技巧来解决问题,因此在运用正弦定理和余弦定理时,需要灵活运用,结合具体问题来选择合适的方法和步骤,以便更加高效地解决问题。

总结。

正弦定理和余弦定理是解决三角形问题的重要工具,它们建立了三角形的边和角之间的重要关系,可以帮助我们求解各种不同类型的三角形问题。

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是初中数学中非常重要的定理,它们在解决三角形相关问题时起到了至关重要的作用。

在本文中,我将为大家详细介绍余弦定理和正弦定理的应用,并通过实例来说明它们的实用性和重要性。

一、余弦定理的应用余弦定理是用来求解三角形的边长或角度的定理。

它的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c为三角形的边长,C为夹角。

1. 求解三角形的边长假设我们已知一个三角形的两边和它们之间的夹角,想要求解第三边的长度。

这时,我们可以利用余弦定理来解决这个问题。

例如,已知一个三角形的两边长分别为5cm和8cm,夹角为60°,我们可以利用余弦定理来计算第三边的长度。

根据余弦定理,我们可以得到c² = 5² + 8² - 2×5×8×cos60°,即c² = 25 + 64 -80cos60°。

进一步计算可得c² = 89 - 80cos60°,再开方可得c ≈ 2.92cm。

因此,这个三角形的第三边长约为2.92cm。

2. 求解三角形的角度除了求解边长外,余弦定理还可以用来求解三角形的角度。

例如,已知一个三角形的三边长分别为3cm、4cm和5cm,我们可以利用余弦定理来计算它的夹角。

根据余弦定理,我们可以得到cosC = (3² + 4² - 5²) / (2×3×4),即cosC = (9 + 16 - 25) / 24。

计算可得cosC = 0,因此C的值为90°。

通过以上两个例子,我们可以看到余弦定理在求解三角形边长和角度时的实用性和重要性。

它为我们解决各种三角形相关问题提供了有力的工具。

二、正弦定理的应用正弦定理是用来求解三角形的边长或角度的定理。

正、余弦定理及应用举例

正、余弦定理及应用举例

02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。

正弦余弦定理及应用

正弦余弦定理及应用

正弦余弦定理及应用正弦定理和余弦定理是在解三角形问题中常用的两个定理。

在解决三角形问题时,我们经常需要求解三角形的边长或者角度。

使用正弦定理和余弦定理可以帮助我们更方便地解决这些问题。

首先来看正弦定理。

正弦定理是针对一个三角形中的角和边之间的关系进行描述的。

对于一个三角形ABC,其三个内角分别为∠A、∠B和∠C,三个对边长度分别为a、b和c,则正弦定理可以表示为:a/sin∠A = b/sin∠B = c/sin∠C其中sin∠A表示∠A的正弦值。

正弦定理的推导过程非常简单,可以通过三角形的面积公式进行得出。

由于三角形的面积与其对边的关系为S = (1/2)ab*sin∠C,我们可以得到sin∠C = (2S)/(ab),从而推导出上述的正弦定理。

正弦定理的应用非常广泛。

通过正弦定理,我们可以方便地求解角度或者边长。

举个例子来说,如果我们已知一个三角形的两条边分别为a=5、b=7,以及它们之间的夹角为∠C=30,我们可以利用正弦定理来求解第三条边c的长度。

根据正弦定理,我们可以得到c/sin∠C = b/sin∠B,化简后得到c = b*sin∠C/sin ∠B。

将具体数值代入计算可以得到c=3.5。

而余弦定理则是针对三角形的边和边之间的关系进行描述的。

对于一个三角形ABC,其三个边的长度分别为a、b和c,三个内角分别为∠A、∠B和∠C,则余弦定理可以表示为:c²= a²+ b²- 2ab*cos∠C余弦定理的推导过程较为复杂,这里我们只给出其结果。

余弦定理是由向量的内积推导而来的,通过应用余弦定理,我们可以求解未知角或边长。

同样以一个例子来说明,如果我们已知一个三角形的两条边分别为a=5和b=7,以及它们夹角的余弦值cos∠C=1/2,我们可以利用余弦定理来求解第三条边c 的长度。

根据余弦定理,我们可以得到c²= a²+ b²- 2ab*cos∠C,将具体数值代入计算可以得到c²= 25 + 49 - 35/2 = 59.5。

正余弦定理及应用

正余弦定理及应用
由余弦定理:cosB=(a^2+c^2-b^2)/(2ac), cosA=(b^2+c^2-a^2)/(2bc)
所以所给条件化为:
a^3*(a^2+c^2-b^2)/(2ac)=b^3*(b^2+c^2-a^2)/(2bc)
两边约分并化简可得:a^2(a^2+c^2-b^2)=b^2(b^2+c^2-a^2)
a^2=a+2b+c
又a+2b=2c-3
∴a^2=2c-3+c
=3c-3
sinA:sinC=a:c=4:√13
a^2:c^2=16:13
3(c-1)/c^2=16/13
16c^2=39c-39
16c^2-39c+39=0
解c 取正值!
然后求a
再求b
再根据大边对大角 就知道啦!
注:a^2;b^2;c^2就是a的2次方、b的2次方、c的2次方;a*b、a*c就是a乘b、a乘c 。
1、在△ABC中,角ABC所对的边分别是abc,若b平方+c平方-bc=a平方,且a/b=根号3,则∠C的值为?
根据余弦定理得:
cosA=(b^2+c^2-a^2)/2bc......................1
联立得:BC=2,x=3^(1/2)
于是得到CosA=13*2^(1/2)/24,然后计算SinA即可
10、在△ABC中,角A,B,C所对的边是a,b,c,已知a^2-a=2(b+c),a+2b=2c-3
(1)若sinA:sinC=4:√13,求a,b,c
(2)求△ABC的最大角
a^2-a=2b+c

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全

三角函数正余弦定理公式大全三角函数是数学中的一项重要内容,其常用到的公式有正弦定理和余弦定理。

这两个定理在解决三角形问题时起着非常关键的作用,可以帮助我们求解三角形的各个边长和角度。

下面将详细介绍三角函数的正弦定理和余弦定理的公式及其应用。

1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:sinA / a = sinB / b = sinC / c其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

正弦定理可以用来求解三角形的边长或角度,只要已知任意两个角或边长即可。

应用1:已知三角形两边和夹角的情况下,可以利用正弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据正弦定理可得:sin∠BAC / 5 = sin∠ABC / BC将∠BAC=60°代入,可得:sin60° / 5 = sin∠ABC / BC√3 / 2 / 5 = sin∠ABC / BC√3 / 10 = sin∠ABC / BC再将sin∠ABC的值代入,求得BC的值。

2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:c^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。

余弦定理可以用来求解三角形的边长或角度,只要已知任意一个角的两边长度即可。

应用2:已知三角形两边和夹角的情况下,可以利用余弦定理求解第三边的长度。

例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。

解:根据余弦定理可得:BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos∠BAC将已知数值代入,可得:BC^2 = 5^2 + 7^2 - 2 * 5 * 7 * cos60°BC^2=25+49-70*0.5BC^2=25+49-35BC^2=39BC=√39求得边BC的长度。

余弦定理与正弦定理的应用

余弦定理与正弦定理的应用

余弦定理与正弦定理的应用余弦定理和正弦定理是数学中的两个重要的三角函数定理,它们在解决各种几何和数学问题时具有广泛的应用。

本文将介绍余弦定理和正弦定理的公式及其应用,帮助读者更好地理解和运用这两个定理。

一、余弦定理的应用余弦定理是解决三角形中边和角之间关系的重要定理。

设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据余弦定理可以得出以下公式:a² = b² + c² - 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosC余弦定理可以用来求解未知边长或角度的问题。

下面通过几个实际问题来展示余弦定理的应用。

【例1】已知一个三角形的两边长度分别为5cm和6cm,夹角为60°,求第三边的长度。

解:根据余弦定理,可得c² = 5² + 6² - 2×5×6·cos60°c² = 25 + 36 - 60c² = 61c = √61因此,第三边的长度约为7.81cm。

【例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为30°,求夹角的余弦值。

解:根据余弦定理,可得cosA = (7² + 9² - 2×7×9·cos30°) / (2×7×9)cosA = (49 + 81 - 63) / 126cosA = 67 / 126所以,夹角A的余弦值约为0.532。

二、正弦定理的应用正弦定理是另一个求解三角形边与角关系的重要定理。

与余弦定理类似,设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据正弦定理可以得出以下公式:a / sinA =b / sinB =c / sinC通过正弦定理可以求解未知边长或角度的问题。

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。

它们可以帮助我们求解三角形的边长、角度和面积等。

本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。

一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。

在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。

我们可以通过余弦定理来求解第三个边长c。

例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。

按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。

2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。

余弦定理同样可以解决这个问题。

例如,已知三角形ABC的边长分别为a=4、b=7、c=9。

我们想要求解夹角C的大小。

根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正、余弦定理及其应用
正、余弦定理及其应用
一、正弦定理和余弦定理
1、正弦定理和余弦定理
定理正弦定理余弦定理内容变形形式①a=2RsinA,b=2RsinB,c=2RsinC;
②sinA=,sinB=,sinC=;
③a:b:c=sinA:sinB:sinC;
④ 解决的问题已知两角和任一边,求另一角和其他两条边;
已知两边和其中一边的对角,求另一边和其他两角。

已知三边,求各角;
已知两角和它们的夹角,求第三边和其他两个角。

注:在ΔABC 中,sinA>sinB是A>B的充要条件。

(∵sinA>sinBa>bA>B)
二、应用举例
1、实际问题中的常用角
(1)仰角和俯角
在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在
水平线下文的叫俯角(如图①)
(2)方位角
从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)
注:仰角、俯角、方位角的区别是:三者的参照不同。

仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。

(3)方向角:相对于某一正方向的水平角(如图③)
①北偏东即由指北方向顺时针旋转到达目标方向;
②北偏本即由指北方向逆时针旋转到达目标方向;
③南偏本等其他方向角类似。

(4)坡度:坡面与水平面所成的二面角的度数(如图④,角θ为坡角)
坡比:坡面的铅直高度与水平长度之比(如图④,为坡比)
2、ΔABC的面积公式
(1);
(2);
(3)。

【基本训练】
1.在△ABC中,“”是“”的()
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.在△ABC中,角A、B、C所对的边分别是a、b、c,若三角形的面积S=(a2+b2-c2),则∠C的度数是_______.
3.在△ABC中,为的中点,且,则.
4.在中,若,,,则
考点集结
考点一:正弦定理、余弦定理的简单应用
〖例1〗a=,b=,B=45°,求A,C及边c.
2)在中,角所对的边分.若,则()
A.B.C.-1D.1
1.在△ABC中以知A=30°a、b分别为角A、B对边,且a=4=b
解此三角形
考点二:利用正弦定理、余弦定理判断三角形的性状及求取值范围
〖例2〗若△的三个内角满足则△A.一定是锐角三角形.B.一定是直角三角形.
C.一定是钝角三角形.D.可能是锐角三角形,也可能是钝角三角形.在锐角△ABC中,BC=1,B=2A,则的值等于______,AC的取值范围为________.cos的最小值为。

1.在ΔABC中,若,则ΔABC的形状为.
2、在△ABC中,cos2=,(a,b,c分别为角A,B,C的对边),则△ABC的形状为()
A.正三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形是()
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形。

4.在△ABC中,,则A的取值范围是()
(A)(B)(C)(D)
5.在△ABC中,内角A,B,C的对边分别为a,b,c,<C<且=
(1)判断△ABC的性状;
(2)若|+|=2,求·的取值范围.〖例〗在中,分别是三个内角的对边若,,的=________
3)在中,角所对的边分别为,且满足,.(I)求的面积;(II)若,求的值.
1、在中,角所对的边分别为,且满足,.
(I)求的面积;(II)若,求的值.
ABC中,sin(C-A)=1,sinB=。

(I)求sinA的值(II)设AC=,求ABC的面积。

3.△ABC的周长为12,且sinA·cosB-sinB=sinC-sinA·cosC,则其面积最大值为。

考点四:利用正余弦定理求角
〖例〗中,为边上一点,,.
(1)求的大小;
(2)当时,求的值.
1.在中,角A,B,C所对的边分别为a,b,c,若,,,则角A的大小为.〖例〗2)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?
一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时()
A.5海里B.5海里C.10海里D.10海里B.C.tanA+tanB+tanC>0D.b=3,c=3,B=30°
2.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果2b=a+c,∠B=30△ABC的面积为,那么b等于()
A. B.1+C. D.2+
3.在△ABC中,“A>30°”是“sinA>”的()
A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件
4.△ABC中已知∠A=60°,AB:AC=8:5,面积为10,则其周长为。

5.△ABC中A:B:C=1:2:3则a:b:=。

B.C.D.b=3,c=3,B=30°
7.在中,则.
8.在中,D为BC边上一点,,,.若,则BD=_____
9.若a、a+1、a+2为钝角三角形的三边求a的范围
10.在中,已知,,.
(Ⅰ)求的值;
(Ⅱ)求的值设ABC的内角A,B,C所对的边分别为a,b,c,且atanB=,bsinA=4.
(1)求cosB和a;
(2)若ABC的面积S=10,求cos4C的值.的内角、、的对边长分别为、、,,,求。

13、如图,一架直升飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔10千米,速度为180千米/小时,飞行员先看到山顶的俯角为30°,经过2分钟后又看到山顶的俯角为75°,求山顶的海拔高度。

B D
C A。

相关文档
最新文档