转炉炼钢工艺(溅渣护炉)

合集下载

转炉车间溅渣操作要点11.19

转炉车间溅渣操作要点11.19

转炉车间溅渣操作管理制度针对目前各班溅渣操作不统一,不能正确的通过溅渣来维护炉子,造成炉子频频告急,给厂部和车间带来极大的工艺事故和安全事故隐患,通过这几个月来对炉前工艺操作和终点控制情况,特对溅渣作出下规定:一、溅渣条件1、钢水必须出尽炉长、必须炉炉关注后大面的情况,不能出现凹坑或不平,必须观察出钢口位置高低,确保出钢口不高于后大面,保证每炉钢钢水都出尽,(如有钢水出不完的现象,跟班技术员、作业长、炉长必须在3炉钢内处理好)保证炉渣的可溅性。

2、在出钢过程中,炉长、操枪工必须从炉后观察炉内炉渣情况,炉长需及时指导操枪工的调渣密度和用量,确保渣子不调死,保证溅渣时间和效果,并指导自己下一炉的化渣枪位和方法。

3、操枪工必须确定有正常的工作氮压和流量,确保溅渣过程效果。

4、值班长必须保证炉后有充份的丢补料,每炉钢保证在出钢过程中向炉内加入10-15包的丢补料(30kg)(遇渣很粘时,可以少丢或不丢)。

5、遇拉后吹严重时,操枪工必须先加入轻烧白云石或改渣剂来稠渣,稠渣后倒掉1/3再进行溅渣。

6、在钢水没出尽或溅渣发现炉口钢花很严重时,但炉况又很差时,溅渣枪位必须比正常高200mm以上,并且通过调渣来把渣子溅干。

二、溅渣操作要点1 、调渣工艺及要求调渣工艺是指在炼钢结束后,通过炉口观察炉渣状况,判定炉渣是否适宜溅渣。

如果炉渣过于稀,应加入少量改渣剂调整炉渣,增强炉渣的黏稠度,如果炉渣过热度高,炉渣稀,流动性良好,应加入少量轻烧白云石降低熔渣温度,提高炉渣黏度,使之更适宜溅渣的操作工艺。

(1)直接溅渣工艺:即以炼钢过程中调整炉渣为主,炼钢后的渣较好适合溅渣基本不进行调渣,而直接进行溅渣操作。

要求铁水及原燃料条件比较稳定,吹炼平稳,终点控制准确,出钢温度低,终渣较好,适合出钢[C]>0.10%,出钢<1660℃的炉次。

(2)出钢后调渣工艺:即在炼钢结束后,根据炉渣状况适当加入少量改渣剂或轻烧白云石用以降低炉渣过热度,提高炉渣黏度,改善炉渣的渣系使溅渣层更耐高温和侵蚀。

转炉溅渣护炉工艺的研究与应用

转炉溅渣护炉工艺的研究与应用

16Metallurgical smelting冶金冶炼转炉溅渣护炉工艺的研究与应用朱元涛(山东石横特钢集团有限公司,山东 肥城 271612)摘 要:介绍了石横特钢集团有限公司炼钢车间通过优化转炉溅渣工艺,转炉炉体安全稳定运行,熔池未出现侵蚀扩径现象,炉壳温度稳定,影响钢产量增加,溅渣护炉效果明显,炉型稳定,大面料补炉砖消耗降低,取得明显经济及社会效益,具有很好的推广应用价值。

关键词:转炉;溅渣层中图分类号:TF748.2 文献标识码:A 文章编号:11-5004(2021)06-0016-2 收稿日期:2021-03作者简介:朱元涛,男,生于1975年,汉族,山东泰安人,本科,经济师,研究方向:冶金工程。

目前转炉实行炉炉溅渣工艺,在生产过程中会出现炉底波动大、炉帽过厚、熔池侵蚀严重等不利于转炉冶炼的现象,导致停炉换包时修补熔池侵蚀部位,停炉时间长,影响产能降低、补炉料消耗升高,同时炉型发生变化后,影响冶炼稳定性喷溅、溢渣严重。

为稳定炉型,缩短转炉停炉辅助时间,降低补炉料消耗等,一炼钢成立技术攻关小组,在改进溅渣层质量,优化氮气压力、流量与枪位,控制合理的留渣量等三方面进行技术优化,综合生产成本降低。

1 溅渣护炉工艺原理1.1 溅渣护炉分析初期渣对炉衬的侵蚀在转炉冶炼初期,首先是铁水中Si、Mn 的大量氧化,生成大量的SiO 2等,石灰的熔化速度较缓慢(石灰活性度低时更差),炉渣碱度的提高需要一个较长的过程,在低碱度阶段炉渣对炉衬的侵蚀较严重。

因为在酸性渣中,MgO 可以有很高的溶解度,加速了炉衬中MgO 的熔解速度。

因此,在初期加入白云石造渣,使渣中有一定的MgO 可以减轻对炉衬的化学侵蚀。

实际生产中,溅渣层为高熔点的C 2S 和MgO 结晶体,熔化温度较高。

由于冶炼初期温度较低,溅渣层为不明显熔化。

初期渣对溅渣层的侵蚀较弱,当渣中FeO 含量相同时,高钙渣的侵蚀速度明显高于高镁渣。

因此提高溅渣层的碱度或MgO 含量,均有利于减轻炉渣的侵蚀。

转炉溅渣护炉技术

转炉溅渣护炉技术

转炉溅渣护炉技术的应用方法1.溅渣护炉的基本原理,是在转炉出完钢后加入调渣剂,使其中的Mg与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材层。

转炉冶炼时,保护层可减轻高温气流及炉渣对炉衬的化学侵蚀和机械冲刷,以维护炉衬、提高炉龄并降低耐材包括喷补料等消耗。

氧气顶吹转炉溅渣护炉是在转炉出钢后将炉体保持直立位置,利用顶吹氧枪向炉内喷射高压氮气(1. 0MPa) ,将炉渣喷溅在炉衬上。

渣粒是以很大冲击力粘附到炉衬上,与炉壁结合的相当牢固,可以有效地阻止炉渣对炉衬的侵蚀。

复吹转炉溅渣护炉是将顶吹和底吹均切换成氮气,从上、下不同方向吹向转炉内炉渣,将炉渣溅起粘结在炉衬上以实现保护炉衬的目的。

溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,在转炉技术上是一个大的进步,它比干法喷补、火焰喷补、人工砌砖等方法更合理,其既能抑制炉衬砖表面的氧化脱碳,又能减轻高温渣对炉砖的侵蚀冲刷,从而保护炉衬砖,降低耐火材料蚀损速度,减少喷补材料消耗,减轻工人劳动强度,提高炉衬使用寿命,提高转炉作业率,减少操作费用,而且不需大量投资,较好地解决了炼钢生产中生产率与生产成本的矛盾。

因此,转炉溅渣护炉技术与复吹炼钢技术被并列为转炉炼钢的2项重大新技术。

2 溅渣护炉主要工艺因素2. 1 合理选择炉渣并进行终渣控制炉渣选择着重是选择合理的渣相熔点。

影响炉渣熔点的物质主要有FeO、MgO和炉渣碱度。

渣相熔点高可提高溅渣层在炉衬的停留时间,提高溅渣效果,减少溅渣频率,实现多炉一溅目标。

由于FeO易与CaO和MnO等形成低熔点物质,并由MgO和FeO的二元系相图可以看出,提高MgO的含量可减少FeO相应产生的低熔点物质数量,有利于炉渣熔点的提高。

从溅渣护炉的角度分析,希望碱度高一点,这样转炉终渣C2 S 及C3 S之和可以达到70%~75%。

转炉溅渣护炉技术

转炉溅渣护炉技术

溅渣护炉技术1 前言溅渣护炉是近年来开发的一项提高炉龄的新技术。

该技术最先是在美国共和钢公司的大湖分厂(Great Lakes ),由普莱克斯(Praxair)气体有限公司开发的。

1991年,美国LTV公司的印地安那哈的厂用溅渣作为全面护炉的一部分。

在转炉出钢后留下部分终渣,将渣粘度和氧化镁调整到适当范围,用氧枪喷吹氮气,使炉渣溅到炉壁上,达到补炉目的。

该方法具有炉龄长、生产率高、节省耐火材料、操作简便等优点。

1994年9月该厂232t顶吹转炉的炉衬寿命达到15658炉,喷补料消耗降到0.38kg/t钢,喷补料成本节省66%,转炉作业率由1984年的78%提高到1994年的97%。

我国从1994年开始转炉溅渣护炉试验,采用和发展的速度很快。

鞍钢、首钢、宝钢、武钢、太钢等一些转炉厂采用溅渣护炉技术,炉龄大幅度提高,取得了明效果。

其中,宝钢、首钢炉龄已逾万炉。

溅渣护炉技术的应用对提高我国转炉炉龄具有重要意义。

2 溅渣护炉的基本原理在转炉出完钢后加入调渣剂,使其中的Mg与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材层。

转炉冶炼时,保护层可减轻高温气流及炉渣对炉衬的化学侵蚀和机械冲刷,以维护炉衬、提高炉龄并降低耐材包括喷补料等消耗。

氧气顶吹转炉溅渣护炉是在转炉出钢后将炉体保持直立位置,利用顶吹氧枪向炉内喷射高压氮气(1.0MPa) ,将炉渣喷溅在炉衬上。

渣粒是以很大冲击力粘附到炉衬上,与炉壁结合的相当牢固,可以有效地阻止炉渣对炉衬的侵蚀。

复吹转炉溅渣护炉是将顶吹和底吹均切换成氮气,从上、下不同方向吹向转炉内炉渣,将炉渣溅起粘结在炉衬上以实现保护炉衬的目的。

2.1 溅渣护炉主要工艺因素2.1.1 合理选择炉渣并进行终渣控制炉渣选择着重是选择合理的渣相熔点。

影响炉渣熔点的物质主要有FeO、MgO 和炉渣碱度。

转炉溅渣护炉技术9

转炉溅渣护炉技术9

9.什么是转炉溅渣护炉技术?答:转炉溅渣技术是近年来开发的一种提高炉龄的新技术。

它是在20世纪70年代广泛应用过的、向炉渣中加入含MgO的造渣剂造黏渣挂渣护炉技术的基础上,利用氧枪喷吹高压氮气,在2—4min内将出钢后留在炉内的残余炉渣喷溅涂敷在整个转炉内衬表面上,形成炉渣保护层的护炉技术。

该项技术可以大幅度提高转炉炉龄,且投资少、工艺简单、经济效益显著。

此项技术是由美国Praxair气体公司开发、在美国共和钢公司的GreatLakes(大湖)分厂最先应用,在大湖厂和GraniteCity厂实施后,并没有得到推广。

1991年美国LTV公司的Indiana HaBOr厂用溅渣作为全面护炉的一部分。

1994年9月该厂252t顶底复吹转炉的炉衬寿命达到15658炉,喷补料消耗降到0.37kg /t钢,喷补料成本节省66%,转炉作业率由1987年的78%提高到1994年的97%。

溅渣护炉技术能使炉衬在炉役期中相当长的时间内保持均衡,实现“永久性”炉衬。

10.溅渣护炉技术的基本原理是什么?答:溅渣护炉技术的基本原理,是在转炉出钢后,调整余留终点渣成分,利用MgO含量达到饱和或过饱和的终点渣,通过高压氮气的吹溅,在炉衬表面形成一层与炉衬很好烧结附着的高熔点溅渣层,如图2—1所示。

这个溅渣层耐蚀性较好,并可减轻炼钢过程对炉衬的机械冲刷,从而保护了炉衬砖,减缓其损坏程度,使得炉衬寿命得以提高。

11.溅渣护炉对炉渣的组成与性质有哪些要求?答:炉渣成分是指构成炉渣的各种矿物的成分,它决定了炉渣的基本性质。

一般说来,初期渣的主要成分是SiO2、MnO、CaO、MgO和FeO等,随着吹炼过程进行,石灰熔化、渣量增加,使SiO2、MnO的含量逐渐降低,CaO、MgO的含量逐渐增加。

13.底吹对复吹转炉溅渣的影响有哪些?答:在复吹转炉溅渣过程中,由于底吹射流的介入,熔池中炉渣的搅动增强。

底吹气体涌起熔渣高度与底吹气体射流搅拌能有关:εv. b=2×371KQT1/Vm ln (1+9.8ρL/P)式中εv. b——底吹气体射流的搅拌能,W/m3.s K——喷体体积增加率,%;Q——底吹气体流量(标态),m3/min;TL——底吹气体温度,℃;Vm——熔池体积,m3;ρL——熔池液体(熔渣)密度,m3/min;p——大气压力,Pa理论上分析增加底吹气体量Q,即增大底吹搅拌能εv. b ,有利于溅渣。

转炉溅渣护炉技术(讲座)PPT课件

转炉溅渣护炉技术(讲座)PPT课件
防止中期喷溅。
实际上,溅渣护炉时残留在炉内的 终渣是一种最安全的留渣操作,它有利 于早化初渣,并可促进前期脱P。
首钢三炼钢在前炉溅渣和未溅渣两 种情况下,对吹炼3未溅渣的1.16%提高到1.95%。
(2)中期渣 转炉吹炼中期,铁水中Si、Mn已
转炉溅渣护炉技术
1、 溅渣护炉简介
图1 溅渣护炉示意图
•1991年美国LTV钢铁公司开始采用溅渣护 炉技术,现已有12个钢厂采用,其中内 陆钢厂1998年炉龄达33000次仍在吹炼。
•国内30吨以上转炉绝大部分采用溅渣护 炉技术,炉龄2万炉以上,莱钢30吨转炉 3万炉以上。
•国内部分15吨转炉采用溅渣护炉技术 (三明,安钢等)。 •武钢80吨复吹转炉底吹元件寿命与炉龄
同步,达1万炉以上。
2、溅渣护炉的炉渣控制
2.1溅渣护炉工艺过程
吹炼过程造好渣
出钢后将转炉摇正
降下氧枪吹氮2-3分钟
将多余炉渣倒出
2.2 造渣工艺
转炉采用溅渣护炉技术后, 造渣工艺可简单概括为“初渣早化, 过程渣化透,终渣做粘,溅渣挂 上”。
(1)初渣
在吹炼前期能否迅速形成高碱度的 炉渣,是减轻初渣对溅渣层及炉衬侵蚀 的一个重要环节。
当碱度从1.0提高到2.0时,MgO饱和值相应 由~12%降到~7%,早化初渣尽快提高碱度,MgO饱 和值会显著降低。因而,影响初渣MgO饱和溶解度 的主要因素是碱度。
温度升高,MgO饱和溶解度也相应增 加,大约是温度每提高50℃,MgO饱和 值增加1.0-1.3%。
当终渣碱度为3时,温度由1600℃ 升高到1700℃,MgO饱和值由6%增加到 8.5%。因此,影响终渣MgO饱和溶解度 的主要因素是温度。
在实施溅渣护炉后的造渣实践中,鞍 钢180t转炉使用活性石灰,并在开吹时 加入轻烧镁球、锰矿和复合球团,吹炼 5分钟时的初渣碱度由普通石灰的1.2提 高到2.0。

转炉炼钢工艺(溅渣护炉)

转炉炼钢工艺(溅渣护炉)
就是利用高MgO含量 的转炉炉渣,用高压氮气喷吹到转炉炉衬上 进而凝固到炉衬上,减缓炉衬砖的侵蚀速度, 从而提高转炉炉龄。 • 溅渣层对炉衬的保护作用是:对镁碳砖表面 脱碳层起到固化作用,减轻了高温炉渣对镁 碳砖表面的直接冲刷浸蚀,抑制了镁碳砖表 面的继续氧化。
溅渣护炉的负面影响
吹炼终点[%C] ·[%O]积随炉龄变化情 吹炼终点 积随炉龄变化情 况
关于经济炉龄的问题
生产率、 生产率、成本与炉龄关系
溅渣护炉的优点
大幅度降低耐材消耗; 大大提高转炉作业率,达到高效增产目的; 投资回报率高; 溅渣护炉综合效益每吨钢约为2~10元。
溅渣护炉的负面影响
底吹透气砖覆盖渣层厚度与吹炼终点[%C] ·[%O]积的关 底吹透气砖覆盖渣层厚度与吹炼终点 积的关 系
溅渣护炉的负面影响
底吹透气砖覆盖渣层厚度与吹炼终点[%C] ·[%O]积的关 底吹透气砖覆盖渣层厚度与吹炼终点 积的关 系
炉渣粘度的控制
过低的炉渣粘度有利溅渣的操作,即易溅起、挂 渣且均匀,但由于渣层过薄,会在摇炉时挂渣流 落; 而粘度过大,溅渣效果差,耳轴!渣线处不易溅到, 且炉底易上涨,炉膛变形,所以粘度需要根据实 际情况合理调整; 炉渣过热度增高,粘度下降。
溅渣操作参数控制
为了在尽可能短的时间内将炉渣均匀喷 敷在整个炉衬表面而形成有足够厚度的 致密溅渣层。必须控制好溅渣操作手段, 即根据炉形尺寸,来控制喷吹N2气压力 和流量、枪位和喷枪结构尺寸等喷溅参 数。
其它参数
喷溅时间:通常为2.5~4min; 喷枪夹角:许多厂家的经验表明采用12 度夹角比较理想。
需要采取的其它措施
炉衬材质不能因实行溅渣护炉技术而降 低,对使用镁碳砖而言,其碳含量应控 制为下限; 控制和降低终渣FeO含量; FeO 合理调整终渣MgO含量; 提高溅渣层熔化性温度,降低炉渣过热 度; 降低出钢温度。

溅渣护炉技术在转炉上的应用

溅渣护炉技术在转炉上的应用

溅渣护炉技术在转炉上的应用
溅渣护炉技术是一项新兴的技术,它可以提高转炉的燃烧效率,减少对环境的影响。

溅渣护炉技术是通过把大量的液体或气体加到炉内,使溅射出来的渣滓变得更轻而易于把它带走而得以应用于转炉上。

这样可以大大提高转炉的燃烧效率,减少对环境的影响。

溅渣护炉技术的主要原理是在炉子内部加入溅射液体或气体,使溅射出来的渣滓变得更轻,而且更易于把它带走。

此外,溅渣护炉技术还可以改善炉子内部燃烧状态,提高燃烧效率,从而降低炉子本身的耗能。

溅渣护炉技术在转炉上的应用主要体现在以下几个方面:
1、降低转炉内部的温度:在转炉内部加入溅射液体或气体,使渣滓变得更轻,从而降低转炉内部的温度,提高转炉的燃烧效率。

2、减少对环境的污染:由于转炉内部的温度较低,因此溅渣护炉技术也可以减少对环境的污染。

3、改善转炉内部燃烧状态:在转炉内部加入溅射液体或气体后,可以改善转炉内部的燃烧状态,从而提高燃烧效率,减少渣滓的生成。

4、降低燃料的消耗:由于溅渣护炉技术可以提高转炉的燃烧效率,从而降低燃料的消耗,节省能源,降低成本。

总之,溅渣护炉技术可以有效提高转炉的燃烧效率,减少对环境的污染,节省能源,降低成本。

在转炉上应用溅渣护炉技术,将会带来很好的经济效益和社会效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其它参数
喷溅时间:通常为2.5~4min; 喷枪夹角:许多厂家的经验表明采用12 度夹角比较理想。
需要采取的其它措施
炉衬材质不能因实行溅渣护炉技术而降 低,对使用镁碳砖而言,其碳含量应控 制为下限; 控制和降低终渣FeO含量; FeO 合理调整终渣MgO含量; 提高溅渣层熔化性温度,降低炉渣过热 度; 降低出钢温度。
炉渣粘度的控制
过低的炉渣粘度有利溅渣的操作,即易溅起、挂 渣且均匀,但由于渣层过薄,会在摇炉时挂渣流 落; 而粘度过大,溅渣效果差,耳轴!渣线处不易溅到, 且炉底易上涨,炉膛变形,所以粘度需要根据实 际情况合理调整; 炉渣过热度增高,粘度下降。
溅渣操作参数控制
为了在尽可能短的时间内将炉渣均匀喷 敷在整个炉衬表面而形成有足够厚度的 致密溅渣层。必须控制好溅渣操作手段, 即根据炉形尺寸,来控制喷吹N2气压力 和流量、枪位和喷枪结构尺寸等喷溅参 数。
N2压力与流量
一般来说,当N2压力和流量与氧气工 作压力和流量接近时,可取得较好溅渣效 果。如宝钢 300t 转炉溅渣N2压力为0.6~0.9 MPa,流量为48000~53000Nm3/h。
枪 位
枪位是非常重要的参数,它直接影响溅渣 量、溅渣高度; 最大溅渣量与一定的枪位存在对应关系, 过低或过高的枪位都会使溅渣量减少。当 需要有更高的溅渣高度,同时减少炉底上 涨趋势,则可采用低枪位操作,反之采用 高枪位。 各厂应根据自己的实际来摸索控制枪位的 经验。一般来说,枪位可在1~2.5m之间变 化。
溅渣护炉的负面影响
吹炼终点[%C] ·[%O]积随炉龄变化情 吹炼终点 积随炉龄变化情 况
关于经济炉龄的问题
生产率、点
大幅度降低耐材消耗; 大大提高转炉作业率,达到高效增产目的; 投资回报率高; 溅渣护炉综合效益每吨钢约为2~10元。
溅渣护炉的负面影响
底吹透气砖覆盖渣层厚度与吹炼终点[%C] ·[%O]积的关 底吹透气砖覆盖渣层厚度与吹炼终点 积的关 系
溅渣护炉的负面影响
底吹透气砖覆盖渣层厚度与吹炼终点[%C] ·[%O]积的关 底吹透气砖覆盖渣层厚度与吹炼终点 积的关 系
转炉炼钢长寿命炉衬技术
龚 伟 东北大学钢铁冶金研究所 2006年9月 年 月
长寿命炉衬技术的意义
• 提高炉龄不仅可以降低耐火材料消耗、 降低生产成本 ,还有利于提高转炉的利用 率 ,实现转炉“高效化”。因此炉龄是转 炉炼钢一项十分重要的综合性经济指标。
溅渣护炉的基本原理
• 溅渣护炉的基本原理就是利用高MgO含量 的转炉炉渣,用高压氮气喷吹到转炉炉衬上 进而凝固到炉衬上,减缓炉衬砖的侵蚀速度, 从而提高转炉炉龄。 • 溅渣层对炉衬的保护作用是:对镁碳砖表面 脱碳层起到固化作用,减轻了高温炉渣对镁 碳砖表面的直接冲刷浸蚀,抑制了镁碳砖表 面的继续氧化。
溅渣护炉的技术要点
为了获得溅渣护炉预期的效果,必须掌握 如下技术要点,即: • 炉内合理的留渣量; • 炉渣的物化性质,包括成分、熔点、过热 度、表面张力和粘度; • 合理的溅渣参数。
炉内合理的留渣量
• 过少的留渣量会影响溅渣层的厚度及其均 匀性,尤其上部不均匀,甚至溅不上渣; • 过多留渣量会造成炉口粘渣、炉膛变形和 炉底上涨,且浪费溅渣料,增加成本; • 根据国内外实践经验,留渣量随炉子容量 增大而增大,而渣量控制在80~120kg/t较为 合适。
炉渣特性控制
控制终渣MgO含量(质量分数); 控制终渣FeO(质量分数); 炉渣粘度的控制。
控制终渣MgO含量
在吹炼前期MgO含 量加入MgO (<8%)可 促进熔渣熔化,对炼 钢和溅渣均有好处; 在终渣形成时,必须 确保MgO >8%,以提 高熔渣熔化温度。
终渣FeO的控制 的控制 终渣
• 终渣FeO有双向作用,即一方面FeO和C2F在溅渣 过程中沿衬砖表面呈微气孔和裂纹向MgO机体 内扩散,形成以(MgO·CaO)Fe2O3为主的烧结层, 起较好保护作用; • 另一方面随FeO的增加,熔渣熔化温度明显降低, 影响溅渣层的抗侵蚀性能在确定FeO含量时要 考虑碱度和MgO含量,以尽可能提高熔渣熔化温 度为原则; • 我国的实践认为FeO取12%~18%较合理。
相关文档
最新文档