自动控制原理结构图及等效变换
合集下载
自动控制原理结构图

x5 = a25 x2 + a45 x4
a32
a43
a44
x1
a12 x2
a23
a34
x3
a45 x4
x5
a24
a25
41
自动控制原理结构图
2.信号流图的基本元素 (1) 节点:用来表示变量,用符号“ O ”表示,并在
近旁标出所代表的变量。
2-5 典型环节及其传递函数
1.比例环节
(杠杆,齿轮系,电位器,变压器等)
运动方程式 c(t) = K r(t)
K
传递函数
G(s) = K
1
C(s) = G(s) R(s) = K/s
c(t) = K1(t)
可见,当输入量r(t)=1(t)时,输出量c(t)成比例变化0 。
自动控制原理结构图
c(t) r(t)
-
+
流入量Q 水箱
h
7
自动控制原理结构图
A
4.微分环节 微分方程式为:c(t) T dr(t)
dt
传递函数为: G(s)=Ts
1 r(t)
单位阶跃响应:C(s)Ts 1 T
s
0
t
c(t) = T(t)
c(t)
由于阶跃信号在时刻t = 0有一跃变,
T
其他时刻均不变化,所以微分环节对
阶跃输入的响应只在t = 0时刻产生一
12
nt s
i ndt()
式中,β=cos-1 。响应曲线是按指数衰减振荡的,故称
振荡环节。
j
s1
jd
n
c(t) 1
n
0
t 0 s2
11
自动控制原理结构图
西工大、西交大自动控制原理 第二章 控制系统的数学模型_2

5 比较点的移动 比较点的前移:
Rs
Cs
Rs
Cs
Gs
Gs
Qs
1 Qs
Gs
若要将比较点由方框后移至方框的前面,为保持信号 的等效,要在移动后的信号线上加入一个比较点所越 过的方框的倒数。
5 比较点的移动 比较点的后移:
Rs
Cs Gs
Rs Gs
Cs
Qs
Qs
G(s)
若要将比较点由方框前移至方框的后面,为保持信号的 等效,要在移动后的信号线上加入一个比较点所越过的 方框。
2-3 控制系统的结构图与信号流图
控制系统的结构图概述
控制系统的结构图(block diagram)是描述系统各元部 件之间信号传递关系的数学图形,表示了系统中各变量 间的因果关系以及对各变量所进行的运算。通过对系统 结构图进行等效变换(equivalent transform)后,可 求出系统的传递函数。
G1(s)
-1 H(s)
R(s)=0
f
(s)
C(s) F(s)
G2 ( s) 1 G2 (s)H (s)(1)G1(s)
G2 ( s) 1 G2 (s)G1(s)H (s)
G2(s) G2(s) 1 G(s)H(s) 1 Gk (s)
单位反馈系统H(s)=1,有
f
(s)
C(s) F(s)
若令:G(s) G1(s)G2(s) 为前向通路传递函数,
则:
B(s)
Gk (s) (s) G(s)H(s)
可见:系统开环传递函数Gk(s)等于前向通路传递函 数G(s)=G1(s)G2(s)与反馈通道传递函数H(s)的乘积。
R(S) ε(s) G1(s)
F(s)
自动控制原理控制系统的结构图

比较点后移
R(s)
G(s)
比较点前移
+
Q(s)
C(s)
R(s)
+
C(s) G(s)
比较点后移
Q(s)
R(s)
+
C(s) G(s)
Q(s)
C(s) R(s)G(s) Q(s)
[R(s) Q(s) ]G(s) G(s)
R(s)
C(s) G(s)
+
Q(s)
G(s)
C(s) [R(s) Q(s)]G(s)
R(s)G(s) Q(s)G(1s6 )
(5)引出点旳移动(前移、后移)
引出点前移
R(s)
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
将 C(s) E(s)G(s) 代入上式,消去G(s)即得:
E(s) R(s)
1
H
1 (s)G(s)
1
1 开环传递函数
31
N(s)
+ E(s)
++
C(s)
R(s)
G1(s)
G2 (s)
-
B(s)
H(s)
(1)
打开反馈
C(s) R(s)
1
G(s) H (s)G(s)
前向通路传递函数 1 开环传递函数
注意:进行相加减旳量,必须具有相同旳量纲。
X1 +
+
X1+X2 R1(s)
自动控制原理(2-2)

1 G(s)
B A
B
+
+
C
D
A
+
C
+
D
(a)
(b)
图2-17 相邻相加点的移动
A A
(a)
A A
A A
A A(b)AA源自图2-18 相邻分支点的移动
应当指出,在结构图简化过程中,两个相邻的相加
点和分支点不能轻易交换。 总之,根据实际系统中各环节(子系统)的结构图 和信息流向,可建立系统的结构图。在确定输入量
加,就可得到系统的总输出量。
系统对扰动N(s)的响应CN(s)为:
G2 ( s) CN ( s ) N ( s) 1 G1 ( s)G2 ( s) H ( s)
系统对参考输入量R(s)的响应CR(s)为:
G1 ( s )G2 ( s ) CR ( s ) R( s) 1 G1 ( s )G2 ( s ) H ( s )
X 3 ( s)
X 0 (s)
G1 ( s )G2 ( s )G3 ( s)
(b)
X 3 ( s)
图2-10 串联环节的简化
n个环节(每个环节的传递函数为Gi(s) ,i=1,2,3,…) 串联的等效传递函数等于各传递函数相乘。
G( s) G1 (s)G2 (s) Gn (s)
2.并联环节的简化
上式就是系统输出量C(s)和输入量R(s)之间的传递函 数,称为闭环传递函数。
闭环传递函数将闭环系统的动态特性与前向通道环 节和反馈通道环节的动态特性联系在一起。
G( s) C (s) R( s ) 1 G( s) H ( s)
可见,闭环系统的输出量取决于闭环传递函数和输 入量的性质。
自动控制原理第二章3

Uc(s)
第三节控制系统的结构图和信号流图
N(s) R(s) C(s) G1(s) G2(s)
+ _
H(s) 典型反馈控制系统方框图 1)信号线:带单向箭头,表示信号流向 信号线:带单向箭头, 2)引出点:信号从引出点分开,大小和性质相同 引出点:信号从引出点分开, 3)比较点:两个或两个以上的信号相加减 比较点: 4)方框:对信号进行数学变换,方框中写入环节的传递函数 方框:对信号进行数学变换,
R1 C2S 1 C(S) 1 1 R2 +R1C R2 +1)C2S C2S2S
R(s)
_
1 R1C1S+1 R1C2S
1 R2C2S+1
C(s)
第三节控制系统的结构图和信号流图
三、控制系统的信号流图: 控制系统的信号流图:
1、定义 、 一组线性代数方程式变量间传递关系的图形表示, 一组线性代数方程式变量间传递关系的图形表示,由节 支路和支路增益组成。 点、支路和支路增益组成。 y1 典型的信号流图 x1 1 x2 a e a y2=ay1 d x3 b f x4 c x5 g 1 x6 y2
第三节控制系统的结构图和信号流图
绘制动态结构图的一般步骤为: 绘制动态结构图的一般步骤为 (1)确定系统中各元件或环节的传递函数。 )确定系统中各元件或环节的传递函数。 (2)绘出各环节的方框,方框中标出其传 )绘出各环节的方框, 递函数、输入量和输出量。 递函数、输入量和输出量。 (3)根据信号在系统中的流向,依次将各 )根据信号在系统中的流向, 方框连接起来。 方框连接起来。
p1 = abc
L1与L3
p2 = d
L3 = g L2与L3
L1 = ae
L2 = bf
第三节控制系统的结构图和信号流图
N(s) R(s) C(s) G1(s) G2(s)
+ _
H(s) 典型反馈控制系统方框图 1)信号线:带单向箭头,表示信号流向 信号线:带单向箭头, 2)引出点:信号从引出点分开,大小和性质相同 引出点:信号从引出点分开, 3)比较点:两个或两个以上的信号相加减 比较点: 4)方框:对信号进行数学变换,方框中写入环节的传递函数 方框:对信号进行数学变换,
R1 C2S 1 C(S) 1 1 R2 +R1C R2 +1)C2S C2S2S
R(s)
_
1 R1C1S+1 R1C2S
1 R2C2S+1
C(s)
第三节控制系统的结构图和信号流图
三、控制系统的信号流图: 控制系统的信号流图:
1、定义 、 一组线性代数方程式变量间传递关系的图形表示, 一组线性代数方程式变量间传递关系的图形表示,由节 支路和支路增益组成。 点、支路和支路增益组成。 y1 典型的信号流图 x1 1 x2 a e a y2=ay1 d x3 b f x4 c x5 g 1 x6 y2
第三节控制系统的结构图和信号流图
绘制动态结构图的一般步骤为: 绘制动态结构图的一般步骤为 (1)确定系统中各元件或环节的传递函数。 )确定系统中各元件或环节的传递函数。 (2)绘出各环节的方框,方框中标出其传 )绘出各环节的方框, 递函数、输入量和输出量。 递函数、输入量和输出量。 (3)根据信号在系统中的流向,依次将各 )根据信号在系统中的流向, 方框连接起来。 方框连接起来。
p1 = abc
L1与L3
p2 = d
L3 = g L2与L3
L1 = ae
L2 = bf
自动控制原理

dt
dt
原式拉氏变换后得: s 2 C(s) 2sC(s) 2C(s) 1
c(t) r(t) 1 1 C( s ) 2 s 2 s 2 ( s 1 )2 1
c(t ) e sin t
t
0
t
R1
I1(s)
U1(s)
R2
I2(s)
Ur ( s )
sc1
1 C 1
C(s)=
R(s)[ G3G2 (1-G1H1) +G1G2 ] + G2 (1-G1H1)N(s)
1 - G1H1 + G2H2
+ G1G2H3 - G1H1G2 H2
G3(s) R(s) R(s) R(s) R(s)
梅逊公式求E(s)
D(s) D(s) D(s)
G2(s) C(s) C(s) C(s)
H3(s)
H 3(s) H (s) H (s) 3 3
C(s)
R(s)
G2 H3 E(S) P1= – P =1 1 H1(s)
1= 1 H △△ =1+G 1 2 H 2 2(s)
E(s)=
第四节 动态结构图
二、 动态结构图的等效变换与化简
系统的动态结构图直观地反映了系统 内部各变量之间的动态关系。将复杂的动 态结构图进行化简可求出传递函数。
1.动态结构图的等效变换
等效变换:被变换部分的输入量和输出量
之间的数学关系,在变换前后 保持不变。
Ur(s)
R1
1
sc1
1
1
1 R2
sc2
1
Uc(s)
第四节 动态结构图
例 求系统传递函数。 解: R(S) R(S) R(S) _ R(S) (1) 用梅逊公式 _ _ _ P4 L= –– GG )s G ) 2 (s ) 1= 1(s 1(
dt
原式拉氏变换后得: s 2 C(s) 2sC(s) 2C(s) 1
c(t) r(t) 1 1 C( s ) 2 s 2 s 2 ( s 1 )2 1
c(t ) e sin t
t
0
t
R1
I1(s)
U1(s)
R2
I2(s)
Ur ( s )
sc1
1 C 1
C(s)=
R(s)[ G3G2 (1-G1H1) +G1G2 ] + G2 (1-G1H1)N(s)
1 - G1H1 + G2H2
+ G1G2H3 - G1H1G2 H2
G3(s) R(s) R(s) R(s) R(s)
梅逊公式求E(s)
D(s) D(s) D(s)
G2(s) C(s) C(s) C(s)
H3(s)
H 3(s) H (s) H (s) 3 3
C(s)
R(s)
G2 H3 E(S) P1= – P =1 1 H1(s)
1= 1 H △△ =1+G 1 2 H 2 2(s)
E(s)=
第四节 动态结构图
二、 动态结构图的等效变换与化简
系统的动态结构图直观地反映了系统 内部各变量之间的动态关系。将复杂的动 态结构图进行化简可求出传递函数。
1.动态结构图的等效变换
等效变换:被变换部分的输入量和输出量
之间的数学关系,在变换前后 保持不变。
Ur(s)
R1
1
sc1
1
1
1 R2
sc2
1
Uc(s)
第四节 动态结构图
例 求系统传递函数。 解: R(S) R(S) R(S) _ R(S) (1) 用梅逊公式 _ _ _ P4 L= –– GG )s G ) 2 (s ) 1= 1(s 1(
自动控制原理 控制系统的结构图

其他变化(比较点的移动、引出点的移动)以此三种 基本形式的等效法则为基础。
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
自动控制原理第5讲(结构图化简)

x5
•混合节点:既有输入支路又有输出支路的节点。
图中的
x2 , x3, x4
•前向通路:开始于输入节点,沿支路箭头方向,每个节点只经过一次,最终 到达输出节点的通路称之前向通路。
① x1 x2 x3 x4 x5 ② x1 x2 x4 x5
③ x1 x2 x5
a12 a23a34 a45 p1 a12a24a45 p2
1 G1H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G4G5G7 H1H 2
P1 G1G2G3G4G5 1 1
P1 G1G6G4G5 2 1
P3 G1G2G7 3 1 G4H1
C(S) P(S) P11 P22 P33
R(S)
G1G2G3G4G5 G1G6G4G5 G1G2G7 (1 G4H1)
1 G1H1 G2G7 H 2 G6G4G5H 2 G2G3G4G5H 2 G4G5G7 H1H 2
总结
从原理图画系统方块图的方法 方块图的简化
基本连接方式串联、并联和反馈的简化 比较点、分支点的移动 信号流图及Mason’s Gain Formula
R(s)
-
G4
A
G1
G2
-B
H1
G3 H2
C C(s)
G5 G2G3 G4
串联和并联
G7
G6
G5
1 G5 H 2
R(s)
-
-
G1
-
H1G2
C(s) 反馈 G5
H2
1 G5
G1G5
G7
G1G6 1
1 G1G6 H1G2 G5
1 G5 H 2 1 G1H1G2 1 G5 H 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[定义]:表示变量之间数学关系的方块图称为动态结构图或结 构图。
[例]:结构: X(t) 放大器 结Y(构t) 图:
X(s)
Y(s)
G(s)=K
微分方程:y(t)=kx(t)
若已知系统的组成和各部分的传递函数,则可以画出各个部 分的结构图并连成整个系统的结构图。
Thursday, August 13, 2020
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
X (s)
X 3 (s)
G(s)
X (s)
X 3 (s)
G(s)
X 2 (s)
X 2 (s)
所以,一般情况下,相加点向相加点移动,分支点向分支
点移动。
Thursday, August 13, 2020
12
K3
ua (s)
Ku TaTms Tms 1
u f (s)
Kf
- (s)
在结构图中,不仅能反映系统的组成和信号流向,还能表 示信号传递过程中的数学关系。系统结构图也是系统的数学模 型,是复域的数学模型。
Thursday, August 13, 2020
5
结构图的等效变换
二、结构图的等效变换:
[定义]:在结构图上进行数学方程的代数运算。 [原则]:变换前后环节的数学关系保持不变。
K2
(s
1)
ua (s) u2 (s)
K3
u1(s) K2(s 1) u2 (s)
u2 (s)K3 ua (s)
Thursday, August 13, 2020
3
反馈环节:
u f (s) (s)
K
f
(s)
Kf
u f (s)
电动机环节: 返回例2-6
(Tms 1)(s) Kuua (s) KmMc (s)
R1
R2
ui
i1
i, u
C1i2 C2
[解]:不能把左图简单地看成两个
i2
uo
RC电路的串联,有负载效应。根据 电路定理,有以下式子:
[ui (s) u(s)]
Thursday, August 13, 2020
10
信号相加点和分支点的移动和互换
分支点从环节的输出端移到输入端:
X1(s) G(s) Y (s) Y (s)
X1(s) G(s) Y (s) N(s) Y (s)
N(s) ? X1(s)G(s) Y(s), X1(s)N(s) Y(s),N(s) G(s)
G(s)
Thursday, August 13, 2020
9
信号分支点的移动和互换
②信号分支点的移动: 分支点从环节的输入端移到输出端
X1(s) G(s) Y (s)
X1(s)
X1(s) G(s)
Y (s)
N(s) X1(s)
N(s) ?
X1(s)G(s)N
(s)
X1(s),
N
(s)
1 G(s)
[注意]:
相临的信号相加点位置可以互换;见下例
X1(s)
X2(s)
X3(s)
Y (s)
X1(s)
X3(s)
X 2 (s)
Y (s)
Thursday, August 13, 2020
11
信号相加点和分支点的移动和互换
同一信号的分支点位置可以互换:见下例
X1(s)
X (s) G(s) Y (s)
X 2 (s)
G(s)
Y (s) X (s)
G(s) 1 G(s)H (s)
7
信号相加点的移动
(二)信号相加点和分支点的移动和互换:
如果上述三种连接交叉在一起而无法化简,则要考虑移动某 些信号的相加点和分支点。 ①信号相加点的移动:
把相加点从环节的输入端移到输出端
X1(s) X2(s)
G(s) Y (s)
Thursday, August 13, 2020
第三节 结构图及其等效变换
Thursday, August 13, 2020
1
结构图的基本概念
一、结构图的基本概念:
我们可以用方块图表示系统的组成和信号流向。在引入传 递函数后,可以把环节的传递函数标在方块图的方块里,并把 输入量和输出量用拉氏变换表示。这时Y(s)=G(s)X(s)的关系可 以在结构图中体现出来。
X1(s) G(s) X2(s) N(s)
N(s) G(s)
Y (s)
8
信号相加点的移动和互换
把相加点从环节的输出端移到输入端:
X1(s) G(s) X 2 (s)
Y (s)
X1(s)
X2(s) N(s)
G(s) Y (s)
N(s) ? Y (s) X1(s)G(s) X 2(s), Y (s) X1(s)G(s) X 2(s)N(s)G(s), N(s) 1
G(s)
Y (s) X (s)
n i 1
Gi (s)
反馈联接:
X (s) E(s) G(s) Y (s)
Gn (s)
Y (s) E(s)G(s)
H (s)
Y (s) n
G(s) X (s) i1 Gi (s)
Thursday, August 13, 2020
E(s) X (s) H (s)Y (s),
[类型]:①环节的合并; --串联 --并联 --反馈连接
②信号分支点或相加点的移动。
Thursday, August 13, 2020
6
环节的合并
(一)环节的合并:有串联、并联和反馈三种形式。
环节的串联:
X (s) G1(s) …
Y (s) Gn (s)
环节的并联:
G1 ( s )
X (s)
Y (s)
2
结构图的基本概念
[例2-10]求例2-5所示的速度控制统的结 构图。各部分传递函数见例2-6.
比较环节:
ue (s) ug (s) u f (s)
ug (s) ue (s) u f (s)
运放Ⅰ:
u1 ( s) ue (s)
K1,
ue (s) K1 u1(s)Biblioteka 运放Ⅱ:功放环节:
u2 (s) u1(s)
Mc (s)
Km Tms 1
Ua (s)
Ku Tms 1
- (s)
将上面几部分按照逻辑连接起来,形成下页所示的完 整结构图。
Thursday, August 13, 2020
4
结构图的基本概念
M c (s) Km (Tas 1)
TaTms Tms 1
ug (s)
ue (s)
K1
u1(s) K2(s 1) u2 (s)
结构图的化简, 应注意以下两点:
1. 化简的关键是解除环路与环路的交叉,或形成大环套小环的 形式.
2. 解除交叉连接的有效方法是移动相加点或分支点.
Thursday, August 13, 2020
13
结构图等效变换例子||例2-11
[例2-11]利用结构图等效变换讨论两级RC串联电路的传递函数。