一元函数微积分学内容提要

合集下载

一元函数微积分重点

一元函数微积分重点

微积分的基本内容可以分为三大块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数和常微分方程与差分方程。

一元函数微积分学的知识点是考研数学三微积分部分出题的重点,应引起重视。

多元函数微积分学的出题焦点是二元函数的微分及二重积分的计算。

无穷级数和常微分方程与差分方程考查主要集中在数项级数的求和、幂级数的和函数、收敛区间及收敛域、解简单的常微分方程等。

一、熟记基本内容事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。

阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。

对基本内容的复习不能只注重速度而忽视质量。

在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。

二、紧抓内容重点在看教材及辅导资料时要依三大块分清重点、次重点、非重点。

阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。

比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。

三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。

这个部分也是每年必定会出题考查的,必须引起注意。

多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。

无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。

三、检测学习效果大量做题是学习数学区别与其他文科类科目的最大区别。

在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。

第2章 一元函数微分学

第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。

高等数学 一 微积分》讲义

高等数学 一 微积分》讲义

2
11/69
( 2 ) 因 为 ex2 − 1 ~ x2 ,
sin 3x
~
3x
,1−
cos 2x
~
1 2
(2
x
)2
=
2x2

ln(1 + x) ~ x
( ) 所以
e x2 − 1 sin 3 x lim x→0 (1 − cos 2 x)ln(1 +
x)
= lim x→0
x2 ⋅(3x) (2x2)⋅ x
3n+2
=
lim
1 5

1 52
( 4 )n−1 5
n→∞ 1 + 3( 3 )n+1
5
=
1− 5
1 52
lim( 4 )n−1 n→∞ 5
=
1
1 + 3lim( 3 )n+1 5
n→∞ 5
(2)
lim
x − cos x
=
lim
1−
cos x x
=1
x→+∞ x − sin x x→+∞ 1 − sin x
=

1⎜
2
lim
x→0
⎜ ⎜
sin x 2
x
⎞2 ⎟ ⎟ ⎟
=
1 2
2
⎝2⎠
π
(4)lim(nsin π ) =
n→∞
n
limπ
n→∞
sin

n
π

π
lim(nsin )
n→∞
n
n
10/69
注意:等价无穷小
x → 0时, x ~ sin x, x ~ tan x, x ~ arcsin x , 1 − cos x ~ x2 2

一元函数微积分学知识点总结

一元函数微积分学知识点总结

一元函数微积分学知识点总结
学习数学能使人们更符合逻辑、更有条理、更严密、更准确、更深入地思考和解决问题,能增强人们的好奇心、想象力和创造性。

导数
微分
不定积分
定积分
变限积分
反常积分
求导数
1.复合函数求导
2.分段函数求导
3.隐函数求导
4.高阶导数求导
求积分
1.凑积分法
2.换元法
3.分部积分法
4.有理函数积分法
5.运用牛顿-莱布尼茨公式
几何应用(数一、数二、数三)
1.导数的几何应用:“三点两性一线”(极值点、最值点、拐点、单调性、凹凸性、渐近线)
2.积分的几何应用:利用定积分计算平面图形的面积、旋转体的体积和函数的平均值
物理应用(数一、数二)
1.变化率问题
2.静水压力
3.抽水作功
4.质点引力
经济应用(数三)
1.边际
2.弹性
3.积分的简单经济应用
中值定理的证明
求方程的根
不等式的证明
等式的证明
【注】整个高数上册就是在讲一元函数微积分,复习这部分要整体把握,先把整个知识框架了熟于心,在复习过程中多总结知识点之间的联系。

由于最近五一集训营和真题大全解的事情比较忙,知识点精讲一直没有更新,真题出来之后五月份我会重点多讲解知识点,把整个一元函数部分每个知识点梳理一遍,希望同学们多多体谅!。

第2章--一元函数微分学

第2章--一元函数微分学

即 y lim f ( x x) f ( x)
x0
xቤተ መጻሕፍቲ ባይዱ
或 f ( x) lim f ( x h) f ( x) .
h0
h
注意: 1. f ( x0 ) f ( x) xx0 .
12
2.导函数(瞬时变化率)是函数平均变化率的逼近函 数.
播放 13
由定义求导数步骤:
(1) 求增量 y f (x x) f (x);
,
解得
x01
1,
x02
1,
从而知过点(0,-1)可作两条直线与 y x2 相切,
其斜率分别为 k1 2, k2 2,
二直线方程分别为 y 1 2x, y 1 2x.
19
四、可导与连续的关系
定理 若函数y=f(x)在点x0 处可导 则它在点x0 处必定连续 .
证明 设函数 f ( x)在点 x0可导,
x1
2 3
x2
2 3
切点为 2, 4 6 3 9
2, 4 6 3 9
所求切线方程为 y 4 6 和 y 4 6
9
9
57
三、复合函数和隐函数的求导法
1、复合函数的求导法则
定理 如果函数u ( x)在点 x0可导 , 而y f (u)
在点u0 ( x0 )可导 , 则复合函数 y f [( x)]在点
★ 若函数y=f(x)在开区间(a,b)内可导,且在左端 点处右可导和右端点处左可导,则称函数f(x)在闭 区间[a,b]内可导。
11
★对于任一x∈ I,都对应着 f (x) 的一个确定的 导数值, 这个函数叫做原来函数f ( x) 的导函数.
记作 y, f ( x), dy 或 df ( x) . dx dx

考研微积分学习指导-一元函数微分学

考研微积分学习指导-一元函数微分学

1.3 导数与微分一、知识要点(一) 导数概念1. 设函数()x f y =在点0x 的某邻域内有定义,当自变量x 在0x 处取得改变量x ∆(0≠∆x )时,函数相应取得增量00()()y f x x f x ∆=+∆-()()xx f x x f x ∆-∆+→∆000lim存在,则称函数()y f x =在点0x 处可导,0x 为()x f y =的可导点,并称此极限为函数()y f x =在点0x 处的导数,记为 00000()()limlimx x x x f x x f x yy x x=∆→∆→+∆-∆'==∆∆ 或0()f x ',x x dy dx=,()x x df x dx =2.如果令x x x ∆+=0,则当0→∆x 时,0x x →,于是,导数0()f x '的定义又可以表示为()()()000limx x x f x f x f x x →-='→3.若上述极限不存在,则称()x f 在0x 点处不可导或不存在导数,0x 为()x f 的不可导点.特别当上述极限为无穷大时,此时导数不存在,或称()x f 在点0x 处的导数为无穷大.4.如果函数()x f y =在开区间()b a ,内每一点处都可导,则称()x f y =在()b a ,内可导.此时,对于任意的()b a x ,∈,都存在唯一确定的导数()x f '.因此,()x f '是x 的函数,称为()x f 的导函数,简称为导数.导函数()x f '也可记为y '或dx dy 或()dxx df(二)导数的几何意义1.函数()x f y =在点0x 处可导,则其导数()0x f '为曲线()x f y =在点()()00,x f x 处的切线斜率.特别的,若()00='x f ,则曲线()x f y =在点()()00,x f x 的切线平行于OX 轴;若()∞='0x f ,则曲线()x f y =在点()()00,x f x 的切线垂直于OX 轴.2.曲线()x f y =在点()()00,x f x 处的切线方程为()()000x x x f y y -'=-当()00='x f 时,切线方程为00=-y y 当()∞='0x f 时,切线方程为00=-x x 3.曲线()x f y =在点()()00,x f x 处的法线方程为()()0001x x x f y y -'-=- ()()00≠'x f (三)函数的可导性与连续性的关系1.函数()x f y =在0x 处可导,则在0x 处连续. 因()xyx f x ∆∆='→∆00lim存在,故有()00lim lim lim lim 00000=⋅'=∆∆∆=⎪⎭⎫⎝⎛∆∆∆=∆→∆→∆→∆→∆x f x x y x x y y x x x x . 因此,()x f 在点0x 连续.2.函数()x f 在点0x 连续,()x f 在点0x 不一定可导.(四)求导法则设函数()x u 和()x v 在点x 处可导,则()()u x v x ±、()()u x v x ⋅和()()u x v x 也在该点可导(对于商的情形,要求()0v x ≠)且有。

高等数学1:一元函数微积分学

高等数学1:一元函数微积分学

高等数学1:一元函数微积分学
一元函数微积分学是一门具有普遍价值的数学课程,它是描述数学中一元函数的变化趋势以及求解相关问题的一种数学方法。

一元函数微积分学的基础是微积分学,它是由法国数学家库仑发明的一种数学方法,主要是研究函数的微小变化。

微积分学的结果就是一元函数微积分学,它是一种研究函数变化趋势的方法,可以描述函数在各个点的变化状态,也可以用来求解函数的极值和极限,从而获得函数的全局特征。

研究一元函数微积分学需要掌握一些基本概念,如函数极限、微分、导数、极值等,这些概念可以帮助我们更好地理解函数的变化趋势,有助于求解函数的极值、极限等问题。

在研究一元函数微积分学时,除了要掌握一些基本概念外,还要掌握一些解决问题的方法,如泰勒公式、换元法和求积分等。

这些方法可以帮助我们研究函数的变化趋势,从而更好地理解函数的特征。

总之,一元函数微积分学是一门十分重要的数学课程,它能够帮助我们更好地理解函数的变化趋势,有助于求解函数的极值和极限,从而获得函数的全局特征。

研究一元函数微积分学时,除了要掌握一些基本概念外,还要掌握一些解决问题的
方法,如泰勒公式、换元法和求积分等。

只有掌握了这些方法,才能更好地理解函数的特征,并能够解决函数相关的问题。

一元函数微分学内容概要总结

一元函数微分学内容概要总结

一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。

以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。

微分是函数在某一点附近的线性近似,常用符号表示为dy。

2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。

3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。

4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。

5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。

6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。

7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。

以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。

希望能对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四部分 一元函数微积分第11章 函数极限与连续[内容提要]一、函数:(138-141页)1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。

2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反三角函数的统称);复合函数([()]y f x ϕ=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。

3、函数的特性:奇偶性;单调性;周期性;有界性.二、极限:1、极限的概念:(141-142页)定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞→lim ,若{}n x 没有极限,则称数列{}n x 发散。

定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,)U x δo内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0。

左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作00(0)lim ()x x f x f x A -→-==。

右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作00(0)lim ()x x f x f x A +→+==。

定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义,若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,)(x f 以A 为极限,记作lim ()x f x A →∞= 。

左极限:设函数)(x f 在(,]a -∞上有定义 ,若x →-∞时,)(x f 的值无限趋近于常数A ,则称当x →-∞时,)(x f 以A 为极限,记作A x f x =-∞→)(lim 。

右极限:设函数)(x f 在[,)a +∞上有定义 ,若x →+∞时,)(x f 的值无限趋近于常数A ,则则称当x →+∞时,)(x f 以A 为极限,记作lim ()x f x A →+∞= 。

注意:①极限与左右极限的关系A x f x x =→)(lim 0⇔ 00(0)(0)f x f x A -=+=lim ()x f x A →∞=⇔ lim ()lim ()x x f x f x A →-∞→+∞==.②讨论极限0lim ()x x f x →时,与()f x 在0x 处是否有定义无关,与函数值0()f x也无关。

2、极限的性质:(143页)(1)唯一性:若lim ()f x 存在,则极限值唯一。

(2)有界性:若0lim ()x x f x A →=(lim ()x f x A →∞=),则()f x 在0(,)U x δo内(x充分大时)是有界的;(3)保号性: 设A x f x x =→)(lim 0,如果0>A (或0<A ),则在0(,)U x δo内,有0)(>x f (或0)(<x f ); 反之,如果在0(,)U x δo内有0)(≥x f (或0)(≤x f ),则必有0≥A (或0≤A ). 推广:设A x f x x =→)(lim 0,0lim ()x x g x B →=,如果A B <,则在0(,)U x δo内,有()()f x g x <;反之,如果在0(,)U x δo内有()()f x g x ≤,则必有A B ≤。

注意: 当x →∞时,保号性结论类似。

3、无穷小量与无穷大量:(146-149页) (1)无穷小量与无穷大量的概念及关系:无穷小量:若0()lim ()0x x x f x →→∞=,则称函数()f x 为0 ()x x x →→∞或时的无穷小量。

(无穷小量是函数有极限的特殊情形,即0()lim ()0x x x f x →→∞=)无穷大量:若0 ()x x x →→∞或时,()f x 无限变大,则称()f x 为0x x →()x →∞或时的无穷大量。

(无穷大量是函数没有极限的特殊情形;即0()lim ()x x x f x →→∞=∞)(2)值得注意的几个关系: ① 极限与无穷小量关系:lim ()f x A =⇔()f x A α=+,(其中α为无穷小,即lim 0α=); ②在自变量的同一变化过程中,若()f x 为无穷大量,则1()f x 为无穷小量;若()f x (()0f x ≠)为无穷小量,则1()f x 为无穷大量。

③若0()lim ()x x x f x →→∞=∞,则称()f x 在00(,)U x δ(或x M >)内为无界函数。

即无穷大量必为无界函数,但无界函数不一定为无穷大量。

例如:()sin f x x x =在(,)-∞+∞为无界函数,但当x →∞时,()f x 不是无穷大量。

(3)无穷小量的比较:设x →∆时, ()0 , ()0x x αβ→→ 且 ()lim()x x c x αβ→∆=,1)若0c ≠为常数,则称x →∆时()x α与 ()x β为同阶无穷小; 特别的:当1c =时,则称x →∆时()x α与 ()x β是等价无穷小,记作:x →∆时()()x x αβ:。

2)若0c =,则称x →∆时()x α是比 ()x β高阶的无穷小,记作()(())x o x αβ= ;3)若c =∞,则称x →∆时()x α是比 ()x β低阶的无穷小。

(4)无穷小量的替换定理:设x →∆时,(), (),x x αβ11(), ()x x αβ都是无穷小量, 且1()()x x αα:1()()x x ββ:,极限11()lim()x x x αβ→∆存在,则()lim ()x x x αβ→∆=11()lim ()x x x αβ→∆。

例:222001cos 12lim lim tan 2x x x x x x →→-==;2200113lim lim 339x x x x x x x →→==---三、函数的连续性 1、连续的概念:(149-147页)2定义: 函数()f x 的不连续点叫其间断点. 分类:设0x 为()f x 的间断点(1)若0(0)f x -及0(0)f x +均存在,则0x 叫()f x 的第一类间断点,若0(0)f x -=0(0)f x +(即0lim ()x x f x →存在)0x 叫()f x 第一类可去间断点;(2)若0(0)f x -及0(0)f x +有一个不存在,则0x 叫()f x 的第二类间断点. 3、连续函数的运算:(148页)(1)四则运算:两个连续函数的和、差、积、商(分母不为零)仍为连续函数.(2)反函数的连续性:若原函数单值、单调且连续,则其反函数也单值、单调且连续.(3)复合函数的连续性:两个连续函数所复合成的复合函数必连续. (4)初等函数的连续性:结论 :一切基本初等函数在其定义域均连续.初等函数在其定义区间均连续.4、闭区间上连续函数的性质: (148-149页) (1)有界性:设()f x 在[,]a b 上连在续,则()f x 在[,]a b 上有界.(2)最值定理:设()f x 在[,]a b 上连续,则()f x 在[,]a b 上必有最大值M 和最小值m .即∃12 , [,]x x a b ∈,使得[,]x a b ∀∈,有12()()()m f x f x f x M =≤≤=.(3)零点存在定理:设()f x 在[,]a b 上连续,且()()0f a f b <,则 (,)c a b ∃∈,使得()0f c =.(函数值为零的点叫该函数的零点)(4)介值定理:设()f x 在[,]a b 上连续,()()f a f b ≠,C 是介于() ()f a f b 与之间的任何实数,则必 (,)a b ξ∃∈,使得()f C ξ=.推论:闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.四、计算极限的常用方法:(类型:00,∞∞,0⋅∞,∞-∞,0∞,1∞,00 等等)★(1)观察法:例如:0n =;222232lim lim 33x x x x x →∞→∞-⎛⎫=-=- ⎪⎝⎭;lim 0 (1)n n q q →∞=<。

★(2)四则运算法则:若A x f =)(lim ,B x g =)(lim ,则i )B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[ii )AB x g x f x g x f ==)(lim )(lim )]()(lim[ 推广:lim ()lim ()kf x k f x kA ==(k 常数),[]lim ()lim ()nn n f x f x A ==(n 自然数) iii ))0()(lim )(lim )()(lim≠==B BAx g x f x g x f ★ (3)两个重要极限公式: 1sin lim 0=→x x x ,e xxx =+∞→)11(lim 或 10lim(1)x x x e →+=★(4)利用函数的连续性:若()f x 在点0x 处连续,则)()(lim 00x f x f x x =→.★(5)利用无穷小量的性质: 在同一自变量的变化过程中,i )有限个无穷小量的代数和与乘积仍是无穷小量; ii )无穷小量与有界量的乘积仍是无穷小量; iii )无穷小量与有极限的变量之积仍是无穷小量; iv )若 ()αα不恒为零为无穷小量,则1α为无穷大量. v )无穷小量的等价代换:当0x →时:sin x x :, tan x x :, arcsin x x :,arctan x x :,ln(1)x x +:,1xe x -:,1ln xa x a -:1:xn, x cos 1-:22x .★(7)极限存在的充要条件:A x f x x =→)(lim 0⇔ 00(0)(0)f x f x A -=+=lim ()x f x A →∞=⇔ lim ()lim ()x x f x f x A →-∞→+∞==★ (8)洛必达法则(00或∞∞):若00 ()()lim ()lim ()0x x x x x x f x g x →→→∞→∞==(或∞), ()()lim()x a x f x g x →→∞''存在(或为∞),则 ()()()()lim lim()()x a x a x x f x f x g x g x →→→∞→∞'='第12章一元函数微分学[内容提要]一、导数与微分:1、导数概念:(156-159页)(2)导数的几何意义: 00d ()d x x y k f x x='==切线,曲线)(x f y =在点M )(00y x ,处的切线方程:000()()()y f x f x x x '-=- 法线方程: 0001()()()y f x x x f x -=--' (3)可导与连续的关系:定理:若函数)(x f y =在点0x 处可导 ,则函数在该点必连续. 注意: 可导⇒连续,但连续却不一定可导. 2、导数的运算:(1)基本导数公式(共16个)(159-161页)(2)求导法则(160-165页)(3)、高阶导数的公式及法则:()()ln x n n x n a a a λλλ= 特例: x n x e e =)()()2sin()(sin )(π⋅+=n x x n , )2cos()(cos )(π⋅+=n x x n ,[]1()(1)(1)!ln(1)(1)n n n n x x ---+=+, ()()11!(1)n nnn n a ax b ax b +⎛⎫=- ⎪+⎝⎭+[]()()()()n n Cu x Cu x =,(C 为常数)[]()()()()()()()n n n u x v x u x v x ±=±3、微分概念: (165-166页)(1)微分的定义: 设函数)(x f y =在0(,)U x δ内有定义,00(,)x x U x δ+∆∈且)()(00x f x x f y -∆+=∆()A x o x =⋅∆+∆其中A 是不依赖于x ∆的常数,而()o x ∆是比x ∆高阶的无穷小量,则称)(x f y =在点x 处可微, 其中A x ⋅∆称为)(x f y =在点x 处的微分,记作dy 或()df x ,即dy A x =⋅∆ 或 dy A dx =⋅.(2)可微与可导的关系:定理 函数)(x f y =在点x 处可微⇔)(x f y =在点x 处可导.且 ()A f x '=,d ()y f x dx '=⋅(注意:可微⇔可导)(3)微分的几何意义)(x f y =在0x 处的微分0d ()y f x dx '=⋅的几何意义是:dy PQ =(切线MT 的增量).0()tan f x α'=(切线MT 的斜率).(4)微分的基本公式和四则运算法则(162-163页) 基本公式:()()df x f x dx '= 或 dy y dx '=(略)微分的四则运算法则: d[()]d ()Cu x C u x =(C 为常数)d[()()]d ()d ()u x v x u x v x ±=±d[()()]()d ()()d ()u x v x u x v x u x v x =⋅+⋅ 2()()d ()()d ()d[]()()u x v x u x u x v x v x v x ⋅-⋅= (()0)v x ≠ ()()df u f u du '=(一阶微分形式的不变性)二、中值定理与导数应用:1、中值定理:(167-168页)2、洛必达法则:计算极限00 ,, 0, , 1, 0∞∞⋅∞∞-∞∞∞,00(168-171页).3、函数的单调性与极值(171-175页):注意:由定义知:极值概念是局部性的,最值概念是整体性的。

相关文档
最新文档