数学实验四(概率论)_6

合集下载

2023年大学_数学实验(李尚志著)课后习题答案下载

2023年大学_数学实验(李尚志著)课后习题答案下载

2023年数学实验(李尚志著)课后习题答案下载数学实验(李尚志著)课后答案下载数学实验是借助数学软件,结合所学的数学知识解决实际问题的一门实践课.本书包括数学软件MATLAB的入门知识,数学建模初步及运用高等数学、线性代数与概率论相关知识的实验内容.亦尝试编写了几个近代数学应用的阅读实验,对利用计算机图示功能解决实际问题安排了相应的实验.实验选材贴近实际,易于上机,并具有一定的趣味性。

数学实验(李尚志著):图书信息点击此处下载数学实验(李尚志著)课后答案数学实验(李尚志著):内容简介书名:数学ISBN: 9787030154620开本:16开定价: 22.00元数学实验(李尚志著):图书目录绪论第1章MATLAB简介与入门1.1简介1.2应用人门1.3MATLAB的语言程序设计简介 1.4特殊量与常用函数1.5图形功能1.6M文件1.7符号运算与应用第2章微分方程建模初步2.1模式与若干准则2.2阅读与理解2.3几个例子2.4阶微分方程定性解的图示第3章平面线性映射的迭代3.1线性函数迭代3.2平面线性映射的'迭代第四章微分方程数值解4.1算法4.2欧拉与龙格-库塔方法4.3模型与实验第5章曲线拟合5.1磨光公式5.2修正与误差5.3进一步讨论的问题第6章图的着色6.1一个时刚安排问题6.2数学思想的导出6.3一般的计数问题6.4进一步探索的问题第7章敏感问题的随机调查 7.1阅读与理解7.2直觉的定义7.3统计思想的一个基本原理 7.4随机应答调查7.5估计的基本性质7.6估计的其他性质第8章数学建模8.1投篮角度问题8.2壳形椅的讨论与绘图8.3独家销售商品广告问题8.4售报策略8.5Galton钉板问题第9章优化问题9.1优化工具箱9.2优化函数的使用9.3污水控制第10章图像增强10.1图像及操作10.2直接灰度调整10.3直方图处理10.4空域滤波增强10.5频域增强第11章数学曲面11.1MATLAB语言的预备知识11.2几种有趣的数学曲面11.3默比乌斯曲面族第12章阅读实验一泛函分析初步12.1一个例予12.2距离空间简介12.3应用12.4线性空间与Hilbert空间12.5例与问题第13章阅读实验二群与应用13.1背景与阅读13.2抽象群13.3应用第14章阅读实验三积分教学中的几点注释 14.1阅读与理解14.2理论阐述第15章建模竞赛真题15.1非典数学模型的建立与分析15.2西大直街交通最优联动控制15.3股票全流通方案数学模型的创新设计附录A数学实验课实验教学大纲。

第六章 概率论基础知识

第六章 概率论基础知识

• 事实上,若事件A相对于事件B是独立的,即P(A|B)=P(A),那么,当
P(A)>0时,有P(B|A)= 独立的。
P( AB) P( A)
=
P( A) P( B) =P(B)即事件B相对于事件A也是 P( A)
• 若两事件A,B满足P(AB)=P(A)P(B),则称A,B相互独立。若四对事件
{A,B},{ A ,B},{A, B },{ A , B }中有一对是相互独立的,则另外三对 也是相互独立的。任意两个事件A、B,满足下列条件之一,就称为相 互独立的随机事件: ⑴P(A|B)=P(A)且P(B)>0; ⑵P(B︱A)=P(B)且P(A)>0。 对任意两个相互独立的事件A、B,有 P(AB)=P(AB)=P(A|B)P(B)=P(A)P(B)
P A 乙 P 乙

0.08 0.5714 0.14
• 4.随机事件的独立性
设A,B是两个事件,一般而言P(A)P(A|B),这表示事件B的发生对事件 A的发生的概率有影响,只有当P(A)=P(A|B)时才可以认为B的发生与 否对A的发生毫无影响,就称两事件是独立的.其直观意义也比较明确: 若无论事件B的发生与否,对事件A的概率都没有影响,那么,事件A对于 事件B是独立的。由于从“A相对于B独立”,推导出“B相对于A独 立”,所以,只要P(A|B)= P(A)成立,我们就说,A与B是相互独立的。
表6-2 分布计算表
离散型随机变量
X的取值
-1
2
3
X的概率 1/6
1/2
1/3
2.离散随机变量的累积概率
P(X≤x)的概率,称为随机变量X(小于等于x)的累积概率,在例1中,随机 变量X≤2的累积概率为P(X≤2)=2/3。

概率论实验报告_2

概率论实验报告_2

概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。

记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。

2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。

这充分说明模拟情况接近真实情况,频率接近概率0.5。

试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。

,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。

在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。

每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。

数学实验_第四章概率论与数理统计

数学实验_第四章概率论与数理统计
投针试验的历史资料试验者年份投针次数n相交次数k的试验值wolf1850085000253231596smith1855063204121931554demorgan18606003833137fox1884075103048931595lazzerini19010833408180131415929reina1925054252085931795图11针与线相交图12投针试验样本空间及事件蒲丰投针实验蒲丰投针实验实验方案设针的中点与最近平行线的距离为y针与最近平行线的夹角为为横坐标y为纵坐标建立直角坐标系则每次掷针试验都随机地产生区域d中的一个点xy其中区域d为
>> n=40; >> p=1-nchoosek(365,n)*factorial(n)/365^n 运行结果: p= 0.8912
2.某接待站在某一周曾接待过 12 次来访,已知所有这 12 次接待 都是在周二和周四进行的, 问是否可以推断接待时间是有规定的? >> p=2^12/7^12 %接待时间没有规定时, 访问都发生在周二和周四 的概率 运行结果: p= 2.9593e-007 此概率很小,由实际推断原理知接待时间是有规定的。
概率概念的要旨是在 17 世纪中叶法国数学家帕斯卡与 费马的讨论中才比较明确。他们在往来的信函中讨论" 合理分配赌注问题", 在概率问题早期的研究中, 逐步建 立了事件、概率和随机变量等重要概念以及它们的基本 性质。后来由于许多社会问题和工程技术问题,如:人 口统计、保险理论、天文观测、误差理论、产品检验和 质量控制等, 这些问题的提出, 均促进了概率论的发展。
实验一
排列数与组合数的计算
【实验目的】 1.掌握排列数和组合数的计算方法 2.会用 Matlab 计算排列数和组合数 【实验要求】 1.掌握 Matlab 计算阶乘的命令 factorial 和双阶乘的命令 prod 2.掌握 Matlab 计算组合数的命令 nchoosek 和求所有组合的命令 combntns

MATLAB概率习题

MATLAB概率习题

数学实验(概率论)题目一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。

1. 用MA TLAB 计算泊松分布用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率. 3.用MA TLAB 计算均匀分布乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。

4.用MA TLAB 计算指数分布用MA TLAB 计算:某元件寿命ξ服从参数为λ(λ=11000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少? 5。

用MATLAB 计算正态分布 某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例? 二.用MATLAB 计算随机变量的期望和方差 1.用MA TLAB 计算数学期望(1)用MATLAB 计算离散型随机变量的期望 1)。

一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值 2)。

已知随机变量X 的分布列如下:{}kk X p 21== ,,2,1n k =计算.EX (2)用MATLAB 计算连续型随机变量的数学期望假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的均匀分布,其概率密度为: 1()0a x bx b aϕ⎧≤≤⎪=-⎨⎪⎩其它计算我国该种商品在国际市场上年销售量的期望.ξE .(3)用MATLAB 计算随机变量函数的数学期望假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大? 2. 用MA TLAB 计算方差(1)利用MATLAB 计算:设有甲、乙两种股票,今年的价格都是10元,一年后它们的试比较购买这两种股票时的投资风险.。

概率论抛硬币和抛筛子实验报告

概率论抛硬币和抛筛子实验报告
(1)观察出现i(i=1,2,3,4,5,6)点的频数;
(2)计算出现i(i=1,2,3,4,5,6)点的频率;
(3)分析频率的变化规律。
实验原理
在等可能的随机实验中,某个基本事件的频率就是它出现的 次数除以实验总次数,即P=x/N。
实验过程(公式推导,模型建立,Matlab源程序)
1、投硬币试验
编程如下:
0.1717
0.1582
0.2088
0.1380
147
0.1497
0.1361
0.2177
0.1905
0.1088
0.1973
123
0.2114
0.2033
0.1789
0.1951
0.1138
0.0976
1245
0.1719
0.1663
0.1679
0.1695
0.1823
0.1422
23456
模拟次数为289次的统计图
问题的数学描述
在统计学中,一个随机事件A发生的可能性大小的度量成为A
发生的概率,记为P(A).
实验一中重复做N实验,出现的可能的结果只有两种结果, 正面和反面,所以记录出现正面的次数x1,因此出现正面的概率P 1(A)=x1/N;记录出现反面的次数为x2,则出现反面的概率
P2(A)=x2/N.
实验二中重复做N实验,出现的可能的结果只有六种结果,出
function Tybsy(N)
X=bi nornd(1,0.5,1,N)
n1=0;
n2=0;
for i=1:N
if X(i)==0
n1=n1+1;
else
n2=n2+1;
end

概率论与数理统计实验

机械加工得到的零件尺寸的偏差、射击命中点 与目标的偏差、各种测量误差、人的身高、体重等, 都可近似看成服从正态分布。
整理课件
3、指数分布随机数
1) R = exprnd(λ):产生一个指数分布随机数 2)R = exprnd(λ,m,n)产生m行n列的指数分布随机数
例3、产生E(0.1)上的一个随机数,20个随机数, 2行6列的随机数。
整理课件
在Matlab命令行中输入以下命令: binomoni(0.5,1000)
整理课件
在Matlab命令行中输入以下命令: binomoni(0.5,10000)
整理课件
在Matlab命令行中输入以下命令: binomoni(0.3,1000)
整理课件
二、常用统计量
1、表示位置的统计量—平均值和中位数
概率论与数理统计实验
实验2 随机数的产生
数据的统计描述
整理课件
实验目的
学习随机数的产生方法 直观了解统计描述的基本内容。
实验内容
1、随机数的产生 2、统计的基本概念。 3、计算统计描述的命令。 4、计算实例。
整理课件
一、随机数的产生 定义:设随机变量X~F(x),则称随机变量X的 抽样序列{Xi}为分布F(x)的随机数 10常用分布随机数的产生
整理课件
例6 生成单位圆上均匀分布的1行10000列随机数,并 画经验分布函数曲线。
Randnum=unifrnd(0,2*pi,1,10000); %(0,2pi)上均匀分布随机数 xRandnum=cos(Randnum);%横坐标 yRandnum=sin(Randnum);%丛坐标 plot(xRandnum,yRandnum);
例9:产生5组指数分布随机数,每组100个, 计算样本偏度和峰度。

4概率基础6_大数定律

设随机变量 Y 的 k 阶绝对原点矩 E{ |Y |k } < +∞,则对 则对 于任意的 ε > 0, 有
E{| Y |k } P{| Y |≥ ε} ≤ , k ε k = 1,2,L
马尔科夫不等式证明 仅证明连续型随机变量的情形, 证 仅证明连续型随机变量的情形,设随机变 量Y 的概率密度函数为 fY ( y ), 有
解:设X为一年中投保老人的死亡数,则X ∼ b ( n, p) , n = 10000, p = 0.017
由德莫佛--拉普拉斯中心ห้องสมุดไป่ตู้限定理,保险公司亏本的概率为:
思考题:
P (10000 X > 10000 × 200 )
= P ( X > 200 )
= 1 − Φ ( 2.321) ≈ 0.01

1 D( Xn ) = pn(1− pn ) ≤ , k = 1,2,L 4
中心极限定理
背景: 背景:
有许多随机变量, 有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的, 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布, 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 限分布是正态分布, 学上论证了这一现象, 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。 时期内曾是概率论研究的中心课题。
p是事件 在每次试验中发生的概率 则对任意 是事件A在每次试验中发生的概率 是事件 在每次试验中发生的概率,
m 的 ε > 0, 有lim P{ − p |< ε} =1 ∀ | n→ ∞ n

《概率论与数理统计》学习指导(5,6)

《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................................. 错误!未定义书签。

第二章随机变量及其分布.................................. 错误!未定义书签。

第三章多维随机变量及其分布........................... 错误!未定义书签。

第四章随机变量的数字特征 .............................. 错误!未定义书签。

第五章大数定律和中心极限定理 .. (2)第六章数理统计的基本概念 (9)第七章参数估计 ................................................ 错误!未定义书签。

第八章假设检验 ................................................ 错误!未定义书签。

第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2 =≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为0.5,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用0.925的概率确信在1000次试验中A 发生的次数在200到300之间?分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用0.925的概率确信在1000次试验中A 发生的次数在200到300之间.解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP .95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于0.95.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(, =i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V 是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)( =====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21 是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121 近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21 独立同分布,从而其函数22221,,,n X X X 也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n 111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为0.5,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim .4.设随机变量 ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列 ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(l i m 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -, ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1 =.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设 ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x n n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列 ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P ; (D) 01lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数.(1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用?13.设5021,,,X X X 是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F 为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且Y X,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本, 2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S nS n S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么?“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。

概率论-随机现象和随机试验


例 {点数大于3}和{点数等于2}
(二) 运算:并、交、差、逆(对立)
1. A、B的并(和事件):A、B至少有一个发生。记:AB
BA
例:某种产品的合格与否是由该产品的长度与直径决定 的,则“产品不合格”为“长度不合格”和“直径不合 格”的并。
2. A、B的交(积事件):A、B同时发生。记:A B
B
A (B C) (A B) (A C) .
(4)对偶律
A B A B; A B A B .
注: A B AB, A A,
若A B,则AB B, A B A
例1
对任意两个事件A和B,与A B B不等价的是( )
(A)A B
(B)B A
(C)A B
(D) A B
例2. 设A,B,C 表示三个随机事件, 试将下列事件 用A,B,C 表示出来.
i
样 本 空 间 ={ , , , , , } 12 3 4 5 6
2.记t 为灯泡的寿命 . 样本点为t (t 0).
样本空间={t|t 0}
3.记(x,y),x,y(-,+) 为观测到的点的坐标
样本点为(x,y),x,y[0,1]
样本空间={(x,y)|x,y [0,1]}
4. 记n为抽取的次数。样本点n为4,5,6,7,8,9,10.
实例4
从一批含有正品和次品的产品中任意抽取一 个产品.
其结果可能为: 正品 、次品.
实例5
过马路交叉口时, 可能遇上各种颜色的交通 指挥灯.
其结果可能为: 绿灯、红灯、黄灯.
2.随机现象
在一定条件下可能发生也可能不发生的现象称 为随机现象.
说明
1. 随机现象揭示了条件和结果之间的不确定性 联系 。 2. 随机现象在一次观察中出现什么结果具有偶 然性, 但在大量试验或观察中,这种结果的出现具 有一定的统计规律性 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学实验四(概率论)一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布当随变量(),X B n p 时,在MATLAB 中用命令函数(,,)Px binopdf X n p =计算某事件发生的概率为p 的n 重贝努利试验中,该事件发生的次数为X 的概率。

例1 在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。

解 在MATLAB 中,输入 >>clear>> Px=binopdf(2,20,0.2) Px =0.1369即所求概率为0.1369。

2.用MA TLAB 计算泊松分布当随变量()X P λ 时,在MATLAB 中用命令函数(,)P poisspdf x lambda =计算服从参数为lambda 的泊松分布的随机变量取值x 的概率。

用命令函数(,)P poisscdf x lambda =计算服从参数为lambda 的泊松分布的随机变量在[]0,x 取值的概率。

例2 用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率.利用泊松分布计算. 25000.0025np λ==⋅=(1) P(保险公司亏本)= ()()15250025000(3020)1(15)10.0020.998kkkk P X P X C -=-<=-≤=-⋅∑=155051!k k e k -=-∑在MATLAB 中,输入 >> clear>> P1=poisscdf(15,5) P1 =0. 9999即 15505!k k e k -=∑= P1 =0.9999故 P(保险公司亏本)=1-0.9999=0.0001(2) P(获利不少于10万元)= ()()10102500250025000(30210)(10)0.0020.998k kk kk k P X P X CC -==-≥=≤=⋅≈∑∑ =10505!k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(10,5) P =0.9863即 10505!k k e k -=∑=0.9863(3) P(获利不少于20万元)= ()()525002500(30220)(5)0.0020.998k kk k P X P X C-=-≥=≤=⋅∑ =5505!k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(5,5) P =0.6160即 5505!k k e k -=∑= 0.61603.用MA TLAB 计算均匀分布当随机变量(),X U a b 时,在MATLAB 中用命令函数(),,P unifpdf x a b =计算在区间[],a b 服从均匀分布的随机变量的概率密度在x 处的值。

用命令函数 (),,P unifcdf X a b =计算在区间[],a b 服从均匀分布的随机变量的分布函数在X 处的值。

例3乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。

解 ()13P ξ<≤()()31P P ξξ=≤-≤ 在MATLAB 中,输入 >>p1=unifcdf(3,0,6) p1 =0.5000>>p2=unifcdf(1,0,6) p2= 0.1667 >>p1-p2 ans = 0. 3333即 ()13P ξ<≤=0.33334.用MA TLAB 计算指数分布当随变量()X E λ 时,在MATLAB 中用命令函数()exp ,P pdf x lamda =计算服从参数为λ的指数分布的随机变量的概率密度。

用命令函数()exp ,P cdf x lamda =计算服从参数为1λ-的指数分布的随机变量在区间[]0,x 取值的概率。

例4 用MA TLAB 计算:某元件寿命ξ服从参数为λ(λ=11000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少?解 由于元件寿命ξ服从参数为λ(λ=11000-)的指数分布, )1000(1)1000(≤-=>ξξP P 在MATLAB 中,输入 >>p=expcdf(1000,1000) p =0. 6321 >>1-p ans =0.3679即 )1000(1)1000(≤-=>ξξP P = 0.3679 再输入>>p2=binopdf(3,3,0.3679) p2 = 0.0498即3个这样的元件使用1000小时都未损坏的概率为0.0498。

5。

用MATLAB 计算正态分布当随变量()2,X N μσ 时,在MATLAB 中用命令函数(),,P normpdf K mu sigma =计算服从参数为,μσ的正态分布的随机变量的概率密度。

用命令函数(),,P normcdf K mu sigma =计算服从参数为,μσ的正态分布的随机变量的分布函数在K 处的值。

例5 用MA TLAB 计算:某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例?。

解 设随机变量ξ为设备寿命,由题意)2,10(~2N ξ )9(1)9(<-=≥ξξP P 在MATLAB 中,输入>>clear>> p1=normcdf(9,10,2) p1 =0. 3085 >>1-p1ans = 0.6915二.利用MATLAB 计算随机变量的期望和方差1. 用MATLAB 计算数学期望(1)用MATLAB 计算离散型随机变量的期望通常,对取值较少的离散型随机变量,可用如下程序进行计算:1212[,,,];[,,,];*n n X x x x P p p p EX X P '===对于有无穷多个取值的随机变量,其期望的计算公式为:0()i i i E X x p ∞==∑可用如下程序进行计算:(,0,inf)i i EX symsum x p =例6 一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值解 将产品产值用随机变量ξ表示,则ξ的分布为:产值ξ 6 5.4 5 4 0 概率p 0.7 0.1 0.1 0.06 0.04产值的平均值为ξ的数学期望。

在MA TLAB 中,输入[]654540.ξ=; []0701*******4p .....=; '*p E ξξ= =ξE54800.即产品产值的平均值为5.48.例7 已知随机变量X 的分布列如下:{}k k X p 21== ,,2,1n k = 计算.EX解 112kk EX k∞==∑ 在MA TLAB 中,输入k syms ;inf),1,,)^2/1(*(k k k symsum=ans2即 2=EX值得注意的是,对案例3.15中简单随机变量,直接用公式计算即可,不一定使用软件计算。

(2)用MATLAB 计算连续型随机变量的数学期望若X 是连续型随机变量,数学期望的计算公式为:()EX xf x dx +∞-∞=⎰程序如下:int(*(),inf,inf)EX x f x =-例8 用MATLAB 计算:假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的均匀分布,其概率密度为: 1()0a x bx b aϕ⎧≤≤⎪=-⎨⎪⎩其它计算我国该种商品在国际市场上年销售量的期望.ξE .解 ()1baE xf x dx xdx b aξ∞-∞==-⎰⎰ 在MA TLAB 中,输入;;b a x syms clearξE =int (b a x a b x ,,),/(-) ξE =1/2/(b-a)*(b^2-a^2)即 ξE =()/2a b +(3)用MATLAB 计算随机变量函数的数学期望若()g X 是随机变量X 的函数,则当X 为离散型随机变量且有分布律k k p x X P ==}{n k ,2,1(=或 21,=k )时,随机变量()g X 的数学期望为:0[()]()k k k E g X g x p ∞==∑其MA TLAB 计算程序为:[()](()*,0,inf)k k E g X symsum g x p =当X 为连续型随机变量且有概率密度)(x ϕ时,随机变量()g X 的数学期望为:⎰∞+∞-=dx x x g x g E )()()]([ϕ其MA TLAB 计算程序为:int(()*(),inf,inf)EX g x f x =-例9 利用MATLAB 计算:假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大?解 设y 为组织的货源数量,R 为收益,销售量为ξ.依题意有3()3()y R g y ξξξ⎧==⎨--⎩ y y ξξ≥<化简得3()4y g y ξξ⎧=⎨-⎩y y ξξ≥< 又已知销售量ξ服从[20,40]上的均匀分,即12040()20x x ξϕ⎧<<⎪=⎨⎪⎩ 其它于是 ()[()]()()E R E g g x x dx ξϕ+∞-∞==⎰40201()20g x dx =⎰ 402011(4)32020y yx y dx ydx =-+⎰⎰在MA TLAB 命令窗口输入>>;clear syms x y>>EY=1/20*(int((4*x-y),x,20,y)+int(3*y,x,y,40))结果显示1/10*y^2-40-1/20*y*(y-20)+3/20*y*(40-y) 将其化简,输入命令>>simplify(1/10*y^2-40-1/20*y*(y-20)+3/20*y*(40-y)) 结果显示-1/10*y^2-40+7*y再对y 在区间[]20,40上求最大值,在命令窗口输入 >>min ('1/10*^27*40',20,40)f bnd x x -+结果显示3.5000e+001即当组织35吨货源时,收益最大。

相关文档
最新文档