一元函数微分学内容概要总结

合集下载

一元函数微分学总结

一元函数微分学总结

一元函数微分学总结
一元函数微分学是微积分中的一个重要分支,研究的是一元函数的变化率以及相关的性质。

在这篇总结中,我们将介绍一元函数微分学的基本概念和公式,并拓展一些应用和实际问题。

一元函数微分学的基本概念包括导数、微分和微分方程。

导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率。

计算导数的方法有几何法和代数法,其中代数法包括极限、求导法则和链式法则等。

微分是导数的微小变化,表示函数的增量与自变量的增量之间的关系。

微分方程是含有未知函数及其导数的方程,研究的是函数与其导数之间的关系。

在一元函数微分学中,有许多重要的公式和定理。

其中,导数的四则运算规则包括常数法则、幂法则、指数函数法则、对数函数法则等。

另外,还有著名的中值定理,如拉格朗日中值定理、柯西中值定理和罗尔中值定理等,用于分析函数在某一区间内的变化情况。

一元函数微分学的应用十分广泛。

在物理学中,微分学的应用包括速度、加速度、力等的计算,以及运动学和动力学问题的解决。

在经济学和金融学中,微分学的应用包括边际效应、收益曲线和成本曲线的分析,以及最优化问题的求解。

在工程学中,微分学的应用包括电路分析、控制论和信号处理等。

此外,一元函数微分学还可以用于解决
最优化问题、曲线拟合、数据分析和预测等实际问题。

总之,一元函数微分学是微积分的重要组成部分,研究的是一元函数的变化率和相关性质。

通过导数、微分和微分方程等概念和公式的运用,可以解决各种实际问题,并在许多学科领域中发挥重要作用。

[整理]一元函数微分学.

[整理]一元函数微分学.

第二章 一元函数微分学§2.1 导数与微分(甲) 内容要点 一、导数与微分概念 1、导数的定义设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ∆,相应地函数增量)()(00x f x x f y -∆+=∆。

如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0x x y =',x x dxdy=,)(x x dxx df =等,并称函数)(x f y =在点0x 处可导。

如果上面的极限不存在,则称函数)(x f y =在点0x 处不可导。

导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆,则0000()()()l i m x x f x f x f x x x →-'=- 我们也引进单侧导数概念。

右导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→-+∆-'==-∆ 左导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x---→∆→-+∆-'==-∆ 则有:)(x f 在点0x 处可导)(x f ⇔在点0x 处左、右导数皆存在且相等。

2.导数的几何意义与物理意义如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。

切线方程:000()()()y f x f x x x '-=- 法线方程:00001()()(()0)()y f x x x f x f x '-=--≠'设物体作直线运动时路程S 与时间t 的函数关系为)(t f S =,如果0()f t '存在,则0()f t '表示物体在时刻0t 时的瞬时速度。

一元函数微分学

一元函数微分学

一元函数微分学微积分是数学中一个非常重要的分支,它研究连续与变化。

微分学是微积分中的一部分,它研究一元函数的变化率和切线问题。

在工科、理工科及金融等领域,微分学都是必修的一门学科。

一、导数一个函数的导函数即为该函数的导数。

导数表示函数在某点处的变化率,也可以理解为以该点处斜率为切线的直线方程。

导数的定义如下:$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$其中,f(x)表示函数在x点处的取值,h表示x的变化量。

导数是对变化量和量的一个测量,它也可以被解释为函数的瞬时变化率。

在求导数时,我们需要注意函数是否连续,导数是否存在,同时还需考虑到函数在自变量为非自然数时的导数。

二、微分微分是在导数的基础上增加了一些附加的概念,它是由函数在一个点处的导数以及该点处的自变量与函数值所组成的。

微分的定义不是很直接,但是我们可以从定义出发进行理解:设函数y=f(x),在x点的微分dy=dx*f'(x)。

其中,dx表示x的增量,dy表示y的增量,f'(x)表示在x处的导数。

可以看出,微分有一个重要的作用,就是可以得到函数在某个点处的极小增量。

即在当前的点位置,函数的变化量以及对应的变量量。

微分还可以解决一些求和问题和变量替换问题的计算。

三、函数图像的切线函数图像的切线是函数图像在某个点的斜率。

在此前提下,我们可以通过导数求出函数图像在任意一个点上的斜率。

通过直线方程就可以求出函数图像在该点的切线。

求解函数图像的切线需要确定该点的横坐标和纵坐标,然后求出导数,最后代入方程即可。

四、一元函数微分学应用微分学的应用非常广泛。

在物理学中,微分学可以用于描述物体的运动,地球的形变和能源泄露等问题。

在金融学中,微分学可以用于计算股市的波动和证券价格的变化等问题。

在自然科学中,微分学可以用于解决生物学的遗传学和数学物理学中的加速和速度问题等。

总之,一元函数微分学是微积分中最基础的内容。

一元函数微积分学内容提要

一元函数微积分学内容提要

第四部分 一元函数微积分第11章 函数极限与连续[内容提要]一、函数:(138-141页)1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。

2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反三角函数的统称);复合函数([()]y f x ϕ=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。

3、函数的特性:奇偶性;单调性;周期性;有界性.二、极限:1、极限的概念:(141-142页)定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞→lim ,若{}n x 没有极限,则称数列{}n x 发散。

定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,)U x δo内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0。

左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作00(0)lim ()x x f x f x A -→-==。

右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作00(0)lim ()x x f x f x A +→+==。

一元函数微分积分总结

一元函数微分积分总结
有理函数类1整形分式部分分式法通解dx分离常数得既约真分式与多项式qx因式分解化为部分分式和待定系数后比较系数还可以结合赋值求导数取极限等化为2三角有理式logorcosxsinxrcosxsinxrcosxsinxrcosxsinxrcosxsinxrcosxsinx3可有理化的无理式三角换元代数换元万能代换通解特殊代换euler代换消除平方项注
分离常数得既约真分式与多项式 Q(x)因式分解化为部分分式和
——待定系数后比较系数(还可以结合赋值,求导数,取极限等)
——化为
I
k
=∫
dx
( x − a)
k
类与 J k = ∫
Bx + C
( x 2 +bx + c)
k
dx 类
(2)三角有理式
㈠万能代换(通解) ㈡特殊代换 R(cosx,sinx)=-R(cosx,-sinx) R(cosx,sinx)=-R(-cosx,sinx) R(cosx,sinx)=R(-cosx,-sinx) (3)可有理化的无理式 ㈠三角换元 ㈡代数换元
I m = ∫ 0 (sin x) dx = ∫ 0 2 (cos x) m dx
2 m
π
π
LOGO
5.广义积分—极限观点 ①无穷积分

+∞ a
f ( x)dx = lim ∫ f ( x)dx
b → +∞ b a
②瑕积分
∫ b f ( x)dx = lim ∫ b +ε f ( x)dx a a
LOGO
一元函数微分与积分总结
“Light Moon”学习俱乐部 Moon”学习俱乐部
LOGO
一、求不定积分
1. 积分基本公式 ① ∫ kdx ② ③

第二章 一元函数微分学

第二章 一元函数微分学

第二章 一元函数微分学一.与导数的定义有关的考点 先回顾导数的定义: 设函数()x f y =在()x U内有定义,如果极限()()x x x f x f x x 000lim--→存在,则称()x f y =在x 0处可导,x 0称为函数()x f 的可导点,且称上述极限值为函数()x f 在x 0处的导数,记为:|0x dx dy x =或|0x dx dfx =;或简记为()x f 0'. 注意导数的本质是瞬时变化率,它还有另外两种常见的等价定义: 1.()x f 0'=()()xf x f x x x ∆-∆+→∆000lim;2.()()()00lim.x fh f f x hx xx →+-'=;要特别关注0x =处的导数有特殊形式:()()()00lim.x f x f f x→-'=(更特别地,()()()()()000lim.00x f x f f f x→-'==如。

要知道两个重要的结论:1.可导必连续;2。

函数()x f y =在x 0处可导的充要条件是()()//00.f x f x -+=对于分段函数在分段点处的可导性,一定从要考察其左、右导出发.例1.已知()x f 0'=A ,试求下列极限的值 (1)()());(lim000A xf x f x x x -=∆-∆-→∆(2)。

()());4(3lim000A xx f x f x x x =∆∆--∆+→∆例2.研究函数()||x x f =在0=x 处的可导性. 解:因为()()()/000lim lim 1000x x f x f x f x x---→→---===-- 同理,可求得()10/=+f .由于()()00//f f +-≠,所以()||x x f =在0=x 处不可导。

(记住这个结论)练习:设()()2,0,1,0.axe xf x b x x ⎧≤⎪=⎨->⎪⎩在0x =处可导,求,a b 的值. 解:(一)因为()f x 在0x =处可导,从而()f x 在0x =处也连续.所以,()()0lim lim ,x x f x f x -+→→=即 1.b = (二)()()()/00010limlim ;0ax x x f x f e fa x x---→→--===- ()()()()22/001120limlim lim 2.0x x x f x f x x xfx xx+--+→→→----====-- 由()()//00f f -+=,得2a =-.例3. 已知()x x f 2=,试求()x f 在2=x 处的导数.解:因为2224lim lim(2)42x x x x x →→-=+=-,所以,()2 4.f '=由此例可见,在导数存在的情况下,求导问题就归结为求一个0型的极限.故求导就是求极限,不必多举例,今后很少针对具体函数计算在一点处的导数值. 如把函数在一点x 0处可导的概念推广到一个区间,则可得到导函数的概念.大家要牢记基本导数表(共十五、六条)。

《数学分析》第三章 一元函数微分学

《数学分析》第三章 一元函数微分学

第三章一元函数微分学一、本章知识脉络框图二、本章重点及难点微分学是数学分析的核心内容之一,导数是微分学的重要概念,用导数研究函数的性质是数学分析研究函数的一个特征.数学分析中的积分学、级数理论等也与导数有密切的联系.本章首先引入了函数导数与微分的概念;分析了可导性与连续性的联系;进而又讲述了导数的计算与高阶导数;最后介绍了几个比较重要的微分中值定理与导数的应用. 在学习过程中我们要注意导数与微分的概念及其实际意义;微分中值定理及其应用.本章的重点与难点主要有以下几个方面:● 函数导数的概念、可导性与连续性的关系;费马定理、导函数的介值定理;导数的运算(复合函数、反函数的求导法则);掌握参变量方程所确定的函数的导数;高阶导数的概念及其求法.● 微分(含高阶微分)概念的理解及其运算法则;函数连续性、可导性、可微性之间的关系.● 拉格朗日定理、柯西中值定理、泰勒定理及它们定理的应用推广;极值的三个充分条件及其证明过程;对函数凸性概念的理解及相关命题的证明;函数图象性态的列表表示法.三、本章的基本知识要点(一)导数与微分1. 设函数)(x f y =在点0x 的某邻域内有定义,若极限)()(lim00x x x f x f x x --→存在,则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作)(0x f ' 类似的,定义函数f 在点0x 处的左导数与右导数:x x f x x f x f x ∆-∆+='-→∆-)()(lim )(0000,)(0x f +'xx f x x f x ∆-∆+=+→∆)()(lim 000右导数和左导数统称为单侧导数.2. 设函数()x f y =定义在点0x 的某邻域()0x U 内.当给0x 一个增量x ∆,()00x U x x ∈∆+时,相应地得到函数的增量为()()00x f x x f y -∆+=∆.如果存在常数A ,使得y ∆能表示成()x x A y ∆+∆=∆则称函数f 在点0x 可微,并称()1式中的第一项x A ∆为f 在点0x 的微分,记作x A dy x x ∆==0或 ()x A x df x x ∆==0.由定义可见,函数的微分与增量仅相差一个关于x ∆的高阶无穷小量,由于dy 是x ∆的线性函数,所以当0≠A 时,也说微分dy 是增量y ∆的线性主部.容易看出,函数f 在点0x 可导和可微是等价的. 3. 导数与微分的基本性质.(1)(有限增量公式)若f 在点0x 可导,则()()x x x f y ∆+∆'=∆ 0(0→∆x );(2)(可导的充要条件)若函数)(x f y =在点0x 的某邻域内有定义,则)(0x f '存在⇔)(0x f +'与)(0x f -'都存在,且)(0x f +'=)(0x f -'; (3)(可导与可微的关系)函数f 在点0x 可导和可微是等价的;(4)(可微与连续性的关系)若f 在点0x 可微,则f 在点0x 必连续(反之不真);(5)(导数的几何意义)导数的几何意义解释是曲线的斜率,即函数f 在点0x 的导数)(0x f '是曲线)(x f y =在点)(0,0y x 的切线斜率若α表示这条切线与x 轴正向的夹角,则)(0x f '.tan α=从而0)(0>'x f 意味着切线与x 轴正向的夹角为锐角;0)(0<'x f 意味着切线与x 轴正向的夹角为钝角;0)(0='x f 示切线与x 轴平行;(6)(费马定理)设函数f 在点0x 的某邻域内有定义,且在点0x 可导.若点0x 为f 的极值点,则必有.0)(0='x f我们称满足方程)(x f '的点为稳定点.(7)(达布定理)若函数f 在],[b a 上可导,且)()(b f a f -+'≠',k 为介于)(a f +',)(b f -'之间任一实数,则至少存在一点),(b a ∈ξ,使得k f =')(ξ.4.求导(微分)法则.(1)(线性法则)'')'(g f g f βαβα±=±(其中βα,为常数); (2)(乘积法则)'')'(g f g f g f +=; (3)(商法则)22')'1(,'')'(g g g g fg g f g f -=-=(其中0≠g ); (4)(复合函数求导法则))())(()))(((x g x g f x g f ''='(也称链式法则);(5)(反函数求导法则)dxdydx dy 1=; (6)(莱布尼茨法则)()(),)(0)(k k n kn nk n g f C g f -=∑= 其中)!(!!k n k n C k n -=是组合系数.5. 若函数f 的导函数'f ,在点0x 可导,则称'f ,在点0x 的导数为f 在点0x 的二阶导数,记作()0''x f,即()()()0''00''0limx f x x x f x f x x =--→同时称f 在点0x 为二阶可导.利用数学归纳法可由f 的1-n 阶导函数定义f 的n 阶导函数(或简称n 阶导数),二阶以及二阶以上的导数都称为高阶导数,函数f 在点0x 处的n 阶导数记作 ()()()00||,0x x n n x x n n dxyd yx f==或 相应地,n 阶导函数记作: ()()n n n n dx y d y f或,.这里n n dx y d 亦写作为y dxd n n.6. 一阶微分形式不变性:不管u 是自变量还是中间量,f 的一阶微分始终具有()du u f u df '=)(的形式.7.基本初等函数的求导公式 (1)0)'(=c (c 为常数); (2)1)'(-=αααxx (α为任意实数);(3)x x x x sin )'(cos ,cos )'(sin -==; (4)x x x x 22csc )'(cot ,sec )'(tan -== x x x x x x c o t c s c )'(csc ,tan sec )'(sec -== (5)xxxxe e a a a ==)'(,ln )'(;(6)).1(ln ,ln 1)'(log xx a x x a == (二)微分中值定理1.罗尔中值定理 若函数f 满足如下条件:(i)f 在闭区间[]b a ,上连续;(ii)f 在开区间()b a ,内可导;(iii)()()b f a f =,则在()b a ,内至少存在一点ξ,使得()0='ξf .罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线.注 定理中的三个条件缺少任何一个,结论将不一定成立.2. 拉格朗日(Lagrange )中值定理 若函数满足如下条件:()fi 在闭区间[]b a ,上连续;()f ii 在开区间()b a ,内可导, 则在()b a ,内至少存在一点ξ,使得()()()ab a f b f f --='ξ. 显然,特别当()()b f a f =时,本定理的结论即为罗尔定理的结论,这表明罗尔定理是拉格朗日定理的一个特殊情形.拉格郎日中值定理的几何意义是:在满足定理条件的曲线)(x f y =上至少存在一点))(,(ξξf P ,该曲线在该点出的切线平行于曲线俩短点的连线,我们在证明中引入的辅助线函数)(x F ,正是曲线=y )(x f 与直线ab a f b f a f y AB --+=)()()(()(a x -)之差.定理的结论称为拉格朗日公式。

一元函数微分学知识点

一元函数微分学知识点

一元函数微分学知识点一元函数微分学是微积分中的重要内容,它主要研究函数的变化率和极值问题。

微分学中的主要概念包括导数、微分以及一些常见函数的微分法则。

下面将依次介绍这些知识点。

一、导数导数是描述函数变化率的重要工具。

给定一个函数f(x),在某一点x 处的导数表示函数在该点的变化速率。

导数可以用极限来定义,即导数等于函数在该点处的极限值。

导数的记号常用f'(x)或者dy/dx 表示。

导数有几个重要的性质,包括线性性、乘积法则、商法则和链式法则。

线性性表示导数运算具有线性性质,即对于任意常数a和b,有(a*f(x) + b*g(x))' = a*f'(x) + b*g'(x)。

乘积法则描述了两个函数相乘的导数计算方法,即(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)。

商法则是用来计算两个函数相除的导数,即(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/g(x)^2。

链式法则适用于复合函数,即若有一个函数h(x) = f(g(x)),则h'(x) = f'(g(x))*g'(x)。

二、微分微分是导数的一种应用,它可以用来近似计算函数在某一点的值。

微分的记号常用dx表示,它表示函数在某一点的微小变化。

微分的计算公式是dy = f'(x)*dx,其中dy表示函数在x处的微小变化,dx表示自变量的微小变化。

微分和导数之间有一个重要的关系,即导数是微分的极限形式。

当自变量的微小变化趋于0时,微分就变成了导数。

因此,导数可以用微分来近似计算。

三、常见函数的微分法则在微分学中,有一些常见函数的微分法则被广泛应用。

这些函数包括常数函数、幂函数、指数函数、对数函数和三角函数。

对于常数函数f(x) = C,其中C为常数,它的导数为f'(x) = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。

以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。

微分是函数在某一点附近的线性近似,常用符号表示为dy。

2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。

3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。

4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。

5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。

6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。

7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。

以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。

希望能对你有所帮助。

相关文档
最新文档