一元函数微分学
一元函数微分学总结

一元函数微分学总结
一元函数微分学是微积分中的一个重要分支,研究的是一元函数的变化率以及相关的性质。
在这篇总结中,我们将介绍一元函数微分学的基本概念和公式,并拓展一些应用和实际问题。
一元函数微分学的基本概念包括导数、微分和微分方程。
导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率。
计算导数的方法有几何法和代数法,其中代数法包括极限、求导法则和链式法则等。
微分是导数的微小变化,表示函数的增量与自变量的增量之间的关系。
微分方程是含有未知函数及其导数的方程,研究的是函数与其导数之间的关系。
在一元函数微分学中,有许多重要的公式和定理。
其中,导数的四则运算规则包括常数法则、幂法则、指数函数法则、对数函数法则等。
另外,还有著名的中值定理,如拉格朗日中值定理、柯西中值定理和罗尔中值定理等,用于分析函数在某一区间内的变化情况。
一元函数微分学的应用十分广泛。
在物理学中,微分学的应用包括速度、加速度、力等的计算,以及运动学和动力学问题的解决。
在经济学和金融学中,微分学的应用包括边际效应、收益曲线和成本曲线的分析,以及最优化问题的求解。
在工程学中,微分学的应用包括电路分析、控制论和信号处理等。
此外,一元函数微分学还可以用于解决
最优化问题、曲线拟合、数据分析和预测等实际问题。
总之,一元函数微分学是微积分的重要组成部分,研究的是一元函数的变化率和相关性质。
通过导数、微分和微分方程等概念和公式的运用,可以解决各种实际问题,并在许多学科领域中发挥重要作用。
10第三章一元函数微分学(中值定理及罗必塔法则)

lim f ( x) lim f ( x) lim f ( x) A (或) xa() g( x) xa() g( x) xa() g( x)
5o
若函数是Βιβλιοθήκη 0,型可采用代数变形,化成
0 0
或
型;若是 1
,00
,0
型可采用对数或指数变形,化成
0 0
或
型.
例 3 求lim x 1 . x1 x 1 ln x
f (0) (x3 x2 ) x0 0
∴ f (x) 满足罗尔定理的条件。由定理可得:
f ( ) 3 2 2 0
解得: 1
2 3
,
2 0
∵2 0 不在(-1,0)内,舍去;
∴
2 3
2.拉格朗日(Lagrange)中值定理: 如果函数 f(x)满足:
在(a, b)内至少存
10 在[a, b]上连续, 20 在(a, b)内可导;
解 这是 未定型,通过“通分”将其化为
0 未定型.
0
lim x1
x
x
1
1 ln x
lim
x1
x
ln (x
x (x 1) 1) ln x
lim
x1
x1 x ln
ln x 1 x x 1
1
x
lim x1 1
ln x 1 ln x
x
lim
x 1
1 x2
x
1 x
1 2
.
例4.求下列极限
定理: f (x) 和 g (x) 满足条件:
lim f (x) 0 (或)
xa
1o lim g(x) 0 (或); xa
2o 在点 a 的某个邻域内可导,且 g(x) 0 ;
第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。
(完整版)一元函数微分学课件

(一)求曲线的切线方程与法线方程
当
≠0时,法线方程为
-1/
(二)函数的单调性与极值
1 函数单调性
定理
2 函数的极值
定理(极值的必要条件) 设f(x)在点x0处可导,且x0为f(x)的极值点,则f'(x0)=0.
(三)函数的最大值与最小值
设函数y=f(x)在闭区间[a,b]上有定义,x0∈[a,b],若对于任意x∈[a,b], 恒有f(x)≤f(x0)(或f(x)≥f(x0)),则f(x0)为函数y=f(x)在闭区间[a,b]上 的最大值(或最小值),称点x0为f(x)在[a,b]上的最大值点(或最 小值点)。 注 极值与最值的区别
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.
★ 如果 f ( x)在开区间a, b内可导,且 f(a)及
f(b)都存在,就说 f ( x) 在闭区间a, b上可导.
f
(x)在点 x0处的导数
记为y
,dy xx0 dx
或 df (x)
x x0
dx
x x0
即
y
x x0
lim
x0
y x
lim
x0
f ( x0 x) x
f ( x0 )
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
一元函数微分学的基本原理与应用

一元函数微分学的基本原理与应用微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。
在微分学中,一元函数是指只有一个自变量的函数。
本文将介绍一元函数微分学的基本原理和其应用。
一、微分的定义和基本原理微分学的基本概念之一是微分的定义。
对于一元函数 f(x),在某一点 x0 处的微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:dy = f'(x0)dx其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。
微分学的基本原理包括导数和微分的性质。
导数的定义如下:f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)导数可以用来描述函数的斜率,即切线的倾斜程度。
在微分学中,常用的导数表示方式有函数的导函数、差商和极限等形式。
微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。
根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。
二、应用举例:极值问题和曲线的切线微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。
1. 极值问题:求解一个函数的最大值和最小值。
通过对函数的微分,可以得到导数为零的点或导数不存在的点,并进行求解。
对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。
举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。
然后,通过二阶导数的符号判断该点是否是极值点。
若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。
一元函数微分学内容概要总结

一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。
以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。
微分是函数在某一点附近的线性近似,常用符号表示为dy。
2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。
3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。
4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。
5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。
6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。
7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。
以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。
希望能对你有所帮助。
一元函数的导数公式和微分

一、一元函数微分学一元函数微分学由导数和微分组成。
导数:样本量随自变量的变化而变化的快慢程度;微分:曲线的切线上的纵坐标的增量。
二、常数和基本初等函数求导公式 (1) 0)(='C(2) 1)(-='μμμx x(3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -=' (9) a a a x x ln )(='(10) (e )e x x '=(11) a x x a ln 1)(log ='(12) x x 1)(ln =',(13) 211)(arcsin x x -='(14) 211)(arccos x x --='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+三、函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)((2) u C Cu '=')((C 是常数)(3)v u v u uv '+'=')((4)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛四、反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间x I 内也可导,且)(1)(y x f ϕ'='或dydxdx dy 1=五、复合函数求导法则 设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=六、高阶导数的莱布尼兹公式七、隐函数的导数一般地,如果变量x ,y 之间的函数关系是由某一个方程()0,=y x F 所确定,那么这种函数就叫做由方程所确定的隐函数.对数求导法根据隐函数的求导法,我们还可以得到一个简化求导运算的方法.它适合由几个因子通过乘、除、乘方、开方所构成的比较复杂的函数(包括幂指函数)的求导.这个方法是先取对数,化乘、除为加、减,化乘方、开方为乘积,然后利用隐函数求导法求导,22234241433339tt t t t e d dt e e e dx dt dx e dt--⎛⎫=-⋅=-== ⎪-⎝⎭22223t d y d dy d e dx dx dx dx ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭因此称为对数求导法.幂指函数的一般形式为()0v y u u =>,其中,u v 是x 的函数.八、由参数方程所确定的函数的导数一般地,如果参数方程()()x t y t ϕψ=⎧⎪⎨=⎪⎩,(t 为参数) 确定y 与x 之间的函数关系,则称此函数关系所表示的函数为由参数方程所确定的函数.如果函数()t x ϕ=,()t y ψ=都可导,且()0≠'t ϕ,又()t x ϕ=具有单调连续的反函数()x t 1-=ϕ,则由参数方程所确定的函数可以看成()t y ψ=与()x t 1-=ϕ复合而成的函数()[]x y 1-=ϕψ,根据复合函数与反函数的求导法则,有()()t t dtdx dt dy dx dt dt dy dx dy ϕψ''=⋅=⋅=1,即()()t t dx dy ϕψ''= , 也可写成 dtdxdtdy dx dy=.求方程32ttx ey e-⎧=⎪⎨=⎪⎩所确定的函数的二阶导数22d ydx.解 ()()tt t t t e ee e e dx dy 2323232-=-=''=--,注意二阶导的求法。
一元函数微分学

第二章一元函数微分学一.先回顾导数的定义:设函数在内有定义,如果极限存在,则称在处可导,称为函数的可导点,且称上述极限值为函数在处的导数,记为:或;或简记为.注意导数的本质是瞬时变化率,它还有另外两种常见的等价定义:1.=;2.;要特别关注处的导数有特殊形式:(更特别地,要知道两个重要的结论:1.可导必连续;2。
函数在处可导的充要条件是对于分段函数在分段点处的可导性,一定从要考察其左、右导出发.例1.已知=A,试求下列极限的值(1)(2)。
例2.研究函数在处的可导性.解:因为同理,可求得.由于,所以在处不可导。
(记住这个结论)练习:设在处可导,求的值.解:(一)因为在处可导,从而在处也连续.所以,即(二)由得.例3.已知,试求在处的导数.解:因为,所以,由此例可见,在导数存在的情况下,求导问题就归结为求一个型的极限.故求导就是求极限,不必多举例,今后很少针对具体函数计算在一点处的导数值.如把函数在一点处可导的概念推广到一个区间,则可得到导函数的概念.大家要牢记基本导数表(共十五、六条)。
这里的每一条都是根据导数的定义推出来的,请大家在下面自己试着也推推.如:,求.二.导数的几何意义关于导数的几何意义,主要考察的题型有两种。
一种题型是选择题或判断题。
比如:若函数在处可导,则曲线在处必有切线;(√);反之,若曲线在处有切线,则在处必可导,则(×).另一种题型是根据几何意义找切线.例4.求曲线与直线垂直的切线.解:设切点.切线斜率由题意,即故切线方程为下面举一个复杂点的,把前面的知识点窜起来.例5.设为连续函数,且求曲线在点处的切线方程。
(08年研究生考试题)解:由于,且故(前面已讲过理由)而,所以,切线方程为三.导数的四则运算四则求导法则非常简单,但不注意的话,容易犯错误。
下面举几个小例子.例6.求的导数.注意:部分同学可能会犯下面的错误:.例7.设求此题应先化简再求导:注意:个别同学容易把幂函数求导与指数函数求导的公式搞混.例8.求的导数.解:.四.反函数求导法则若函数,其反函数为.若在的某邻域内连续、严格单调且,则在点可导,且.例9.求的导数.解:设原函数,则其反函数为.根据反函数求导法则.有.五.复合求导法则大家可能还有印象,复合函数的导数是.(与直接套用基本导数表相比,这个2从何而来?)如果记,则,故此题恰好满足等式:(*)这是否是巧合的?我们说不是.事实上,(*)式正揭示出了复合函数的求导法则.定理:若函数在可导,而函数在对应的处也可导,则复合函数在处也可导,且或(或.注意:复合函数的链式求导法则可推广至复合两次以上的情形,如:对函数,如记,则各变量间的关系是:有上式可通过连续使用两次链式法则得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元函数微分学
微积分是数学中一个非常重要的分支,它研究连续与变化。
微
分学是微积分中的一部分,它研究一元函数的变化率和切线问题。
在工科、理工科及金融等领域,微分学都是必修的一门学科。
一、导数
一个函数的导函数即为该函数的导数。
导数表示函数在某点处
的变化率,也可以理解为以该点处斜率为切线的直线方程。
导数
的定义如下:
$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$
其中,f(x)表示函数在x点处的取值,h表示x的变化量。
导数
是对变化量和量的一个测量,它也可以被解释为函数的瞬时变化率。
在求导数时,我们需要注意函数是否连续,导数是否存在,同
时还需考虑到函数在自变量为非自然数时的导数。
二、微分
微分是在导数的基础上增加了一些附加的概念,它是由函数在一个点处的导数以及该点处的自变量与函数值所组成的。
微分的定义不是很直接,但是我们可以从定义出发进行理解:设函数y=f(x),在x点的微分dy=dx*f'(x)。
其中,dx表示x的增量,dy表示y的增量,f'(x)表示在x处的导数。
可以看出,微分有一个重要的作用,就是可以得到函数在某个点处的极小增量。
即在当前的点位置,函数的变化量以及对应的变量量。
微分还可以解决一些求和问题和变量替换问题的计算。
三、函数图像的切线
函数图像的切线是函数图像在某个点的斜率。
在此前提下,我们可以通过导数求出函数图像在任意一个点上的斜率。
通过直线方程就可以求出函数图像在该点的切线。
求解函数图像的切线需要确定该点的横坐标和纵坐标,然后求出导数,最后代入方程即可。
四、一元函数微分学应用
微分学的应用非常广泛。
在物理学中,微分学可以用于描述物体的运动,地球的形变和能源泄露等问题。
在金融学中,微分学可以用于计算股市的波动和证券价格的变化等问题。
在自然科学中,微分学可以用于解决生物学的遗传学和数学物理学中的加速和速度问题等。
总之,一元函数微分学是微积分中最基础的内容。
通过对微分学的研究,我们可以更好地理解函数变化率和图像切线问题。
此外,微分学还有着广泛的应用,涉及到股市、金融、自然科学等各方面。