八年级数学第一章试题
八年级数学上册《第一章 整数指数幂》练习题-含答案(湘教版)

八年级数学上册《第一章 整数指数幂》练习题-含答案(湘教版)一、选择题1.计算(-1)0+|-2|的结果是 ( )A.-3B.1C.-1D.32.2﹣3可以表示为( )A.22÷25B.25÷22C.22×25D.(﹣2)×(﹣2)×(﹣2)3.水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为( )A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣44.3﹣2的倒数是( )A.﹣6B.6C.9D. 195.计算(﹣3a ﹣1)﹣2的结果是( )A.6a 2B. 19a 2C.- 19a 2 D.9a 2 6.若a =(12)﹣2,b=﹣|﹣12|,c=(﹣2)3,则a ,b ,c 的大小关系是( ) A.b <c <a B.b <a <c C.c <b <a D.a <c <b7.计算x 3y(x -1y)-2的结果为( )A.x 5yB.y x 5C.y 5x 2D.x 5y 2 8.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( )A.2a 5-aB.2a 5-1aC.a 5D.a 6 二、填空题9.若(2x +1)0=1,则x 的取值范围是 .10.若|a|-2=(a -3)0,则a=________.11.若(x ﹣12)0没有意义,则x ﹣2的值为____.12.计算:(﹣2xy﹣1)﹣3= .13.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为千克.14.已知a-a-1=3,则a2+a-2的值是__________.三、解答题15.计算:(﹣3)0+(﹣12)﹣2÷|﹣2|.16.计算:(12)﹣2﹣23×0.125+30+|1﹣22|;17.计算:-12 024-|1-2|+(-2)2×(12)-2+(π-1.4)0.18.计算:(﹣12)﹣1﹣2+(π﹣3.14)0﹣(﹣2)﹣3;19.用科学记数法表示下列各数:(1)0.000 003 2; (2)-0.000 000 305.20.已知式子(x-1)-12x-3+(x-2)0有意义,求x的取值范围.21.一块900 mm2的芯片上能集成10亿个元件.(1)每个这样的元件约占多少平方毫米?(2)每个这样的元件约占多少m2?参考答案1.D2.A3.C4.C5.B6.C7.A8.D9.答案为:x≠﹣12 .10.答案为:-3.11.答案为:412.答案为:﹣y38x3.13.答案为:2.1×10﹣5.14.答案为:11.15.解:原式=1+2=3.16.解:原式=4﹣8×0.125+1+22﹣1 =4﹣1+1+22﹣1=3+2 2.17.解:原式=-1-|1-2|+2×4+1 =-1-2+1+8+1=9- 2.18.解:原式=﹣238.19.解:(1)3.2×10-6.(2)-3.05×10-7.20.解:由题意得:⎩⎨⎧2x -3≠0,x -2≠0,x -1≠0, 解得⎩⎪⎨⎪⎧x ≠32,x ≠2,x ≠1.∴x ≠32且x ≠2且x ≠1. 21.解:(1)10亿=10×108=109,∴900÷109=9×10-7(mm 2).(2)1 m 2=106 mm 2,9×10-7÷106=9×10-13(m 2).。
(完整)最新人教版八年级上册数学第一章试卷

最新人教版八年级上册数学第一单元试卷一、选择题1.(2分)如图,BC ⊥AE 于点C ,CD ∥AB ,∠B=40°,则∠ECD 的度数是( )A .70° B.60° C.50° D.40°2.三角形的内角和等于( )A .90°B .180°C .300°D .360°3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.一个凸n 边形,其每个内角都是140°,则n 的值为( )A .6B .7C .8D .95.若一个三角形的两边长分别为5cm ,7cm ,则第三边长可能是 ( )A .2cmB .10cmC .12cmD .14cm6.一个钝角与一个锐角的差是( )A 、锐角B 、钝角C 、直角D 、不能确定7.(4分)如图,四边形ABCD 是菱形,AC=8,DB=6,DH ⊥AB 于H ,则DH=( )A .524B .512C .12D .24 8.如图,DE 是△ABC 中边AC 的垂直平分线,若BC=18 cm, AB=10 cm ,则△ABD 的周长为A .16 cmB .18 cmC .26 cmD .28 cm9.只用下列哪一种正多边形,可以进行平面镶嵌( )A .正五边形B .正六边形C .正八边形D .正十边形二、填空题10.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.11.△ABC 中,若已知∠A :∠B :∠C =2:3:4,则△ABC 是 三角形.12.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .13.等腰三角形的腰长为13,底边上的高为5,则它的面积为__________.14.如图,已知△ABC 中,∠A=40°,剪去∠A 后成四边形,则∠1+∠2= 度.15.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是______.16.如图所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位.17.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是 个.三、解答题18.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B=70°,∠C=30°.求:(1)∠BAE 的度数;(2)∠DAE 的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE 的度数?若能,请你写出求解过程;若不能,请说明理由.cmcm19.(本题10分)如图,ABC ∆中,AD 是高,E 、F 分别是AB 、AC 的中点。
初中数学试卷(八年级上册第一章) (含答案)

初中数学试卷(八上第一章)一、单选题(共17题;共34分)1、在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、形状无法确定【答案】C【考点】三角形内角和定理【解析】【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角和定理列式进行计算求出k 值,再求出最大的角∠A即可得解.2、某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5【答案】C【考点】三角形三边关系【解析】【分析】首先根据三角形三边关系定理:①三角形两边之和大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可.【解答】设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4,故选:C.【点评】此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.3、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个【答案】B【考点】三角形三边关系【解析】【解答】①1+4<6,不能构成三角形;②1+2=3,不能构成三角形;③3+3=6,不能够成三角形;④6+6>10,能构成三角形;⑤3+4>5,能构成三角形;故选:B.【分析】此题主要考查了三角形的三边关系.解此题不难,可以把它们边长的比,看做是边的长度,再利用“若两条较短边的长度之和大于最长边长,则这样的三条边能组成三角形”去判断,注意解题技巧.4、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A、①②③④B、①③④⑤C、②③④⑤D、①②④⑤【答案】C【考点】三角形内角和定理【解析】【解答】(1)最小内角是20°,那么其他两个角的和是160°,不能确定三角形的形状;(2)最大内角是100°,则其为钝角三角形;(3)最大内角是89°,则其为锐角三角形;(4)三个内角都是60°,则其为锐角三角形,也是等边三角形;(5)有两个内角都是80°,则其为锐角三角形.【分析】此题是三角形内角和定理和三角形的分类,关键是要知道钝角三角形、直角三角形和锐角三角形角的特征.5、如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、【答案】B【考点】三角形的稳定性【解析】【解答】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.【分析】根据三角形具有稳定性,可在框架里加根木条,构成三角形的形状.6、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性【答案】D【考点】三角形的稳定性【解析】【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【分析】根据三角形具有稳定性解答.7、如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形【答案】A【考点】三角形的角平分线、中线和高【解析】【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选:A.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.8、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°【答案】C【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故选C.【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,两式相加再减去∠A,根据三角形的内角和是180°可求解.9、已知三角形的两边长分别是4和10,则此三角形第三边长可以是()A、15B、12C、6D、5【答案】B【考点】三角形三边关系【解析】【分析】先根据三角形的三边关系求得此三角形第三边长的范围,即可作出判断。
北师大版八年级数学上册第一章章节测试题及答案 - 副本

北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.北师大版八年级数学上册第一章章节测试题及答案一、选择题(共11小题)1. 一个直角三角形的三边长分别为,,,则为A. B. C. D. 或2. 如图,一个工人拿一个米长的梯子,底端放在距离墙根点米处,另一头点靠墙,如果梯子的顶部下滑米,梯子的底部向外滑多少米?A. B. C. D.3. 如图所示,正方体的棱长为,一只蜘蛛从正方体的一个顶点爬行到另一个顶点,则蜘蛛爬行的最短距离的平方是A. B. C. D.4. 【例】下列结论中,错误的有①在中,已知两边长分别为和,则第三边的长为;②的三边长分别为,,,若,则;③在中,若,则是直角三角形;④若三角形的三边长之比为,则该三角形是直角三角形.A. 个B. 个C. 个D. 个5. 如图,有一个直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于A. B. C. D.6. 如图,有一个池塘,其底面是边长为尺的正方形,一个芦苇生长在它的中央,高出水面部分为尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边的.则这根芦苇的长度是A. 尺B. 尺C. 尺D. 尺7. 如图所示,有一个高,底面周长为的圆柱形玻璃容器,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处的点处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是A. B. C. D.8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设,,则斜边的长为A. B. C. D.10. 如图所示,矩形纸片中,,,现将其沿EF对折,使得点与点重合,则的长为A. B. C. D.11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A. 米B. 米C. 米D. 米二、填空题(共10小题)12. 如图所示,,,,,则.13. 如图,有一块直角三角形纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上,点与点重合,则长为.14. 如图,在一个长为米,宽为米的纸板上有一长方体木块,它的长和纸板宽平行且大于,木块的正面是边长为米的正方形,一只蚂蚁从处爬行到处需要走的最短路程是米.15. 已知三角形的三边长分别为,,,则此三角形面积是.16. 如图,在离水面高度为米的岸上,有人用绳子拉船靠岸,开始时绳子的长为米,此人以米每秒的速度收绳,秒后船移动到点的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在中,,,,点在上,将沿折叠,使点落在边上的点处,则的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在中,,分别以,,为边向外作正方形,面积分别记为,,,若,,则.20. 阅读下列题目的解题过程:已知,,为的三边,且满足,试判断的形状.解:,(A),(B),(C)是直角三角形.问:()上述解题过程,从哪一步开始出现错误?请写出该步的代号:;()错误的原因为;()本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索的长为尺,木柱的长用含的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边,,将折叠,使点与点重合,折痕为,求的长.23. 如图,有一只小鸟在一棵高的小树的树梢上捉虫子,它的伙伴在离该树,高的一棵大树的树梢上发出友好的叫声,该小鸟立刻以的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,,厘米,点从点开始沿边向点移动,的速度为厘米/秒.点同时从点开始沿边向移动,的速度为厘米/秒.几秒后,两点相距厘米?25. 如图所示,若,,,,,,则的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图中画一条线段,使,并标出的中点;(2)在图中画一条线段,使,并标出的中点.27. 如图,在长方形中,,,是边的中点,是线段上的动点,将沿所在直线折叠得到,连接,求的最小值.28. 如图,某学校(点)到公路(直线)的距离为,到公交站(点)的距离为,现要在公路边上建一个商店(点),使之到学校及到车站的距离相等,求商店与车站之间的距离.答案1. D2. D【解析】米,米,(米),梯子的顶部下滑米,米,米,米.梯子的底部向外滑出(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接,如图所示,爬行的最短路径为线段.由勾股定理得,,故选D.4. C【解析】①在中,已知两边长分别为和,则第三边的长为或,错误;②的三边长分别为,,,若,则,错误;③在中,若,则是直角三角形,正确;④若三角形的三边长之比为,则该三角形是直角三角形,正确;故选:C.5. A【解析】在中,由勾股定理可知:,由折叠的性质可知:,,,,,设,则,,在中,由勾股定理得:,即,解得:,.6. D【解析】设芦苇长尺,则水深尺,因为边长为尺的正方形,所以尺.在中,,解之得,即水深尺,芦苇长尺.故选:D.7. C【解析】如图展开后连接,求出的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过作于,则,,在中,由勾股定理得:,答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是.8. C【解析】A.正面向上的可能性为;B.正面不向上的可能性为;C.正面或反面向上的可能性为;D.正面和反面都不向上的可能性为.9. C【解析】设,则,,,,,,.10. B【解析】设,则 .矩形纸片中,,,现将其沿对折,使得点与点重合,.在中,,.解得 .11. A【解析】如图,在中.,米,米,,.在中,,米,,..,米,米.即小巷的宽度为米,故答案选A.12.【解析】,,,,;;.13.14.【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接,米,米,,米,妈蚁从处爬行到处需要走的最短路程为米.15.16.【解析】在中:,米,米,(米),此人以米每秒的速度收绳,秒后船移动到点的位置,(米),(米),(米),答:船向岸边移动了米.17.18. 米【解析】若假设竹竿长米,则水深米,由题意得,,解之得,.所以水深米.19.【解析】中,,,.,,,.20. C,没有考虑的情况,是等腰三角形或直角三角形21. ,【解析】;由题意可知,由勾股定理可得.22. 由题意得;设,则,,在中,根据勾股定理得:,即,解得;即.23. 这只小鸟至少经过才能到达大树和伙伴在一起.24. 秒或秒25. 在中,,,,所以,所以是直角三角形,且,在中,,,,所以,所以是直角三角形,且,所以.26. (1)如图,,点为线段的中点.(2)如图,,点为线段的中点.27. 如图,当,点在上时,的值最小.根据折叠的性质,得,所以, .因为是边的中点,,所以 .因为,所以,所以 .28. 过点作于点,,,,设,则,在中,,,.。
八年级上数学第一章测试题

八年级上册数学第一章测试题一、选择题(本大题共 11 小题,每小题 3 分,共 33 分. ?在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于 9,则它的周长是()A.17 B . 22 C .17 或22 D .133.适合条件∠A= 1∠B=1∠C的△ ABC是()23A.锐角三角形B.直角三角形 C .钝角三角形D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°5.一个多边形的内角和比它的外角的和的 2 倍还大 180°,这个多边形的边数是()A.5B.6C.7D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高 D .直角三角形斜边上的高等于斜边的一半8.能把一个三角形分成两个面积相等的三角形是三角形的()A. 高线B. 中线C. 角平分线D. 以上都不对9.已知等腰△ABC的底边BC=8cm,│ AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10、在一个四边形中,如果有两个内角是直角,那么另外两个内角( ) .(A) 都是钝角(B) 都是锐角(C)一个是锐角,一个是直角(D)互为补角11.下列图形中,是正多边形的是()A.三条边都相等的三角形B.四个角都是直角的四边形C.四边都相等的四边形D.六条边都相等的六边形(14 题)(18 题)二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.把答案填在题中横线上)12.三角形的三边长分别为5, 1+2x, 8,则 x 的取值范围是 ________.13.四条线段的长分别为5cm、6cm、8cm、13cm,?以其中任意三条线段为边可以构成___个三角形.14.如图:∠ A+∠B+∠ C+∠D+∠E+∠ F 等于 ________.15.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.16.n 边形的每个外角都等于45°,则 n=________.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形, ?它的内角和(按一层计算)是_______度.18.如图,已知∠ 1=20°,∠ 2=25°,∠ A=55°,则∠ BOC的度数是 _____.19.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.三、解答题(本大题共 4 小题,共 43 分,解答应写出文字说明,?证明过程或演算步骤)20.(10 分)如图, BD平分∠ ABC,DA⊥ AB,∠ 1=60°,∠ BDC=80°,求∠ C的度数.21.(10 分)如图:(1)画△ ABC的外角∠ BCD,再画∠ BCD的平分线CE.(2)作出 AC边上的高。
八年级上册数学第一章试卷【含答案】

八年级上册数学第一章试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 下列哪个数是负数?A. -3B. 0C. 3D. 65. 下列哪个数是立方数?A. 8B. 9C. 10D. 11二、判断题(每题1分,共5分)1. 2是偶数。
()2. 1是质数。
()3. -5是正数。
()4. 4的平方根是2。
()5. 1千等于1000。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 6的平方是______。
3. 10的立方是______。
4. 2的平方根是______。
5. 3的立方根是______。
四、简答题(每题2分,共10分)1. 请简述偶数和奇数的区别。
2. 请简述质数和合数的区别。
3. 请简述正数和负数的区别。
4. 请简述平方和立方的区别。
5. 请简述因数和倍数的区别。
五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下多少个?2. 一个长方形的长度是6米,宽度是3米,求这个长方形的面积。
3. 一个正方形的边长是4厘米,求这个正方形的面积。
4. 一个数的平方是36,求这个数。
5. 一个数的立方是27,求这个数。
六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个数的平方是64,这个数是正数还是负数?为什么?2. 请分析并解答以下问题:一个数的立方是8,这个数是正数还是负数?为什么?七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。
2. 请用直尺和圆规画一个直径为6厘米的圆。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上的滚动摩擦小于滑动摩擦。
2. 设计一个电路,当温度超过一定阈值时,自动报警。
鲁教版(五四制)八年级数学上册第一章综合测试卷含答案

鲁教版(五四制)八年级数学上册第一章综合测试卷一、选择题(每题3分,共36分)1.【2023·济宁任城区月考】下列从左至右的变形,属于因式分解的是( )A .4a 2-8a =a (4a -8)B .-x 2+y 2=(-x +y )(-x -y )C .x 2-x +14=⎝ ⎛⎭⎪⎫x -122D .x 2+1=x ⎝⎛⎭⎪⎫x +1x2.【2023·泰安泰山区月考】多项式8a 3b 2+12ab 3c 的公因式是( )A .abcB .4ab 2C .ab 2D .4ab 2c3.【2023·淄博张店区月考】下列式子中,分解因式结果为(3a -y )(3a+y )的多项式是( ) A .9a 2+y 2 B .-9a 2+y 2 C .9a 2-y 2 D .-9a 2-y 24.【2023·东营期末】下列各式中不能用公式法分解因式的是( )A .x 2-4B .-x 2-4C .x 2+x +14 D .-x 2+4x -45.将下列多项式因式分解,结果中不含因式x -1的是( )A .x (x -3)+(3-x )B .x 2-1C .x 2-2x +1D .x 2+2x +1 6.简便计算:(-2)100+(-2)101=( )A.-2100 B.-2101C.2100 D.-27.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的数字是()A.8,1 B.16,2C.24,3 D.64,88.已知a=2b-5,则代数式a2-4ab+4b2-5的值是() A.20 B.0C.-10 D.-309. 如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M表示其底面积与侧面积的差,则M可因式分解为()A.(b-6a)(b-2a)B.(b-3a)(b-2a)C.(b-5a)(b-a)D.(b-2a)210.【母题:教材P17复习题T5】248-1能被60到70之间的某两个整数整除,则这两个整数是()A.61和63 B.63和65C.65和67 D.64和6711.【2023·烟台期中】已知M=3x2-x+3,N=2x2+3x-1,则M,N的大小关系是()A.M≥N B.M>NC.M≤N D.M<N12.若(b-c)2=4(1-b)(c-1),则b+c的值是()A.-1 B.0 C.1 D.2二、填空题(每题3分,共18分)13.【2022·常州】分解因式:x2y+xy2=________.14.多项式9a2-4b2和9a2+12ab+4b2的公因式是________.15.若4x2-(k-1)x+9能用完全平方公式因式分解,则k的值为________.16.若关于x的二次三项式x2+kx+b因式分解为(x-1)(x-3),则k+b的值为________.17.已知a+b=2,则a2-b2+2a+6b+2的值为________.18.多项式4a2-9b n(其中n是小于10的自然数,b≠0)可以分解因式,则n能取的值共有______个.三、解答题(19题12分,20题6分,24,25题每题12分,其余每题8分,共66分)19.【2023·东营广饶县月考】因式分解:(1)y (y +4)-4(y +1); (2)(x 2+1)2-4x 2; (3)12x 2+xy +12y 2;(4)x (x -y )(a -b )-y (y -x )(b -a ).20.【母题:教材P 7习题T 4】用简便方法计算:(1)2 0232-2 0242; (2)2.22+4.4×17.8+17.82.21.已知x+y=5,(x-2)(y-2)=-3,求下列代数式的值.(1)xy;(2)x2+4xy+y2;(3)x2+xy+5y.22.阅读:已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2-b2)(a2+b2). ②∴c2=a2+b2. ③∴△ABC是直角三角形. ④请根据上述解题过程回答下列问题:(1)上述解题过程,从第几步(该步的序号)开始出现错误,错误的原因是什么?(2)请你将正确的解题过程写下来.23.小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,割去半径为r的四个小圆,如图所示,小刚测得R=6.8 dm,r=1.6 dm,他想知道剩余部分(阴影部分)的面积,你能利用所学的因式分解的知识帮他计算吗?请写出求解过程.(结果保留π)24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2.实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是________________.(2)现有足够多的如图C所示的正方形和长方形卡片.①若要拼出一个面积为(a+2b)(a+b)的长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形(每两张卡片之间既不重叠,也无空隙),使该长方形的面积为2a2+5ab+2b2,并利用图形面积对2a2+5ab+2b2进行因式分解.25.【2023·烟台芝罘区期中】整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2-4x)(x2-4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1-2-3-…-2023)×(2+3+…+2024)-(1-2-3-…-2024)×(2+3+…+2023).答案一、1.C 2.B3.C 4.B5.D【点拨】A.原式=(x-3)(x-1);B.原式=(x+1)(x-1);C.原式=(x-1)2;D.原式=(x+1)2.6.A【点拨】(-2)100+(-2)101=2100-2101=2100(1-2)=-2100. 7.B【点拨】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x -2)=(x2+4)(x2-4)=x4-16,则■=16.8.A【点拨】∵a=2b-5,∴a-2b=-5,∴a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=25-5=20.9.A【点拨】底面积为(b-2a)2,侧面积为a·(b-2a)·4=4a(b-2a),∴M=(b-2a)2-4a·(b-2a)=(b-2a)(b-2a-4a),=(b-2a)(b-6a).10.B【点拨】248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)×65×63.11.A【点拨】∵M-N=(3x2-x+3)-(2x2+3x-1)=3x2-x+3-2x2-3x+1=x2-4x+4=(x-2)2≥0,∴M≥N.12.D【点拨】∵(b-c)2=4(1-b)(c-1),∴b2-2bc+c2=4c-4-4bc+4b,∴(b2+2bc+c2)-4(b+c)+4=0,∴(b+c)2-4(b+c)+4=0,∴(b+c-2)2=0,∴b+c=2.二、13.xy(x+y)14.3a+2b【点拨】9a2-4b2=(3a+2b)(3a-2b),9a2+12ab+4b2=(3a+2b)2,∴公因式是3a+2b.15.13或-1116.-117.10【点拨】∵a+b=2,∴a2-b2+2a+6b+2=(a+b)(a-b)+2a+6b+2=2(a-b)+2a+6b+2=2a-2b+2a+6b+2=4a+4b+2=4(a+b)+2=4×2+2=10.18.5 【点拨】多项式4a 2-9bn (其中n 是小于10的自然数,b ≠0)可以分解因式,则n 能取的值为0,2,4,6,8,共5个.三、19.解:(1)原式=y 2+4y -4y -4=y 2-4=(y +2)(y -2).(2)原式=(x 2+1+2x )(x 2+1-2x )=(x +1)2(x -1)2.(3)原式=12(x 2+2xy +y 2)=12(x +y )2.(4)原式=x (x -y )(a -b )-y (x -y )(a -b )=(x -y )(a -b )(x -y )=(x -y )2(a -b ).20.解:(1)原式=(2 023+2 024)×(2 023-2 024)=4 047×(-1)=-4 047.(2)原式=2.22+2×2.2×17.8+17.82=(2.2+17.8)2=202=400.21.解:(1)∵(x -2)(y -2)=-3,∴xy -2(x +y )+4=-3.∵x +y =5,∴xy =3.(2)∵x +y =5,xy =3,∴x 2+4xy +y 2=(x +y )2+2xy =25+6=31.(3)x 2+xy +5y =x (x +y )+5y ,∵x +y =5,∴x 2+xy +5y =5x +5y =5(x +y )=5×5=25.22.解:(1)从第③步开始出现错误,错误的原因是忽略了a 2-b 2=0的可能.(2)正确的解题过程如下:∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2).∴c2(a2-b2)-(a2+b2)(a2-b2)=0.∴(a2-b2)(c2-a2-b2)=0.∴c2-a2-b2=0或a2-b2=0.∴c2=a2+b2或a=b.∴△ABC是直角三角形或等腰三角形.23.解:剩余部分的面积为πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).将R=6.8 dm,r=1.6 dm代入上式,得π×(6.8+3.2)×(6.8-3.2)=36π(dm2).24.解:(1)(2n)2=4n2(2)①1;2;3②如图.2a2+5ab+2b2=(2a+b)(a+2b).25.解:(1)①没有;最后的结果为(x+1)4.②设x2-4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2-4x+4)2=(x-2)4.(2)设x=1-2-3-…-2 023,y=2+3+…+2 024,则1-2-3-…-2 024=x-2 024,2+3+…+2023=y-2 024,x+y=1+2 024=2 025,所以原式=xy-(x-2 024)(y-2 024)=xy-xy+2 024(x+y)-2 0242=2 024×2 025-2 0242=2 024(2 024+1)-2 0242=2 024.。
八年级(上)数学第一章测试题

八年级(上)数学第一章 《勾股定理》测试题一、 选择题1、若一个直角三角形的一条直角边长是7cm ,比斜边短1cm ,则斜边长为( )A 、18cmB 、20cmC 、24cmD 、25cm2、一架2.5米长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,如果梯子的顶端延墙下滑0.4m ,那么梯脚移动的距离是( )A 、1.5mB 、0.9mC 、0.8mD 、0.5m3、若等腰三角形腰长为10cm ,底边长为16cm ,那么它的面积为( )A 、48cm 2B 、36 cm 2C 、24 cm 2D 、12 cm 24、观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )A 、1组B 、2组C 、3组D 、4组5、如图,在Rt △ABC 中,∠C=900,D 为AC 上一点,且DA=DB=5,如果△DAB 的面积为10,那么DC 的长是( )A 、4 B 、3 C 、5 D 、4.56、如图,一块直角三角形的纸片,两直角边AC=6cm ,BC=8cm 。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A 、2cmB 、3cmC 、4cmD 、5cm7、在△ABC 中,AB=15,AC=13,高AD=12,则三角形的周长是( )A 、42B 、32C 、42或32D 、37或338、已知一直角三角形的木板,三边的平方和为1800cm 2,则斜边长为( )A 、30mB 、80mC 、90mD 、120m9、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A 、900B 、600C 、450D 、30010、 已知χ,y 为正数,且()024322=+--y x ,如果以χ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积是( )A 、5B 、25C 、7D 、15二、填空题11、在锐角△ABC 中,A D ⊥BC ,AD=12,AC=13,BC=14,则AB= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 水平测试
姓名 评价
一、选择题
1. 下列结论错误的是( )
(A )三个角度之比为1∶2∶3的三角形是直角三角形; (B )三条边长之比为3∶4∶5的三角形是直角三角形; (C )三条边长之比为8∶16∶17的三角形是直角三角形; (D )三个角度之比为1∶1∶2的三角形是直角三角形。
2. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( ) (A ) 小丰认为指的是屏幕的长度 (B ) 小丰的妈妈认为指的是屏幕的宽度
(C ) 小丰的爸爸认为指的是屏幕的周长 (D ) 售货员认为指的是屏幕对角线的长度. 3. 下列各组数中不能作为直角三角形的三边长的是( )
(A ) 1.5,2,3 (B ) 7,24,25 (C ) 6,8,10 (D ) 9,12,15. 4. 直角三角形两直角边长分别为3和4,则它斜边上的高是( )
(A ) 3.5 (B ) 2.4 (C )1.2 (D ) 5. 5. 长方形的一条对角线的长为10cm ,一边长为6cm ,它的面积是( ).
(A )60cm 2
(B )64 cm 2
(C )24 cm 2
(D )48 cm 2
6. 斜边为cm 17,一条直角边长为cm 15的直角三角形的面积是( ) (A) 60 (B) 30 (C) 90 (D) 120
7. 如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) (A ) 12米 (B ) 13米 (C ) 14米 (D ) 15米
8. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿了钱去图书馆,小芳到家用了6分,从家到图书馆用了8分,小芳从公园到图书馆拐了个( )角.
(A )锐角 (B )直角 (C )钝角 (D )不能确定
9. 如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路 程( 取3)是( ).
(A )20cm (B )10cm (C )14cm (D )无法确定
10. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( ) (A ) 2m (B ) 2.5m (C ) 2.25m (D ) 3m 二、填空题
11、如图,带阴影的正方形面积是 .
5米 3米
12、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
13、如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________. 14、如图,由Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm ,则正方形M 与正方形N 的面积之和为 2
cm .
15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的
边长为7cm,则正方形A ,B ,C ,D 的面积之和为 cm 2
.
16、 传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘米,______厘米,________厘米.
17.一座桥横跨一江,桥长12m ,一艘小船自桥北头出发,向正南方向驶去,由于水流原因,到达南岸以后,发现已偏离桥南头5m ,则小船实际行驶了___________________m.
A
B A
B
C
D
7cm
8 6
第11题
第12题
第13题
第14题 第15题
三、解答题
18、如图,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.
3米
4米20米
19、如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?
A
E B
M
D
C H
C
F
20、如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
C
A D
B
21、如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距
离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
C
A1
B1
A
B
22、如图,在边长为
c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为
a,b.利用这个图试说明勾股定理?
23.学校校内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化校
园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?
C
第21题图。