基坑桩锚设计计算过程(手算)

合集下载

基坑桩锚设计计算过程(手算)

基坑桩锚设计计算过程(手算)

=
=
= ++100 ) 得
=
所以,第一排锚杆的锚固长度为++=
)第二排锚杆:
=
=
6
=3m,
第二排锚杆锚固段在填土中的长度:
=
=
第二排锚杆锚固段在第二层土中的锚固长度:
=
= ++100 )

= 所以,第一排锚杆的锚固长度为++= 第一排锚杆总长度 =+8=,设计长度 23m 第二排锚杆总长度 =6+=,锚杆长度取,设计长度 24m.
九)桩身设计:
已知单位宽度最大的弯矩 M’=,,支护桩直径 D=,桩间距,选用 C30
混凝土,基坑为一级支护基坑。 Nhomakorabea桩身弯矩设计值 M=
=混凝土强度设计值:
,钢筋强度设
计值:
支护桩的截面积:A=
785000 , 混凝土面层厚度 50
主筋所在的半径
.
=M/(fc × A × r)=0/=
查表可得,
= (ξ× fc ×A)/
填土顶部主动土压力强度: =q - 2
=填土底部的主动土压力强度:
=( +q) -2
=
(2) =粉质粘土:
粉质粘土顶部的主动土压力强度: = ( * +q) -2
=
=粉质粘土底部的主动土压力强度: =( * + * +q) -2
=
=
(3) 临界深度:
=2 /
– q/ =2x12/
2)第一层锚杆计算:
FGH 段地层信息:基坑深 , 桩锚支护,第一排锚杆, 第二排在处,
角度 30°。
地层

理正深基坑最经典的手把手叫你设计基坑支护的教程

理正深基坑最经典的手把手叫你设计基坑支护的教程

理正深基坑使用说明打开理正选择右侧的单元计算按钮,然后出现下边界面点击小对话窗口中的增按钮,出现新增项目选用模板,如下图选择排桩支护设计一项,然后确认显示如下:然后开始数据输入:(可根据软件提示进行填写)基坑等级和基坑侧壁重要性系数可查下图基坑侧壁岩土体性质基坑深度(m)复杂中等简单软土h>10 6<h≤10 h≤6非软土h>14 10<h≤14 h≤10岩体h>18 12<h≤18 h≤12嵌固深度可先不填写,等所有数据结束后再来桩间距是两桩之间间隔最多0.6m,如图:混凝土强度等级的选择,不明0.60m放坡信息坡度系数为放坡高宽比超载信息超载4种类型前2个均布荷载常用,后两个属于偏心荷载(不晓得什么情况用)若有作用深度,作用宽度,距坑边距就用第二个。

土层信息内侧降水最终深度和外侧水位深度2项数值一般是相同(无隔水的情况下),经验数值为基坑深度加深1.5米土层数根据实际填写,其他项一般不变这个表根据勘察报告填写,厚度用相关孔该层平均值,与锚固体摩擦阻力可查软件中的表,宜取小值。

水土一项中土用合算,砂、砾用分算。

计算m值可根据软件提供的公式计算,如图:基坑底面位移量估计值经验选10mm,也可以根据实际选小。

点确定前注意区分水上水下。

支锚信息上图中画红圈的不用填写预加力可选择50-100,锚固体直径有150,160的(用哪个不晓得怎么选)锚固力调整系数和材料抗力调整系数都是1.00不用改。

其它项为自己设计。

来个规范建筑基坑支护技术规程JGJ 120-991.锚杆上下排垂直间距不宜小于2.0m,水平间距不宜小于1.5m;2.锚杆锚固体上覆土层厚度不宜小于4.0m3.锚杆倾角宜为15°~25°,且不应大于45°下边是网上查来的预应力锚索布置经验:①土层锚索上下排间距不宜小于2.5m,水平不宜小于2.0m;岩层锚索间距宜采用3~6m;②锚索自由段伸入滑动面或潜在滑动面以外的长度不小于1m,自由锻长度不应小于4~5m;③锚固体上覆岩土体厚度不应小于5.0m,锚固段长度不应小于4.0m。

深基坑计算

深基坑计算

建筑基坑工程仪器监测项目表(GB50497-2009 )
监测项目 基坑类别 (坡)顶水平位移 一级 应测 二级 应测 三级 应测
墙(坡)顶竖向位移
围护墙深层水平位移 土体深层水平位移 墙(桩)体内力 支撑内力 立柱竖向位移 锚杆、土钉拉力 坑底隆起 土压力 孔隙水压力 地下水位 土层分层竖向位移 墙后地表竖向位移 竖向位移 周围建(构) 筑物变形 倾斜 水平位移 裂缝 周围地下管线变形 软土地区 其他地区
注:基坑类别的划分按照国家标准《建筑地基基础工程施工质量验收规范》GB50202-2002执行。
深基坑监测点布置
设置在围护结构里的测斜管,按对基坑工程控制变形的要求, 一般情况下,基坑每边设1~3点;测斜管深度与结构入土深度一样。 围护桩(墙)顶的水平位移、垂直位移测点应沿基坑周边每隔10~ 20m设一点,并在远离基坑(大于5倍的基坑开挖深度)的地方设基 准点,对此基准点要按其稳定程度定时测量其位移和沉降。 环境监测应包括基坑开挖深度3倍以内的范围。房屋沉降量测点 则应布置在墙角、柱身(特别是代表独立基础及条形基础差异沉降 的柱身)、门边等外形突出部位,测点间距要能充分反映建筑物各 部分的不均匀沉降为宜。 立柱桩沉降测点直接布置在立柱桩上方的支撑面上。每根立柱 桩的隆沉量、位移量均需测量,特别对基坑中多个支撑交汇受力复 杂处的立柱应作为重点测点。对此重点,变形与应力量测应配套进 行。 在实际工程中,应根据工程施工引起的应力场、位移场分布情 况分清重点与一般,抓住关键部位,做到重点量测项目配套,强调 量测数据与施工工况的具体施工参数配套,以形成有效的整个监测 系统。使工程设计和施工设计紧密结合,以达到保证工程和周围环 境安全和及时调整优化设计及施工的目的。
(2)对于土压力的分析和计算采用朗肯理论和库仑 理论。朗肯土压力理论是根据土的应力状态和极限平衡 建立的,分析时假设①墙后填土面水平;②墙背光滑。 各类软件计算依据的规范为《建筑基坑支护技术规 程》 (JGJ120-99)。

第三章基坑支护结构设计计算

第三章基坑支护结构设计计算

第三章基坑支护结构设计计算3.1土压力计算为计算简便,土压力计算采用简化的兰肯主动土压力计算公式,即采用加权平均之后的内摩擦角、粘聚力值进行计算。

3.1.1加权平均值计算各层土的物理指标如下表所示:基坑开挖的深度为16.3m ,即到粉土夹粉砂层为止。

(1)土层加权平均重度为:)/(68.1797.052.111.95.115.105.21997.09.1752.11711.98.175.15.1815.14.1905.230m KN hh iii =+++++⨯+⨯+⨯+⨯+⨯+⨯==∑∑γγ土层物理参数表土层序号及名称 土层厚度L (m ) 天然含水量W(%)液限指数IL 塑性指数Ip 天然重度粘聚力C(kpa) 内摩擦角φ(°) ①1填土 2.05 0.75 11.8 19.4 16.5 19.6 ①2黏土 1.15 36 0.68 19.5 18.5 20.5 13.1 ②1黏土 1.5 39.9 0.98 18.7 17.8 15.3 11 ②2淤泥质黏土 9.11 52.3 1.55 19.4 17 11.5 8.4 ②3淤泥质粉质黏土1.52 41.6 0.45 14.6 17.913.5 10.2 ③1粉土夹粉砂 3.28 28.9 1.16 9.3 19 11.6 20 ③2粉质黏土夹粉砂10.04 31.8 1.16 11.4 18.812.2 15.2 ④1淤泥质粉质黏土 5.3 38.2 1.28 13.4 18.213.2 12.1 ④2黏土 7.18 36.8 0.99 17.6 18.2 17.2 12.7 ⑥2粉质黏土 6.25 34.2 0.84 14.4 18.6 20.7 14.5 ⑥4粉土 2.04 25.4 0.98 9.6 19.4 12.3 26.6 ⑦1粉质黏土 2.93 27 0.56 13.6 19.6 31.218.3注:表中仅列出本车站有分布布的底层。

基坑桩锚设计计算过程手算

基坑桩锚设计计算过程手算

基坑桩锚设计计算过程手算基坑桩锚是一种常用的基坑支护结构,用于确保基坑的稳定性和安全性。

设计计算过程涉及到多个方面,包括桩的承载力计算、锚杆的受力计算、基坑的稳定性计算等。

首先,进行桩的承载力计算。

假设基坑的设计深度为H,桩的直径为D,桩的长度为L。

在进行承载力计算之前,我们需要了解土壤的力学参数,包括黏聚力c和内摩擦角φ。

假设土壤的浆状黏土,没有明显的压缩特性,可以采用简化的桩承载力计算方法,即梅森公式。

按照梅森公式,桩的承载力可通过以下公式计算:Q = σp * Ap + qp * Ap + 0.5 * γ * Ap * Nc * sc + 0.5 * γ * Ap * Nq * sq + 0.5 * γ * Ap * Nγ * γ其中,Q为桩的承载力,σp为桩的端阻力,Ap为桩身面积,qp为桩的摩擦阻力,γ为土壤的单位重量,Nc、Nq、Nγ为土壤内摩擦角的修正系数,sc、sq、γ为土壤的相应修正系数。

接下来,进行锚杆的受力计算。

假设基坑的设计深度为H,锚杆的直径为d,锚杆的长度为L。

锚杆是通过在基坑周边钻孔安装钢筋混凝土锚杆,使其与周围土体形成一种力学上稳定的整体结构。

锚杆的受力主要有两个方面,一是拉力,用于抵抗土体的侧压力;二是摩擦力,用于抵抗土体的滑动力。

拉力的计算可以根据平衡条件来进行,即锚杆的拉力等于土体的侧压力。

假设土体的单位重量为γ,土体的侧压力可以表示为:P=γ*H*d 而锚杆的拉力可以通过拉力计算公式计算:F=τ*A其中,τ为锚杆的抗拉强度,A为锚杆的截面积。

锚杆的摩擦力计算可以根据土体的内摩擦角和锚杆的周边面积来进行。

假设土体的内摩擦角为φ,那么摩擦力可以表示为:Ff = τ * L * d * cos(φ)其中,τ为锚杆的抗拉强度,L为锚杆的长度,d为锚杆的直径。

最后,进行基坑的稳定性计算。

基坑的稳定性主要考虑基坑的侧面稳定和底部稳定。

侧面稳定主要通过基坑的支护结构来实现,包括桩、锚杆等。

深基坑桩锚支护三种计算方法分析与监测对比

深基坑桩锚支护三种计算方法分析与监测对比

深基坑桩锚支护三种计算方法分析与监测对比作者:张津铭等来源:《科协论坛·下半月》2013年第12期摘要:以北京市某深基坑支护工程为背景,通过三种多层支撑结构常用分析方法,进行计算设计,结合该深基坑支护工程监测数据,证明逐层开挖支撑力不变法对本工程的适应性,该基坑采用这种桩锚支护方案,总体可行,研究结果为北京地区的深基坑设计与施工提供参考。

关键词:桩锚支护等值梁法逐层开挖支撑力不变法监测中图分类号:TU753 文献标识码:A 文章编号:1007-3973(2013)012-008-03近年来城市的地下空间开发和高层建筑的建设,我国的深基坑工程日益增多,随着基坑越来越深,为了减少支护桩的弯矩可以设置多层支护,支护层数及位置要根据土质、坑深、支撑结构的材料强度,以及施工要求等因素拟定。

目前对多支撑支护结构的计算方法很多,一般有等值梁法;支撑荷载的1/2分担法,逐层开挖支撑力不变等。

但是对哪种方法更适用于工程设计,大家尚未得出定论。

对于深基坑支护结构,若设计时选择的计算方法错误,导致支护位移过大,则有可能导致坑周土体产生较大沉降、近邻房屋及城市道路沉陷开裂、地下管网破坏等病害而造成严重后果。

因此,研究支护结构设计时采用何种计算方法具有重要的工程指导意义。

1 分析方法1.1 等值梁法等值梁法的基本原理是假定墙后土体完全处于郎肯主动状态,坑底以下墙前土体处于郎肯被动状态,将主动和被动土压力叠加后为零的点或弯矩为零的点简化为铰支座,并以支撑点作为支座,按连续梁求解墙体的弯矩和支承点的反力。

其计算步骤如下:(1)按照土的参数计算土压力系数。

根据桩长和场地土强度指标的加权平均值,从而计算被动和被动土压力系数。

其中被动土压力系数可按照下式计算:式中:KP为被动土压力系数,为土的内摩擦角系数,为桩土间的摩擦角,为至。

(2)计算土压力为零点至基坑地面的距离:(3)分段计算梁的固端弯矩。

对于多层支撑挡土墙,采用“分段等值梁叠加法”进行计算。

深基坑支护类型与设计计算

深基坑支护类型与设计计算
精选ppt
对该截面求矩即得最大弯矩Mmax Mmax=143.35×(5.55/3+4)+51.66×4×4/ 2+4.655× 42×4/3-28.56×4×4/2-19.38×42×4/ 3=709.4kNm 至此计算完毕,接着可按最大弯矩选择适当的桩径、 桩距和配筋。但尚应注意计算所得Mmax是每延米桩排 的弯矩值,应乘以桩距,才是单桩弯矩设计值。
图2-8 单锚精选深pp埋t 算例图
解:1.计算模型如图2-6所示。
沿桩排方向取1m长度计算土压力计算见表2-9,表2-10
2.求反弯点位置
反弯点位置可以桩前后土压力为零点近似确定: 35.489+5.403D1=57.288D1 解出:D1=0.68m
表2-10 被动土压力计算表
计算深
2C·
参数
9.8
14
-4.2
14
14
0
Ka=0.49 C 6.0
114
134
65.66
14
51.66
=0.7 O 6+Dmin 114+19Dmin 134+19min 65.66+9.31min 14 51.66+9.31min
注:A点负值不计,B点的深度Z0根据 (2C K a )=(γ·Z0+q)·Ka求得
精选ppt
图 单锚浅埋支护结构计算图
精选ppt
2、单支撑(锚杆)深埋板桩计算(等值梁 法)
精选ppt
精选ppt
简化计算的力学模型: 单支撑(锚杆)视为绞支,下端为固定端,
中间有一截面的弯矩为零,叫反弯点, 为简化计算,常用土压力强度等于零的 位置代替反弯点位置,示为一绞支。ac 梁即为ab梁上ac 的等值梁。 计算时考虑板桩墙与土的摩擦力,板桩墙 前与墙后的被动土压力分别乘以修正系 数如表,为安全其间对主动动土压力不 折减。

桩锚支护结构的水平位移计算与分析

桩锚支护结构的水平位移计算与分析

支护模型, 并对施工阶段作 用在桩锚支护上的坑壁水平位移进行了分析。在此基础之上, 采用高级 编程语言 M atlab编写 相应
的计算程序, 与实测结果相 对比, 验证其结果, 说明其正确性。
关键词: 深基坑; 桩锚支护; 施工阶段 ; 水平位移; M atlab
中图分类号: TU 473 2
文献标识码: A
另外, 如果锚杆是预应力锚杆, 则在相应的工况 下应考虑以下的支座边界条件:
预应力锚杆 j位置处其节点的水平位移应为
j=
[H j -
(Fp j / cos EA j
j) ]
作为支座边界条件, 其中, H j 为第 j 个锚杆支座
处的水平支座反力。
3 工程实例
某大厦位于兰州市张掖路南侧, 基坑开挖深 11 m, 长 180 m, 宽 31 2 m, 基坑周围现有建筑物较多, 地下水位较高, 地质状况复杂, 土层分布及土层的物 理力学参数见表 1。由于基坑尺寸较大, 重要等级 为二级, 经研究决定, 采用桩锚杆支护结构。
根据给出的基本假定和计算简图 ( 图 1) , 对桩 采用有限元法建立矩阵位移方程, 引入边界条件, 即 可求出锚杆和支护桩的内力及支护结构的位移, 具 体计算过程介绍如下。
图 1 桩锚支护的计算模型示意 Fig. 1 Calcu lating schem atic p lan of p ile anchor supporting stru cture
130
四 川建筑科学研究
第 36卷
对于桩锚支护结构, 取桩的支承宽度进行计算, 将其视作支承在弹性支座上的梁。作用在桩上的锚
杆用一系列弹簧代替, 支承弹簧的刚度系数可以由
下式确定:
Ki =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FGH段地层信息:基坑深7.3m , 桩锚支护,第一排锚杆2.2m, 第二排在4.7m处,角度30°。

一、)基坑示意图:1)基坑外侧主动土压力计算如下:(1)填土:=q k a1- 2c1√ka1 =20x0.6558-2x12x0.8098=-6.32Kpa 填土顶部主动土压力强度:p上a1=(r1ℎ1+q)k a1-2c1√ka1 =填土底部的主动土压力强度:p下a1=(18.3x10.5+20)x0.6558-2x12x0.8098=119.69kpa(2)粉质粘土:粉质粘土顶部的主动土压力强度:p a2上= (r1*ℎ1+q)k a2-2c2√ka2 ==(18.3x10.5+20)x0.5278-2x12x0.7265=94.54kpa粉质粘土底部的主动土压力强度:p a2下=(r 1*ℎ1 +r 2*ℎ2+q )k a2-2c 2√ka2 ==(18.3x10.5+19.8x1.8+20)x0.5278-2x12x0.7265=113.35kpa (3) 临界深度:Z o =2c 1/ r 1√ka1 – q/r 1=2x12/18.3x0.8098-20/18.3=0.53m2)第一层锚杆计算:基坑开挖到5.2m ,设置第一排锚杆的水平分力为T1。

1) 此时基坑开挖深度为h =5.2m , 基坑外侧底部的主动土压力强度:p a1坑底=(r 1*ℎ+q )k a1-2c 1√ka1 =(18.3x5.2+20)x0.6558-2x12x0.8098=56.09kpa基坑内侧的被动土压力强度:p p1坑底= 2c 1√kp1=2x12x1.2350=29.64kpa.p p1下=r 1(ℎ1- ℎ)k p1+2c 1√kp1= 18.3x(10.5-5.2)x1.5252+2x12x1.2350=177.57kpa.知:p a1下 < p p1下 , p p1坑底 < p a1坑底知铰点位于坑底与填土层间:设铰点为o, 距离坑底y m.p po =p aop po = r 1y k p1+2c 1√kp1 = y18.3x1.5252+2x12x1.2350=27.91y+29.64p ao = [q+r 1(h+y)] k a1-2c 1√ka1= [20+18.3(5.2+y)]x0.6558-2x12x0.8098=12y+56.08解得: y=1.66m2)设置第一排锚杆的水平分力为T1,铰点以上土层及锚杆力对铰点起矩平衡。

2.1土压力作用位置确定: 三角形分布:ℎai =13ℎi梯形分布:ℎai =2p ai +p ai3(p ai+paj )ℎi即:2.2基坑内侧被动土压力作用点位置:(梯形分布)ℎp1=2p p1坑底+p po3(p p1坑底+p po )ℎ1op po =r 1y k p1+2c 1√kp1= 18.3x1.66x1.5252+2x12x1.2350=75.97kpa.p p1坑底= 2c 1√kp1=2x12x1.2350=29.64kpa.h p1=[(2x29.64+75.97)/3x(29.64+75.97)]x1.66=0.71m2.3基坑外侧主动土压力作用点位置:(三角形分布)ℎao =13(h+ y -z 0)已知, h=5.2m, y=1.66m, z 0=0.53m即:ℎao =13(5.2+1.66-0.53)=2.11m2.4第一排锚杆作用点离起矩点位置:L=h+ y - d=5.2+1.66-2.2=4.66m.(d为锚杆离地面距离)2.5基坑内侧被动土压力合力:E P =P pi+p pj2x ℎpi即,E P =y x (p po +p p1坑底)/2=1.66x (75.97+29.64)/2=87.66kpa2.6基坑外侧主动土压力:E a =P ai+p aj2x ℎaiE a =(h+y -z 0)x p ao /2=(5.2+1.66-0.53)x75.97/2=240.45kpa. 即:T 1(h + y – d) + E P ℎp1=E a ℎao代入数据:4.66T 1 +87.66x0.71=240.45x2.11T 1=95.52kpa.三)第二排锚杆计算:此时,基坑开挖至设计深度h 坑底 =7.3m 。

3.1)基坑内侧被动土压力强度: p p1坑底= 2c 1√kp1=2x12x1.2350=29.64kpa.p p1下=r 1(ℎ1- ℎ坑底)k p1+2c 1√kp1= 18.3 x (10.5-7.3)x1.5252+2x12x1.2350=118.96kpa p p2上=r 1(ℎ1- ℎ坑底)k p2+2c 2√kp2=18.3x(10.5-7.3)x 1.8945+2x30x1.3764=193.53kpa. p p2下= [r 1(ℎ1- ℎ坑底)+r 2 ℎ2]k p2+2c 2√kp2=[18.3x (10.5-7.3)+19.8x1.8]x1.8945+2x30x1.3764=176.79kpa. 基坑外侧主动土压力强度:p a1坑底=(r 1*ℎ坑底+q )k a1-2c 1√ka1 =(18.3x 7.3+20)x0.6558- 2x 12x0.8098=81.29kpa.p a2上=(r 1*ℎ1+q )k a2 -2c 2√ka2 =(18.3x10.5+20)x0.5278-2x30x0.7265=68.38kpa 即:p p1下<p a1下, p p1坑底<p a1坑底, p a2上<p p2上故,假想铰点为两层土的交界处,设为M 点,距基坑底为3.2m .3.2)设置第一排锚杆的水平分力为T 2,铰点以上土层及锚杆力对铰点起矩平衡。

3.2.1土压力作用位置确定: 三角形分布:ℎai =13ℎi梯形分布:ℎai =2p ai +p ai3(p ai+paj )ℎi基坑内侧被动土压力作用点位置:(梯形分布)ℎp1=2p p1坑底+p p1下3(p p1坑底+p p1下)ℎ1坑ℎp1=[(2x29.64+118.96)/3x(29.64+118.96)]x3.2=1.28m基坑外侧主动土压力作用点位置:(三角形分布)ℎam =13(h 1-z 0)ℎam =13(10.5-0.53)= 3.32m第一排锚杆作用点位置:l m1=h 1-d=10.5-2.2=8.3m 第二排锚杆作用点位置:l m2=10.5-4.7=5.8m3.2.2)土压力合力:基坑外侧主动土压力:E a =P ai+p aj2x ℎaip a1下=(r 1ℎ1+q )k a1-2c 1√ka1 ==(18.3x10.5+20)x0.6558-2x12x0.8098=119.69kpa ℎa1= h 1-z 0=10.5-0.53=9.97mE a = (119.69x9.97)/2=596.65kpa基坑内侧被动土压力:E P =p p1坑底+p p1下2x h pmp p1坑底= 2c 1√kp1=2x12x1.2350=29.64kpa.p p1下=r 1(ℎ1- ℎ坑底)k p1+2c 1√kp1= 18.3 x (10.5-7.3)x1.5252+2x12x1.2350=118.96kpaℎpm =3.2m.E P = (29.64+118.96)x3.2/2=237.76kpa即:T 2l m2+T 1l m1+E P h p1=E a h am有:5.8T 2+95.52x8.3+237.76x1.28=596.65x3.32得:T 2=152.37kpa四)桩嵌固深度计算:4.1)基坑开挖至设计深度时,据上结果知铰点假想为土层交接点M 点,则该处的剪力计算如下:根据水平方向上的平衡:即:E P1+T 1+T 2+v m =E a1v m =596.65-(237.76+95.52+152.37)=111kpa设桩底端为N 点,桩底距M 点距离为h mn 。

桩MN 段对桩底N 起矩平衡:4.1.1)土压力合力计算: 桩内侧被动土压力合力:E P =p p2上+p p2m下2x ℎmn根据3.1有:p p2上=r 1(h 1- h 坑底)k p2+2c 2√kp2=18.3x(10.5-7.3)x 1.8945+2x30x1.3764=193.53kpa.p p2m 下= [r 1(h 1- h 坑底)+r 2 h mn ]k p2+2c 2√kp2=[18.3x (10.5-7.3)+19.8x h mn ]x1.8945+2x30x1.3764 =[110.94+37.51ℎmn ]+82.584E P =193.53ℎmn +18.76ℎmn 2桩外侧主动土压力计算:E a =(p a2上2+p a2m 下2) x ℎmnp a2上=(r 1*h 1+q )k a2 -2c 2√ka2 =(18.3x10.5+20) x 0.5278-2x30x0.7265=68.38kpap a2m 下=[r 1 h 1+r 2h mn +q]k a2-2c 2√k a2=[18.3x10.5+19.8x ℎmn +20] x 0.5278-2x30x0.7265 =[111.97+10.45ℎmn ]-43.59E a =68.38ℎmn +5.23ℎmn 24.1.2)土压力作用点计算: 桩内侧被动土压力作用点计算:ℎpm =2p p2上+p p2m下3(p p2上+p p2m 下)ℎmn得, ℎpm =580.59+37.51ℎmn1161.18+112.53ℎmn ℎmn桩外侧主动土压力作用点计算:ℎam =2p a2上+p a2m下3(p a2上+p a2m 下)ℎmn得, ℎam =205.14+10.45ℎmn410.28+31.35ℎmn ℎmn剪力v m 的作用点位置为l m =h mn4.1.3)桩MN 段对桩底N 点起矩平衡:v m . l m +E a . h am =E P . h pm即,v m .h mn + [68.38h mn +5.23h mn 2].[ 205.14+10.45h mn 410.28+31.35h mnh mn ]=[193.53h mn +18.76h mn 2]. [580.59+37.51h mn 1161.18+112.53h mnh mn ]解得,h mn =1.63m则嵌固深度, t =3.2+1.63=4.83m. 入土深度增大系数r 0=1.20即,桩的嵌固深度,t ′=r 0t =1.20x4.83=5.80m五)桩身最大弯矩计算:5.1)第一步开挖第一次开挖到第一排锚杆下0.5m 即2.7m 处。

相关文档
最新文档