(通用版)高考数学复习专题二函数与导数2.1函数的概念、图象和性质练习理

合集下载

2019年高考数学大二轮复习专题二函数与导数第1讲函数的图像与性质课件理ppt版本

2019年高考数学大二轮复习专题二函数与导数第1讲函数的图像与性质课件理ppt版本

图像如图所示.结合图像可知,要使 f(x
x+1<0, +1)<f(2x),则需2x<0, 或
x+1≥0,

2x<x+1 2x<0.
所以 x<0,故选 D.
答案 D
3.(2018·济南模拟)设函数 f(x)=x-2+x22,x+x>20,. x≤0,若 f(f(a))=2,则 a 的值为________.
交点为(1,4),其和为 2×m-2 1+1=m.综上i=m1xi=m.
【答案】 (1)C (2)B
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
答案 D
热点三 函数性质及其应用(贯通提能)
常见结论:
(1)f(x + a) = - f(x) ⇒ 函 数 f(x) 的 最 小 正 周 期 为
2|a|(a≠0).
(2)f(x

a)

1 f(x)



f(x) 的 最 小 正 周 期 为
2|a|(a≠0).
(3)f(a+x)=f(b-x),则函数 f(x)的图像关于 x=
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
解析 设 f(x)=2|x|sin 2x,其定义域关于原点对称, 又 f(-x)=2|-x|·sin(-2x)=-f(x),所以 y=f(x)是奇 函数,故排除选项 A,B;令 f(x)=0,所以 sin 2x=0, 所以 2x=kπ(k∈Z),所以 x=kπ 2 (k∈Z),故排除选项 C.故选 D.

高考总复习二轮数学精品课件 专题1 函数与导数 第1讲 函数的图象与性质

高考总复习二轮数学精品课件 专题1 函数与导数 第1讲 函数的图象与性质
函数)、换元法、单调性法、基本不等式法、数形结合法.
2.函数的性质
(1)奇偶性
这是函数具有奇偶性的重要前提
①定义:若函数的定义域关于原点对称,则有f(x)是偶函数⇔f(-x)=f(x)=f(|x|),
f(x)是奇函数⇔f(-x)=-f(x).
②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函
∴(-1+a)ln
1
3=(1+a)ln3,
∴-1+a=-1-a,∴a=0.
此时
2-1
f(x)=xln2+1,易知函数
f(x)的定义域为
-2-1
2+1
2-1
f(-x)=-xln
=-xln
=xln
=f(x),
2+1
-2+1
2-1
∴a=0 符合题意.
1
-∞,- 2

1
,+∞
2
,
方法二:设
B.是奇函数,且在区间(0,+∞)内单调递减
C.是偶函数,且在区间(0,+∞)内单调递增
D.是偶函数,且在区间(0,+∞)内单调递减
解析 因为函数
1
3
f(x)=x - 3 的定义域为{x|x≠0},其关于原点对称,而

f(-x)=-f(x),所以
函数 f(x)为奇函数.
又因为函数
y=x3 在区间(0,+∞)内单调递增,在区间(-∞,0)内单调递增,而
ln, > 0,
解析 f(x)= 1
2

-2, ≤ 0,
1
2
ln ≤ 0,
-2 ≤ 0,

(全国通用版)高考数学一轮复习 第二章 函数、导数及其应用 课时分层作业四 2.1 函数及其表示 理

(全国通用版)高考数学一轮复习 第二章 函数、导数及其应用 课时分层作业四 2.1 函数及其表示 理

课时分层作业四函数及其表示一、选择题(每小题5分,共35分)1.下列所给图象是函数图象的个数为( )A.1B.2C.3D.4【解析】选B.①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.2.(2018·滨州模拟)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.由ln(x-1)≠0,得x-1>0且x-1≠1.由此解得x>1且x≠2,即函数y=的定义域是(1,2)∪(2,+∞).3.给出下列命题:①函数是其定义域到值域的映射;②f(x)=+是一个函数;③函数y=2x(x∈N)的图象是一条直线;④f(x)=lgx2与g(x)=2lgx是同一函数.其中正确的有( )A.1个B.2个C.3个D.4个【解析】选A.由函数的定义知①正确.因为满足f(x)=+的x不存在,所以②不正确.又因为y=2x(x∈N)的图象是位于直线y=2x上的一群孤立的点,所以③不正确.又因为f(x)与g(x)的定义域不同,所以④也不正确.4.(2018·某某模拟)已知函数f(x)=若f(a)+f(1)=0,则实数a的值等于( )A.-3B.-1C.1D.3【解析】选A.当a>0时,由f(a)+f(1)=0得2a+2=0,可见不存在实数a满足条件,当a<0时,由f(a)+f(1)=0得a+1+2=0,解得a=-3,满足条件.【一题多解】本题还可以采用如下解法:方法一:选A.由指数函数的性质可知:2x>0,又因为f(1)=2,所以a<0,所以f(a)=a+1,即a+1+2=0,解得:a=-3. 方法二:选A.验证法,把a=-3代入f(a)=a+1=-2,又因为f(1)=2,所以f(a)+f(1)=0,满足条件,从而选A.【变式备选】已知函数f(x)=且f(0)=2,f(-1)=3,则f(f(-3))= ( )A.-2B.2C.3D.-3【解析】选B.f(0)=a0+b=1+b=2,解得b=1;f(-1)=a-1+b=a-1+1=3,解得a=.故f(-3)=+1=9,f(f(-3))=f(9)=log39=2.【方法技巧】求函数值的四种常考类型及解法(1)f(g(x))型:遵循先内后外的原则.(2)分段函数型:根据自变量值所在区间对应求值,不确定时要分类讨论.(3)已知函数性质型:对具有奇偶性、周期性、对称性的函数求值,要用好其函数性质,将待求值调节到已知区间上求解.(4)抽象函数型:对于抽象函数求函数值,要用好抽象的函数关系,适当赋值,从而求得待求函数值.5.已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为 ( )A.f(x)=x2-12x+18B.f(x)=x2-4x+6C.f(x)=6x+9D.f(x)=2x+3【解析】选B.由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=x2-4x+6.6.现向一个半径为R的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h随时间t变化的函数关系的是( )【解析】选C.从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.7.已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],则++…+= ( )A.2017B.C.1008D.2016【解析】选B.=,=,…,=,=0,所以原式=++…+=.【题目溯源】本考题源于教材人教A版必修1P25习题B组T3,“函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2.当x∈(-2.5,3]时,写出函数f(x)的解析式,并作出函数的图象”的变式.【变式备选】设[x]表示不大于x的最大整数,则对任意实数x,有( )A.[-x]=-[x]B.=[x]C.[2x]=2[x]D.[x]+=[2x]【解析】选D.选项A,取x=1.5,则[-x]=[-1.5]=-2,-[x]=-[1.5]=-1,显然[-x]≠-[x].选项B,取x=1.5,则=[2]=2≠[1.5]=1.选项C,取x=1.5,则[2x]=[3]=3,2[x]=2[1.5]=2,显然[2x]≠2[x].二、填空题(每小题5分,共15分)8.(2018·某某模拟)函数y=ln+的定义域为______________.【解析】由⇒⇒0<x≤1.所以该函数的定义域为(0,1].答案:(0,1]9.已知函数f(x)=则f(f(-3))=________,f(x)的最小值是________.【解析】f(f(-3))=f(1)=0,当x≥1时,f(x)≥2-3,当且仅当x=时,等号成立;当x<1时,f(x)≥0,当且仅当x=0时,等号成立,所以f(x)的最小值为2-3.答案:0 2-310.已知函数f(x)的定义域是[-1,1],则f(log2x)的定义域为______________.【解析】因为函数f(x)的定义域是[-1,1],所以-1≤log2x≤1,所以≤x≤2.故f(log2x)的定义域为.答案:1.(5分)下列函数中,不满足f(2x)=2f(x)的是( )A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【解析】选C.对于选项A,f(2x)=|2x|=2|x|=2f(x);对于选项B,f(x)=x-|x|=当x≥0时,f(2x)=0=2f(x),当x<0时,f(2x)=4x=2·2x=2f(x),恒有f(2x)=2f(x);对于选项D,f(2x)=-2x=2(-x)=2f(x);对于选项C,f(2x)=2x+1=2f(x)-1.2.(5分)(2018·某某模拟)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( )A.1个B.2个C.3个D.4个【解析】选C.由x2+1=1得x=0,由x2+1=3得x=±,所以函数的定义域可以是{0,},{0,-},{0,,-},故值域为{1,3}的同族函数共有3个.3.(5分)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值X围是__________. 导学号12560407【解析】当x≤2,故-x+6≥4,要使得函数f(x)的值域为[4,+∞),只需f1(x)=3+log a x(x>2)的值域包含于[4,+∞),故a>1,所以f1(x)>3+log a2,所以3+log a2≥4,解得1<a≤2,所以实数a的取值X围是(1,2].答案:(1,2]4.(12分)已知f(x)=x2-1,g(x)=(1)求f(g(2))与g(f(2)).(2)求f(g(x))与g(f(x))的表达式.【解析】(1)g(2)=1,f(g(2))=f(1)=0;f(2)=3,g(f(2))=g(3)=2.(2)当x>0时,f(g(x))=f(x-1)=(x-1)2-1=x2-2x;当x<0时,f(g(x))=f(2-x)=(2-x)2-1=x2-4x+3.所以f(g(x))=同理可得g(f(x))=5.(13分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨为3.00元.某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x、3x(吨).(1)求y关于x的函数.(2)若甲、乙两用户该月共交水费26.40元,分别求出甲、乙两户该月的用水量和水费.【解析】(1)当甲的用水量不超过4吨时,即5x≤4,乙的用水量也不超过4吨,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x≤4且5x>4时,y=4×1.8+3(5x-4)+3x×1.8=20.4x-4.8;当乙的用水量超过4吨时,即3x>4,y=24x-9.6,所以y=.(2)由于y=f(x)在各段区间上均为单调递增,当x∈时,y≤f<26.4;当x∈时,y≤f<26.4;当x∈时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=7.5吨,付费S1=4×1.80+3.5×3.00=17.70(元); 乙户用水量为3x=4.5吨,付费S2=4×1.80+0.5×3.00=8.70(元).。

高考函数与导数知识点

高考函数与导数知识点

高考函数与导数知识点在高考数学中,函数与导数是重要的考点之一。

理解和掌握函数与导数的知识对于解答各类函数与导数题目至关重要。

本文将对高考函数与导数的知识点进行详细论述,帮助同学们更好地应对考试。

1. 函数的概念与性质函数是数学中常见的概念,它描述了两个变量之间的关系。

通常用字母表示,其中一个变量称为自变量,另一个变量称为函数的值或因变量。

函数可以用方程、图形或解析式等形式表示。

函数的性质有很多,例如:奇偶性、单调性、周期性、有界性等。

了解这些性质对于解题非常有帮助。

同时,还需要掌握函数的基本运算、复合函数以及函数的反函数等概念和运算方法。

2. 导数的概念与计算方法导数是函数在某一点上的变化率或斜率。

它是函数微分学的基本概念之一。

导数的计算方法有很多,常见的有用定义法、用极限法和用基本导数法等。

要计算导数,首先需要了解导数的定义。

其次,掌握各类函数的导数公式,如幂函数、指数函数、对数函数、三角函数等的导数。

此外,还需要掌握导数的运算法则,例如和差法则、积法则、商法则等。

3. 函数与导数的关系函数与导数之间有着密切的联系,理解函数与导数的关系对于高考数学题目的解答至关重要。

首先,导数可以表征函数的变化趋势。

通过函数的导数值,可以判断函数在某一点上是递增还是递减,也可以分析函数的极值(最大值和最小值)。

其次,函数的导数也可以求出函数的切线方程。

通过求导并代入给定点的坐标,可以确定函数在该点的切线,进而得到切线的方程。

此外,通过函数的导数还可以判断函数的凹凸性。

函数的导数值的变化可以揭示函数的曲线是上凹还是下凹,从而确定函数的凹凸区间。

4. 应用题与解题技巧高考中,函数与导数的知识点经常会涉及到应用题。

这类题目结合了函数与导数的知识,考察学生对于函数与导数概念的理解和运用能力。

在解答应用题时,需要注意以下几个方面的技巧:(1) 确定函数的自变量和因变量,建立函数模型;(2) 利用导数求出函数的变化趋势,比如函数递增递减的区间、函数的最值等;(3) 根据问题中给出的条件,列方程并求解;(4) 检查解的合理性以及问题中是否有陷阱,注意解答方式和表述的准确性。

高考数学函数与导数知识点

高考数学函数与导数知识点

高考数学函数与导数知识点在高考数学中,函数与导数是重要的知识点。

理解和掌握这些知识点对于高考数学的学习非常关键。

本文将介绍函数与导数的基本概念、性质以及相关应用。

一、函数的基本概念函数是数学中一种重要的概念,定义如下:定义1:设A、B是两个非空集合,对于A中的每一个元素a,在B中都有唯一确定的元素b与之对应。

这样的对应关系称为函数,记作y=f(x)。

在函数的定义中,x是自变量,y是因变量,而f(x)则表示函数的值或函数表达式。

1.1 函数的表示方法函数可以通过多种方式来表示:1.1.1 函数的代数式表示:常用的代数式表示函数的方法有多项式函数、有理函数、指数函数、对数函数等。

1.1.2 函数的图像表示:通过绘制函数的图像,可以更直观地理解函数的性质。

1.1.3 函数的表格表示:将自变量与因变量的对应关系记录在表格中,方便观察函数的规律。

1.2 函数的性质函数具有以下一些基本性质:1.2.1 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

1.2.2 奇偶性:函数的奇偶性描述了函数关于y轴对称或关于原点对称的特点。

1.2.3 单调性:函数的单调性描述了函数在定义域内的增减趋势。

1.2.4 周期性:周期函数是一类具有周期性规律的函数,如正弦函数、余弦函数等。

二、导数的基本概念导数是函数的一个重要性质,用来描述函数在某一点的变化率。

导数的定义如下:定义2:设函数y=f(x)在点x0处有定义,当自变量x在x0的邻域内取得不同值时,对应的函数值f(x)也随之变化。

如果存在一个常数k,使得当x趋近于x0时,函数值的变化量与x-x0的差的比趋近于k,那么称函数y=f(x)在点x0处可导,常数k称为函数f(x)在点x0处的导数,记作f'(x0)。

2.1 导数的几何意义导数的几何意义可以从函数的图像中理解:2.1.1 函数的切线斜率:对于函数y=f(x),在点(x0, f(x0))处的切线的斜率就是函数在该点处的导数。

函数的概念和性质高考真题

函数的概念和性质高考真题

函数的概念和性质高考真题1.函数的概念和性质1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。

1.2 函数的性质函数有很多性质,其中一些比较重要的包括:1)定义域和值域:函数的定义域是所有可能输入的集合,值域是所有可能输出的集合。

2)奇偶性:如果对于函数f(x),有f(-x)=-f(x),则称f(x)是奇函数;如果有f(-x)=f(x),则称f(x)是偶函数。

3)单调性:如果对于函数f(x),当x1f(x2),则称f(x)在区间(x1,x2)上单调递减。

4)零点和极值:函数的零点是函数图像与x轴的交点,极值是函数在某一区间内的最大值或最小值。

2.例题解答2.1(2019江苏4)函数y=7+6x-x^2的定义域是所有实数。

函数f(x)是奇函数,且当x<0时,f(x)=-eax。

若f(ln2)=8,则a=ln(1/4)。

2.2(2019全国Ⅱ理14)已知。

2.3(2019全国Ⅲ理11)设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则正确的不等式是B。

2.4(2019北京理13)设函数f(x)=ex+ae-x(a为常数),若f(x)为奇函数,则a=0;若f(x)是R上的增函数,则a的取值范围是(-∞,0)。

2.5(2019全国Ⅰ理11)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π/2,π)单调递增;③f(x)在[-π,π]有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是B。

2.6(2019全国Ⅰ理5)函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为D。

2.7(2019全国Ⅲ理7)函数y=2x+2-x在[-6,6]的图像大致为A。

2.8(2019浙江6)在同一直角坐标系中,函数y=11/x^2,y=loga(x+2)(a>0且a≠1)的图像可能是B。

高考数学总复习配套课件:第2章《函数、导数及其应用》2-11导数的概念及运算

高考数学总复习配套课件:第2章《函数、导数及其应用》2-11导数的概念及运算
y时0),处切的线切的线斜是率指kP=为f′切(x0点).,曲切线线y唯=一f(x,)过当点f′P(x(0x)0存,在y0) 的切线,是指切线经过P点,点P可以是切点,也 可以不是切点,而且这样的直线可能有多条.
1.(2011 年高考江西卷)曲线 y=ex 在点 A(0,1)处的切线斜率为( )
A.1
设u=v(x)在点x处可导,y=f(u)在点u处可导,
则 复 合 函 数 f[v(x)] 在 点 x 处 可 导 , 且 f′(x)

f′(u)·,v′(x即) y′x=
y′u·u′x
.
[疑难关注]
曲P(x线0,y=y0)f的(x)切“线在”点的P(区x0别,与y0联)处系的切线”与“过点 曲P(x线0,y=y0)f的(x)切“线在”点的P(区x0别,:y0)曲处线的y切=线f(x”)在与点“P(过x0点,
为 2.函数f(x)的导函数
y-y0=f′(.x0)(x-x0)
称函数f′(x)= 数.
为f(x)的导函
二、基本初等函数的导数公式
三、导数的运算法则
1.[f(x)±g(x)]′=f′(x)±g′(x) 2.[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x)
. .
四3.、[gf复xx]′合=函f′数xg的[xg-导xf]2x数g′x(g(x)≠0).
(3)先化简,y=
1 x·

x
x+ 1x-1=-x12+x-12,
∴y′=-12x-12-12x-32=-21 x1+1x.
1.(2013 年深圳模拟)函数 f(x)=sinx x的导数是( )
xsin x+cos x
A.
x2
xcos x+sin x

2020版高考数学一轮复习第2章函数、导数及其应用2.1函数及其表示学案理

2020版高考数学一轮复习第2章函数、导数及其应用2.1函数及其表示学案理

2.1 函数及其表示[知识梳理]1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.必记结论函数与映射的相关结论 (1)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等. (2)映射的个数若集合A 中有m 个元素,集合B 中有n 个元素,则从集合A 到集合B 的映射共有n m个. (3)与x 轴垂直的直线和一个函数的图象至多有1个交点. [诊断自测] 1.概念思辨(1)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( ) (4)f (x -1)=x ,则f (x )=(x +1)2(x ≥-1).( ) 答案 (1)× (2)√ (3)× (4)√2.教材衍化(1)(必修A1P 23T 2)下列四个图形中,不是以x 为自变量的函数的图象是( )答案 C解析 由函数定义知,定义域内的每一个x 都有唯一函数值与之对应,A ,B ,D 选项中的图象都符合;C 项中对于大于零的x 而言,有两个不同的值与之对应,不符合函数定义.故选C.(2)(必修A1P 18例2)下列四组函数中,表示相等函数的一组是( ) A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 答案 A解析 A 项,函数g (x )=x 2=|x |,两个函数的对应法则和定义域相同,是相等函数;B 项,函数f (x )=x 2=|x |,g (x )=x (x ≥0),两个函数的对应法则和定义域不相同,不是相等函数;C 项,函数f (x )=x 2-1x -1的定义域为{x |x ≠1},g (x )=x +1的定义域为R ,两个函数的定义域不相同,不是相等函数;D 项,由⎩⎪⎨⎪⎧x +1≥0,x -1≥0,解得x ≥1,即函数f (x )的定义域为{x |x ≥1}.由x 2-1≥0,解得x ≥1或x ≤-1,即g (x )的定义域为{x |x ≥1或x ≤-1},两个函数的定义域不相同,不是相等函数.故选A.3.小题热身(1)(2018·广东深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1] 答案 C解析 由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0,x >0,ln x ≠0,解得0<x <1.故选C.(2)若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x-4,x >0,则f [f (1)]的值为( )A .-10B .10C .-2D .2 答案 C解析 因为f (1)=-2,所以f (-2)=-2.故选C.题型1 函数的概念典例1 集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x用定义法.答案 C解析 依据函数概念,集合A 中任一元素在集合B 中都有唯一确定的元素与之对应,选项C 不符合.故选C.典例2 (2018·秦都区月考)判断下列各组中的两个函数是同一函数的是( ) ①y 1=(x +3)(x -5)x +3,y 2=x -5;②f (x )=x ,g (x )=x 2; ③f (x )=x ,g (x )=3x 3;④f 1(x )=(2x -5)2,f 2(x )=2x -5. A .①② B .②③ C .③ D .③④用定义法.答案 C解析 对于①,y 1=(x +3)(x -5)x +3=x -5(x ≠-3),与y 2=x -5(x ∈R )的定义域不同,不是同一函数;对于②,f (x )=x ,与g (x )=x 2=|x |的对应关系不同,不是同一函数;对于③,f (x )=x (x ∈R ),与g (x )=3x 3=x (x ∈R )的定义域相同,对应关系也相同,是同一函数;对于④,f 1(x )=(2x -5)2=2x -5⎝ ⎛⎭⎪⎫x ≥52,与f 2(x )=2x -5(x ∈R )的定义域不同,不是同一函数. 综上,以上是同一函数的是③.故选C. 方法技巧与函数概念有关问题的解题策略1.判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.见典例1.2.两个函数是否是相等函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示相等函数.见典例2.冲关针对训练1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={x |0≤x ≤1}为值域的函数的是( )答案 C解析 A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.故选C.2.下列函数中一定是同一函数的是________.答案 ②③解析 ①y =x 与y =a log a x 定义域不同; ②y =2x +1-2x =2x (2-1)=2x相同;③f (u )与f (v )的定义域及对应法则均相同; ④对应法则不相同.题型2 函数的定义域典例1 (2015·湖北高考)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( ) A .(2,3) B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]列不等式组求解.答案 C解析 依题意,知⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧|x |≤4,(x -3)(x -2)x -3>0,解之得2<x <3或3<x ≤4,即函数的定义域为(2,3)∪(3,4].故选C.典例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1)B.⎝⎛⎭⎪⎫-1,-12C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 已知f (x ),x ∈[a ,b ],求f [g (x )]的定义域,则a <g (x )<b .答案 B解析 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12.故选B. [结论探究] 典例2中条件不变,求函数g (x )=f (2x +1)+f (3x +1)的定义域. 解 函数f (3x +1)有意义,需-1<3x +1<0,解得-23<x <-13,又由f (2x +1)有意义,解得-1<x <-12,所以可知g (x )的定义域为⎝ ⎛⎭⎪⎫-23,-12.[条件探究] 若典例2中条件变为:“函数f (x -1)的定义域为(-1,0)”,则结果如何?解 因为f (x -1)的定义域为(-1,0),即-1<x <0,所以-2<x -1<-1,故f (x )的定义域为(-2,-1),则使函数f (2x +1)有意义,需满足-2<2x +1<-1,解得-32<x <-1.所以所求函数的定义域为⎝ ⎛⎭⎪⎫-32,-1.方法技巧1.求函数定义域的三种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解.见典例1. (2)抽象函数(见典例2)①若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出.②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.(3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求. 2.求函数定义域的注意点(1)不要对解析式进行化简变形,以免定义域变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.冲关针对训练1.(2017·临川模拟)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A .[-3,7]B .[-1,4]C .[-5,5] D.⎣⎢⎡⎦⎥⎤0,52 答案 D解析 由y =f (x +1)定义域[-2,3]得y =f (x )定义域为[-1,4],所以-1≤2x -1≤4,解得0≤x ≤52.故选D.2.(2018·石河子月考)已知函数y =f (x )的定义域是(-∞,1),则y =f (x -1)+2-x2x 2-3x -2的定义域是( )A.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2 B.⎝⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫12,1 C .(-∞,1) D .(-∞,2) 答案 A解析 ∵函数y =f (x )的定义域是(-∞,1), ∴y =f (x -1)+2-x2x 2-3x -2中,自变量x 应满足⎩⎪⎨⎪⎧x -1<1,2-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x <2,x ≤2,x ≠-12或x ≠2,即x <2且x ≠-12,∴f (x )的定义域是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,2.故选A. 题型3 求函数的解析式典例1 已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式.配凑法.解 f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,故f (x )=x 2-2,且x ≤-2或x ≥2.典例2 已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式.换元法.解 令t =2x +1>1,得x =2t -1,所以f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).典例3 已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).待定系数法.解 设f (x )=ax 2+bx +c ,由f (0)=0,得c =0,由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,得a =b =12.所以f (x )=12x 2+12x (x ∈R ).典例4 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,求f (x ). 方程组法.解 由f (x )=2f ⎝ ⎛⎭⎪⎫1xx -1,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,消掉f ⎝ ⎛⎭⎪⎫1x ,可得f (x )=23x +13.方法技巧函数解析式的常见求法1.配凑法.已知f [h (x )]=g (x ),求f (x )的问题,往往把右边的g (x )整理成或配凑成只含h (x )的式子,然后用x 将h (x )代换.见典例1.2.待定系数法.已知函数的类型(如一次函数、二次函数)可用待定系数法,见典例3. 3.换元法.已知f [h (x )]=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元.应用换元法时要注意新元的取值范围.见典例2.4.方程组法.已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f ⎝ ⎛⎭⎪⎫1x ,f (-x )等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).见典例4.冲关针对训练1.(2018·衢州期末)已知f (x )是(0,+∞)上的增函数,若f [f (x )-ln x ]=1,则f (e)=( )A .2B .1C .0D .e 答案 A解析 根据题意,f (x )是(0,+∞)上的增函数,且f [f (x )-ln x ]=1,则f (x )-ln x 为定值.设f (x )-ln x =t ,t 为常数,则f (x )=ln x +t 且f (t )=1,即有ln t +t =1,解得t =1,则f (x )=ln x +1,则f (e)=ln e +1=2.故选A.2.已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). 解 解法一:(换元法)令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).解法二:(配凑法)因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).解法三:(待定系数法)因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ).3.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x -1,求f (x ). 解 (消元法)已知2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x -1,① 以1x代替①式中的x (x ≠0),得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x-1,②①×2-②得3f (x )=6x -3x-1,故f (x )=2x -1x -13(x ≠0).题型4 求函数的值域角度1 分式型典例 求f (x )=5x -14x +2,x ∈[-3,-1]的值域. 分离常数法.解 由y =5x -14x +2可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3,即y ∈⎣⎢⎡⎦⎥⎤85,3.角度2 根式型典例 求函数的值域. (1)y =2x +1-2x ; (2)y =x +4+9-x 2.(1)用换元法,配方法;(2)用三角换元法.解 (1)令t =1-2x ,则x =1-t22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54(t ≥0).∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝ ⎛⎦⎥⎤-∞,54.(2)令x =3cos θ,θ∈[0,π],则y =3cos θ+4+3sin θ=32sin ⎝⎛⎭⎪⎫θ+π4+4.∵0≤θ≤π, ∴π4≤θ+π4≤5π4, ∴-22≤sin ⎝⎛⎭⎪⎫θ+π4≤1,∴1≤y ≤32+4,∴函数的值域为[1,32+4]. 角度3 对勾型函数典例 求y =log 3x +log x 3-1的值域.用分类讨论法.解 y =log 3x +log x 3-1,变形得y =log 3x +1log 3x-1.①当log 3x >0,即x >1时,y =log 3x +1log 3x -1≥2-1=1,当且仅当log 3x =1,即x =3时取“=”.②当log 3x <0,即0<x <1时,y ≤-2-1=-3. 当且仅当log 3x =-1,即x =13时取“=”.综上所述,原函数的值域为(-∞,-3]∪[1,+∞). 角度4 单调性型典例函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)本题用复合函数“同增异减”的单调原则.答案 A解析 根据对数函数的定义可知,真数3x+1>0恒成立,解得x ∈R . 因此,该函数的定义域为R ,原函数f (x )=log 2(3x+1)是由对数函数y =log 2t 和t =3x+1复合的复合函数, 由复合函数的单调性定义(同增异减)知道,原函数在定义域R 上是单调递增的. 根据指数函数的性质可知,3x>0,所以,3x+1>1, 所以f (x )=log 2(3x+1)>log 21=0,故选A. 角度5 有界性型典例 求函数y =1-2x1+2x 的值域. 本题用转化法.解 由y =1-2x1+2x可得2x=1-y 1+y . 由指数函数y =2x的有界性可知2x>0, ∴1-y1+y>0,解得-1<y <1. 所以函数的值域为(-1,1). 角度6 数形结合型典例 求函数y =sin x +1x -1,x ∈⎣⎢⎡⎦⎥⎤π2,π的值域.本题用数形结合法.解 函数y =sin x +1x -1的值域可看作由点A (x ,sin x ),B (1,-1)两点决定的斜率,B (1,-1)是定点,A (x ,sin x )在曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π上,如图,∴k BP ≤y ≤k BQ ,即1π-1≤y ≤4π-2.方法技巧求函数值域的常用方法1.分离常数法(见角度1典例) 2.配方法3.换元法(见角度2典例) (1)代数换元; (2)三角换元.4.有界性法(见角度5典例) 5.数形结合法(见角度6典例) 6.基本不等式法(见角度3典例) 7.利用函数的单调性(见角度4典例)冲关针对训练 求下列函数的值域:解(2)(数形结合法)如图,函数y =(x +3)2+16+(x -5)2+4的几何意义为平面内一点P (x,0)到点A (-3,4)和点B (5,2)的距离之和.由平面解析几何知识,找出B 关于x 轴的对称点B ′(5,-2),连接AB ′交x 轴于一点P ,此时距离之和最小,∴y min =|AB ′|=82+62=10,又y 无最大值,所以y ∈[10,+∞).题型5 分段函数角度1 求分段函数的函数值典例 (2015·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12确定自变量所在区间,代入相应解析式.答案 C解析 ∵-2<1,log 212>1,∴f (-2)=1+log 2[2-(-2)]=3;f (log 212)=2log212-1=2log26=6.∴f (-2)+f (log 212)=9.故选C. 角度2 求参数的值典例 (2018·襄阳联考)已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f [f (14-a )]=________.本题用方程思想求a ,再根据区间分类讨论,由内到外逐步求解.答案 -158解析 当a ≤1时,f (a )=2a-2=-3无解;当a >1时,由f (a )=-log 2(a +1)=-3,得a +1=8,解得a =7,所以f [f (14-a )]=f [f (7)]=f (-3)=2-3-2=-158.角度3 分段函数与不等式的交汇典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]本题用数形结合思想方法、分离常数法.答案 D解析 由题意作出y =|f (x )|的图象:由图象易知,当a >0时,y =ax 与y =ln (x +1)的图象在x >0时必有交点,所以当a ≤0,x ≥0时,|f (x )|≥ax 显然成立;当x <0时,要使|f (x )|=x 2-2x ≥ax 恒成立, 则a ≥x -2恒成立,又x -2<-2,∴a ≥-2. 综上,-2≤a ≤0.故选D. 方法技巧分段函数问题的常见类型及解题策略1.求函数值.弄清自变量所在区间,然后代入对应的解析式,见角度1.求“层层套”的函数值,要从最内层逐层往外计算.见角度2典例.2.求参数.“分段处理”,采用代入法列出各区间上的方程或不等式.见角度2典例. 3.解不等式.根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提.4.数形结合法也是解决分段函数问题的重要方法,在解决选择填空问题中经常使用,而且解题速度更快更准.见角度3典例.冲关针对训练1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2] 答案 D解析 依题意可知⎩⎪⎨⎪⎧a ≥0,a 2-2a +(-a )2+2(-a )≤0或⎩⎪⎨⎪⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2].故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2,x ≤0,f (x -2)+1,x >0,则f (2018)=________.答案 1008解析 根据题意:f (2018)=f (2016)+1=f (2014)+2=…=f (2)+1008=f (0)+1009=1008.1.(2014·山东高考)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 答案 C解析 要使函数f (x )有意义,需使(log 2x )2-1>0,即(log 2x )2>1,∴log 2x >1或log 2x <-1.解之得x >2或0<x <12.故f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞).故选C. 2.(2018·河北名校联盟联考)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g [f (-8)]=( )A .-1B .-2C .1D .2答案 A解析 ∵函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,∴f (-8)=-f (8)=-log 39=-2,∴g [f (-8)]=g (-2)=f (-2)=-f (2)=-log 33=-1.故选A.3.(2018·工农区模拟)函数y =x +1-1-x 的值域为( ) A .(-∞, 2 ] B .[0, 2 ] C .[-2, 2 ] D .[-2,0]答案 C解析 要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≥0,1-x ≥0,解得-1≤x ≤1,所以函数的定义域为[-1,1],根据函数的解析式,x 增大时,x +1增大,1-x 减小,-1-x 增大,所以y 增大,即该函数为增函数.所以最小值为f (-1)=-2,最大值为f (1)=2, 所以值域为[-2,2].故选C.4.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x >-14.[基础送分 提速狂刷练]一、选择题1.已知A ={x |x =n 2,n ∈N },给出下列关系式:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x 4;⑤f (x )=x 2+1,其中能够表示函数f :A →A 的个数是( )A .2B .3C .4D .5 答案 C解析 对于⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确.故选C.2.(2018·吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2(x >1),则f ⎣⎢⎡⎦⎥⎤1f (2)的值为( )A.1516 B.89 C .-2716D .18 答案 A解析 f (2)=4,f ⎣⎢⎡⎦⎥⎤1f (2)=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.故选A.3.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg 132 D.15lg 2答案 D解析 令x 5=t ,则x =15t 15 (t >0),∴f (t )=lg t 15 =15lg t .∴f (2)=15lg 2.故选D.4.(2017·山西名校联考)设函数f (x )=lg (1-x ),则函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞) D .[-9,1)答案 B解析 f [f (x )]=f [lg (1-x )]=lg [1-lg (1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0⇒-9<x <1.故选B.5.若函数y =f (x )的定义域是[0,1],则函数F (x )=f (x +a )+f (2x +a )(0<a <1)的定义域是( )A.⎣⎢⎡⎦⎥⎤-a 2,1-a 2B.⎣⎢⎡⎦⎥⎤-a2,1-aC .[-a,1-a ] D.⎣⎢⎡⎦⎥⎤-a ,1-a 2答案 A解析 ⎩⎪⎨⎪⎧0≤x +a ≤1,0≤2x +a ≤1⇒-a 2≤x ≤1-a2.故选A.6.函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为( )A.⎝⎛⎦⎥⎤-∞,12 B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫12,1D.⎣⎢⎡⎭⎪⎫12,+∞ 答案 C解析 由于x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,结合函数y =⎝ ⎛⎭⎪⎫12x在(0,1]上的图象可知函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为⎣⎢⎡⎭⎪⎫12,1.故选C. 7.(2018·黄冈联考)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f [f (-3)]=( )A .-2B .2C .3D .-3 答案 B解析 由题意得f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f [f (-3)]=f (9)=log 39=2.故选B.8.(2018·银川模拟)已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③ D .① 答案 B解析 对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.故选B.9.(2018·铜陵一模)若函数f (x )图象上任意一点P (x ,y )皆满足y 2≥x 2,则f (x )的解析式可以是( )A .f (x )=x -1xB .f (x )=e x-1 C .f (x )=x +4xD .f (x )=tan x答案 C解析 A 项,当x =1时,f (x )=1-1=0,02≥12不成立;B 项,当x =-1时,f (x )=1e -1∈(-1,0),⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立;D 项,当x =5π4时,f (x )=1,12≥⎝ ⎛⎭⎪⎫5π42不成立;对于C ,f 2(x )=x 2+16x2+8>x 2,符合题意.故选C.10.(2017·山东模拟)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 ①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1,故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a>1,f [f (a )]=22a, 2f (a )=22a,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C.二、填空题11.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.12.(2018·厦门一模)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫0,12解析 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.13.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.答案 1解析 [a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1.14.(2018·绵阳二诊)现定义一种运算“⊕”:对任意实数a ,b ,a ⊕b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-2x )⊕(x +3),若函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,则实数k 的取值范围是________.答案 (-8,-7]∪(-3,-2)∪{1}解析 因为(x 2-2x )-(x +3)-1=(x -4)(x +1),所以f (x )=(x 2-2x )⊕(x +3)=⎩⎪⎨⎪⎧x +3,x ∈(-∞,-1]∪[4,+∞),x 2-2x ,x ∈(-1,4).作出函数y =f (x )的图象如图所示.函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,即函数y =f (x )的图象与直线y =-k 有两个公共点,结合图象可得-k =-1 或2<-k <3或7≤-k <8,所以实数k 的取值范围是k ∈(-8,-7]∪(-3,-2)∪{1}.三、解答题15.(2018·福建六校联考)已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1).(1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧ x +2>0,4-x >0,解得-2<x <4,∴f (x )的定义域为(-2,4).(2)f (x )=log a (x +2)+log a (4-x )=log a [(x +2)(4-x )],x ∈[0,3].令t =(x +2)(4-x ),则可变形得t =-(x -1)2+9,∵0≤x ≤3,∴5≤t ≤9,若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去), 若0<a <1,则log a 9≤log a t ≤log a 5,∴f (x )min =log a 9=-2,则a 2=19,又0<a <1,∴a =13. 综上,得a =13. 16.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2.(1)求f (2),f (3),f (4)的值;(2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)+f (2016)f (2015)+f (2018)f (2017)的值. 解 (1)∵∀x ,y ∈R ,f (x +y )=f (x )·f (y ),且f (1)=2,∴f (2)=f (1+1)=f (1)·f (1)=22=4,f (3)=f (1+2)=f (1)·f (2)=23=8,f (4)=f (1+3)=f (1)·f (3)=24=16.(2)解法一:由(1)知f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2018)f (2017)=2, 故原式=2×1009=2018.解法二:对∀x ,y ∈R 都有f (x +y )=f (x )·f (y )且f (1)=2,令x =n ,y =1,则f (n +1)=f (n )·f (1),即f (n +1)f (n )=f (1)=2,故f (2)f (1)=f (4)f (3)=…=f (2018)f (2017)=2,故原式=2×1009=2018.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(通用版)高考数学复习专题二函数与导数2.1函数的概念、图象和
性质练习理
命题角度1函数的概念及其表示
高考真题体验·对方向
1.(2017山东·1)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()
A.(1,2)
B.(1,2]
C.(-2,1)
D.[-2,1)
答案 D
解析由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D.
2.(2014江西·3)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R),若f[g(1)]=1,则a=()
A.1
B.2
C.3
D.-1
答案 A
解析由题意可知f[g(1)]=1=50,得g(1)=0,
则a-1=0,即a=1.故选A.
3.(2019江苏·4)函数y=的定义域是.
答案[-1,7]
解析要使式子有意义,
则7+6x-x2≥0,
解得-1≤x≤7.
典题演练提能·刷高分
1.(2019江西新余一中一模)已知f(x)=,则函数f(x)的定义域为()
A.(-∞,3)
B.(-∞,2)∪(2,3]
C.(-∞,2)∪(2,3)
D.(3,+∞)
答案 C
解析要使函数f(x)有意义,则
即x<3,且x≠2,
即函数的定义域为(-∞,2)∪(2,3),故选C.
2.设函数f(x)=log2(x-1)+,则函数f的定义域为()
A.(1,2]
B.(2,4]
C.[1,2)
D.[2,4)
答案 B
解析f(x)的定义域为⇒1<x≤2,故1<≤2,2<x≤4,所以选B.
3.(2019河北武邑中学调研二)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()
A.y=x
B.y=lg x
C.y=2x
D.y=
答案 D
解析函数y=10lg x的定义域和值域均为(0,+∞),函数y=x的定义域和值域均为R,不满足要求;函数y=lg x的定义域为(0,+∞),值域为R,不满足要求;函数y=2x的定义域为R,值域为(0,+∞),不满足要求;函数y=的定义域和值域均为(0,+∞),满足要求.故选D.
4.函数y=的值域为()
A.,+∞
B.-∞,
C.0,
D.(0,2]
答案 D
解析由二次函数的性质有x2-2x=(x-1)2-1∈[-1,+∞),结合指数函数的性质可得∈(0,2],即函数y=的值域为(0,2].
5.已知f(1-cos x)=sin2x,则f(x2)的解析式为.
答案f(x2)=-x4+2x2,x∈[-]
解析因为f(1-cos x)=sin2x=1-cos2x,
令1-cos x=t,t∈[0,2],
则cos x=1-t,
所以f(t)=1-(1-t)2=2t-t2,t∈[0,2],
则f(x2)=-x4+2x2,x∈[-].
6.已知函数f(x)=若c=0,则f(x)的值域是;若f(x)的值域是-,2,则实数c的取值范围是.
答案-,+∞,1
解析若c=0,由二次函数的性质,可得x2+x∈-,2,∈,+∞,∴f(x)的值域为-,+∞.若f(x)的值域为-,2,当x=-2时,x2+x=2,当x=-时,x2+x=-,要使f(x)的值域为-,2,
则≤c≤1,实数c的取值范围是,1.
命题角度2函数的性质及其应用
高考真题体验·对方向
1.(2018全国Ⅱ·11)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()
A.-50
B.0
C.2
D.50
答案 C
解析∵f(-x)=f(2+x)=-f(x),
∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x).
∴f(x)的周期为4.∵f(x)为奇函数,∴f(0)=0.
∵f(2)=f(1+1)=f(1-1)=f(0)=0,f(3)=f(-1)=-f(1)=-2,f(4)=f(0).
∴f(1)+f(2)+f(3)+f(4)=0.
∴f(1)+f(2)+…+f(50)=f(49)+f(50)=f(1)+f(2)=2.
2.(2017全国Ⅰ·5)函数f(x)在(-∞,+∞)单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-
2)≤1的x的取值范围是()
A.[-2,2]
B.[-1,1]
C.[0,4]
D.[1,3]
答案 D
解析因为f(x)为奇函数,所以f(-1)=-f(1)=1,于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,所以-1≤x-2≤1,即1≤x≤3.所以x的取值范围是[1,3].
3.(2017北京·5)已知函数f(x)=3x-,则f(x) ()
A.是奇函数,且在R上是增函数
B.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数
D.是偶函数,且在R上是减函数
答案 A
解析因为f(x)的定义域为R,f(-x)=3-x--3x=-f(x),所以函数f(x)是奇函数.
又y=3x和y=-在R上都是增函数,所以函数f(x)在R上是增函数.故选A.
4.(2016山东·9)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);
当x>时,f=f,则f(6)=()
A.-2
B.-1
C.0
D.2
答案 D
解析当x>时,f=f,所以当x>时,函数f(x)是周期为1的周期函数,所以
f(6)=f(1),又因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1)=-[(-1)3-1]=2,故选D.
5.(2016全国Ⅲ·15)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是.
答案y=-2x-1
解析当x>0时,-x<0,则f(-x)=ln x-3x.
因为f(x)为偶函数,
所以f(x)=f(-x)=ln x-3x,
所以f'(x)=-3,f'(1)=-2.
故所求切线方程为y+3=-2(x-1),
即y=-2x-1.
6.(2016天津·13)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是.
答案
解析由题意知函数f(x)在区间(0,+∞)上单调递减,又f(x)是偶函数,则不等式f(2|a-1|)>f(-)可化为f(2|a-1|)>f(),则2|a-1|<,|a-1|<,解得<a<.
典题演练提能·刷高分
1.设m∈R,则“m=1”是“f(x)=m·2x+2-x”为偶函数的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 C
解析如果f(x)=m·2x+2-x为偶函数,则f(-x)=f(x),∴m·2-x+2x=m·2x+2-x,∴m(2-x-2x)=2-x-2x.∴(m-1)(2-x-2x)=0.∴m=1.所以“m=1”是“f(x)=m·2x+2-x”为偶函数的充要条件.故选C.
2.(2019山西晋城二模)已知f(x)是定义在R上的偶函数,且f(x+5)=f(x-3),如果当x∈[0,4)时,f(x)=log2(x+2),那么f(766)=()
A.3
B.-3
C.2
D.-2
答案 C
解析由f(x+5)=f(x-3),得f(x+8)=f(x),所以f(x)是周期为8的周期函数,f(766)=f(96×8-
2)=f(-2),f(-2)=f(2)=log24=2.
3.(2019湖北荆州二模)已知f(x)是区间[-2,2]上的偶函数且在区间[-2,0]上单调递增,则不等式f(2-x)<f(2x-1)解集为()
A.[0,1)
B.(-1,1)
C.1,
D.(-∞,-1)∪(1,+∞)
答案 A
解析因为f(x)是偶函数,所以f(2-x)<f(2x-1)⇔f(-|2-x|)<f(-|2x-1|).
又因为f(x)在区间[-2,0]上单调递增,
所以-2≤-|2-x|<-|2x-1|≤2.。

相关文档
最新文档