最新冀教版八年级数学上册《反证法》教案(优质课一等奖教学设计)
最新冀教版八年级数学上册《反证法》教学设计(精品教案)

17.5 反证法教学目标:1、理解反证法的含义与原理,掌握反证法的一般步骤;2、会用反证法证明简单的代数命题和几何命题;3、使学生逐步树立“正难则反”和“转换思维”的意识。
4、初步会综合运用命题、证明以及相关知识解决简单的实际问题。
5、了解定理“在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交”“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”。
重点与难点:本节教学的重点是反证法的含义和步骤及运用反证法的意识及反证中的“归谬”。
而课本“合作学习”要求用两种方法完成平行线的传递性的证明,有较高难度,是本节教学的难点。
教学设想:课本用《路边苦李》的故事引入课题,让学生体会反证法就在生活中,数学就在生活中。
而解决数学问题的思维过程,一般总是从正面入手,即从已知条件出发,经过一系列的推理和运算,最后得到所要求的结论,但有时会遇到从正面不易入手的情况,这时可从反面去考虑。
从反面考虑问题在中等数学中常用的有:逆推法、分析法、补集思想、反证法。
因此本课的教学要注意:1、让学生总结反证法导出的矛盾有几种类型。
2、利用合作学习让学生比较两种证明方法的特点。
3、对证明的基本方法掌握和过程的体验,需要对一定数量的命题的证明来实现,但是教学中要注意避免一味的追求所证命题的数量、证明的技巧,应依据教材中的基本要求,控制好所证命题的难度。
教学过程:一、情境导入1、故事引入“反证法”:——路边苦李王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子。
小伙伴们纷纷去摘取果子,只有王戎站在原地不动。
王戎回答说:“树在道边而多子,此必苦李。
”小伙伴摘取一个尝了一下果然是苦李。
王戎是怎样知道李子是苦的呢?他运用了怎样的推理方法?我们不得不佩服王戎,小小年纪就具备了反证法的思维。
反证法是数学中常用的一种方法。
人们在探求某一问题的解决方法而正面求解又比较困难时,常常采用从反面考虑的策略,往往能达到柳暗花明又一村的境界。
数学八年级上册《勾股定理-反证法》教案

3.反证法【教学目标】知识与技能1.通过实例,体会反证法的含义.2.了解反证法的基本步骤,会用反证法证明简单的命题.过程与方法通过利用反证法证明命题,体会逆向思维.情感、态度与价值观在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性;渗透事物之间的相互对立、相互矛盾、相互转化的辩证唯物主义思想.【重点难点】重点运用反证法进行推理论证.难点理解“反证法”证明得出“矛盾的所在”.【教学过程】一、创设情景,导入新课出示多媒体,展示《路旁苦李》的故事的动画场景,引入反证法的课题.二、师生互动,探究新知活动1反证法的步骤.教师给出问题:如果你当时也在场,你会怎么办?五戎是怎么判断李子是苦的?你认为他的判断正确吗?学生讨论交流,选代表发言.如果李子不是苦的,路旁的人很多,早就没有这么多李子.教师出示,若a2+b2≠c2(a≤b≤c),则△ABC不是直角三角形,你能按照刚才五戎的方法推理吗?学生活动,代表展示.若∠C是直角,则a2+b2=c2,而a2+b2≠c2,这是不可能的,即△ABC不是直角三角形.【教师归纳】先假设结论的反面是正确的;然后经过演绎推理,推出与基本事实、已证定理、定义或已知条件相矛盾;从而说明假设不成立,进而得出原命题正确.即:一、反设;二、推理得矛盾;三、假设不成立,原命题正确.活动2用反证法证明.教材P116例5.【教师活动】原命题结论的反向是什么?按照假设可以得到矛盾吗?【学生活动】独立完成,交流成果,发言展示.教材P116例6.【教师活动】△ABC至少有一个内角小于或等于60°的反向是什么?按照假设可以推出矛盾吗?【学生活动】独立完成,交流成果,发言展示.【教师活动】在几何命题中涉及到有“至少”“至多”“唯一”时,直接不易证明,可考虑反证法.三、随堂练习,巩固新知1.(1)用反证法证明命题“一个三角形中不能有两个角是钝角”时,首先应假设________.(2)“已知:△ABC中,AB=AC.求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤.①所以∠B+∠C+∠A>180°.这与三角形内角和定理相矛盾.②所以∠B<90°.③假设∠B≥90°.④那么,由AB=AC,得∠B=∠C≥90°.即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.①②③④B.③④②①C.③④①②D.④③②①【答案】(1)一个三角形中有两个角是钝角(2)C【例2】求证:△ABC中至少有两个角是锐角.【答案】证明:假设△ABC中至多有一个锐角,则△ABC中有一个锐角或没有锐角.(1)当△ABC中只有一个锐角时,不妨设∠A为锐角,则∠B≥90°,∠C≥90°,所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,所以△ABC中不可能只有一个锐角.(2)假设△ABC中没有锐角,则∠A≥90°,∠B≥90°,∠C≥90°,所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,所以△ABC中不可能没有锐角.由(1)、(2)得出假设不成立,从而原命题成立.综上所述,△ABC中至少有两个锐角.四、典例精析,拓展新知【例】求证:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.【教师活动】(1)你首选的是哪一种证明方法?(2)如果你选择反证法,先怎样假设?结果和什么产生矛盾?(3)能不用反证法证明吗?你准备怎样证明?要求按问题解决的四个步骤进行:理解题意(画出图形,写出已知求证);制订计划(选择证明方法,找出证明思路);执行计划(写出证明过程).【学生活动】讨论交流后独立完成.五、运用新知,深化理解【例3】求证:若a>b>0,则a> b.【解析】a>b的反面是a=b或a< b.【答案】证明:假设a不大于b,则a=b或a< b.(1)当a=b时,可得a=b,这与已知a>b矛盾,所以a=b,不成立.(2)当a<b时,∵a>0,b>0,∴a>0,b>0,∴a·a<b·a,即a<ab.同理可证ab<b.∴a<b,这与已知a>b矛盾.∴a<b不成立.综合(1)、(2)可知:a> b.1.若a、b、c是实数,A=a2-2b+π2,B=b2-2c+π3,C=c2-2a+π6,证明A、B、C中至少有一个值大于零.【答案】假设A、B、C中没有一个值大于零,则A≤0,B≤0,C≤0,即A+B+C≤0.由已知有A+B+C=a2-2b+π2+b2-2c+π3+c2-2a+π6=(a2-2a+1)+(b2-2b+1)+(c2-2c+1)+(π-3)=(a-1)2+(b-1)2+(c-1)2+(π-3).∵(a-1)2≥0,(b-1)2≥0,(c-1)2≥0,(π-3)≥0.∴A+B+C>0,这与假设A≤0,B≤0,C≤0相矛盾,所以A、B、C中至少有一个值大于零.六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上,教师总结.【教学反思】反证法是一种重要的证题方法,也是初中数学的难点,如何突破这一难点,并为学生更好地理解和掌握是需要教师精心设计的.在教学时应注意三个思维障碍:1.思维方向的转换,不能总用直接法;2.证明步骤存在障碍;3.归谬起点推证存在障碍.为使学生更好地理解并掌握反证法,应积极引导学生克服上述思维上的障碍,并通过有关题目训练,使学生掌握反证法.教师在教学中应强调当结论的反面不止一种情况时,应穷举;“归谬”这一步应包含“归导”与“揭谬”两个层次.。
八年级数学上册《反证法》教案、教学设计

3.评价与反馈:教师对学生的练习成果进行评价,给予鼓励和指导,帮助学生找到不足,提高解题能力。
(五)总结归纳
1.知识点回顾:教师引导学生回顾本节课所学内容,总结反证法的定义、证明步骤和应用场景。
2.学生发言:鼓励学生谈谈自己对反证法的认识,以及在解题过程中的体会和收获。
(二)讲授新知
1.反证法定义:教师给出反证法的定义,明确反证法的基本思想,即假设结论不成立,通过推理得出矛盾,从而证明原结论成立。
2.证明步骤:详细讲解反证法的证明步骤,包括假设结论不成立、推出矛盾、否定假设、得出结论等。
3.例题讲解:以勾股定理的证明为例,展示反证法的具体运用,让学生理解反证法的证明过程。
2.例题分析:通过典型例题的讲解,让学生体会反证法的应用,培养他们分析问题和解决问题的能力。
3.小组讨论:组织学生进行小组讨论,共同探讨反证法的证明过程,提高学生的合作学习能力。
4.课后作业:布置适量、具有挑战性的课后作业,巩固学生对反证法的理解和运用。
(三)情感态度与价值观
1.激发兴趣:以有趣的数学问题引入反证法,让学生感受到数学的趣味性和挑战性。
3.实践性:注重作业的实践性,鼓励学生将所学知识运用到实际问题中,提高解决问题的能力。
4.合作性:鼓励学生进行小组合作,培养学生的团队精神和合作学习能力。
5.家长参与:充分发挥家长的作用,促进家校共育,提高学生的学习兴趣和效果。
3.教师总结:强调反证法在解决数学问题中的重要作用,鼓励学生在今后的学习中,灵活运用反证法,提高自己的逻辑思维能力和解决问题的方法。
4.布置作业:布置与课堂练习相关的课后作业,巩固学生对反证法的掌握,为下一节课的学习打下基础。
2024年冀教版八年级上册教学设计第十七章17.5 反证法

课时目标1.通过实例体会反证法的含义.2.掌握反证法证明命题的一般步骤,能用反证法进行简单的推理证明.3.借助实例感受反证法的思想.学习重点从生活实例中体会反证法的方法步骤.学习难点能用反证法进行简单的推理证明.课时活动设计导入新课在证明一些命题为真命题时,一般用直接证明的方法,但有时用间接的证明方法可能更方便.反证法就是一种常用的间接证明方法.设计意图:开门见山,直接引出本节课所学.探究新知在第九章中,我们已经知道“一个三角形中最多有一个直角”这个结论.怎样证明它呢?思考:该命题直接去证明,显然比较麻烦,所以,我们如何去证明呢?学生初步说出解决问题的思路,假设有两个直角的时候,不满足三角形的内角和定理,此时,教师可做出示范,引出本节课所学内容.已知:如图,△ABC.求证:在△ABC中,如果它含直角,那么它只能有一个直角.证明:假设在△ABC中,有两个(或三个)直角,不妨设△A=△B=90°.△△A+△B=180°,△△A+△B+△C>180°.这与“三角形的内角和等于180°”相矛盾.因此,三角形有两个(或三个)直角的假设是不成立的.所以,如果三角形含直角,那么它只能有一个直角.设计意图:通过学生思考,教师规范过程,让学生初步感受反证法的一般过程.归纳总结同学们,观察老师的写题思路,上面的证明过程,是先假设原命题结论不正确,然后从这个假设出发,经过逐步推理论证,最后推出与学过的三角形内角和定理相矛盾的结果,因此,假设是错误的,原结论是正确的.这种证明命题的方法叫做反证法.现在你能总结反证法的一般思路吗?学生思考,说出自己的想法,最后教师总结.用反证法证明一个命题是真命题的一般步骤:第一步,假设命题的结论不成立.第二步,从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,已证明的定理、性质或题设条件相矛盾的结果.第三步,由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.设计意图:学生独立思考,加深学生对反证法的理解.典例精讲例1用反证法证明平行线的性质定理一:两条平行线被第三条直线所截,同位角相等.已知:如图,直线AB△CD,直线EF分别与直线AB,CD交于点G,H,△1和△2是同位角.求证:△1=△2.思考:应该假设什么?证明:假设△1≠△2.过点G作直线MN,使得△EGN=△1.△△EGN=△1,△MN△CD(基本事实).又△AB△CD(已知),△过点G有两条不同的直线AB和MN都与直线CD平行,这与“经过已知直线外一点,有且只有一条直线与已知直线平行”相矛盾.△△1≠△2的假设是不成立的.因此,△1=△2.例2用反证法证明直角三角形全等的“斜边、直角边”定理.已知:如图,在△ABC和△A'B'C'中,△C=△C'=90°,AB=A'B',AC=A'C'.求证:△ABC△△A'B'C'.证明:假设△ABC与△A'B'C'不全等,即BC≠B'C'.不妨设BC<B'C'.如图.在B'C'上截取C'D=CB,连接A'D.在△ABC和△A'B'C'中,△AC=A'C',△C=△C',CB=C'D,△△ABC△△A'DC'(SAS).△AB=A'D(全等三角形的对应边相等).△AB=A'B'(已知),△A'B'=A'D(等量代换).△△B'=△A'DB'(等边对等角).△△A'DB'<90°(三角形的内角和定理),即△C'<△A'DB'<90°(三角形的外角大于和它不相邻的内角).这与△C'=90°相矛盾.因此,BC≠B'C'的假设不成立,即△ABC与△A'B'C'不全等的假设不成立.所以,△ABC△△A'B'C'.设计意图:让学生利用反证法对以前的知识进行证明,加深学生对反证法的理解.巩固训练1.用反证法证明:(1)如果a·b=0,那么a,b中至少有一个等于0.(2)两条直线相交,有且只有一个交点.证明:(1)假设a≠0且b≠0,则ab≠0,与ab=0相矛盾.△假设不成立.△a=0或b=0.(2)假设直线a与直线b相交没有交点或有两个及两个以上交点.若直线a与直线b没有交点,则直线a与直线b平行,与两直线相交矛盾;若直线a与直线b有两个及两个以上交点,根据两点确定一条直线,可知直线a与直线b重合,与两条直线相交矛盾,综上,假设不成立,所以直线a与直线b有且只有一个交点.2.已知:直线a△b,直线c与b相交,且c与b不垂直.用反证法证明:a与c相交.证明:假设直线a与c不相交,即a△c.△a△b,a△c,△b△c.这与已知直线c与b不垂直相矛盾,△假设a与c不相交不成立.△a与c相交.设计意图:学生通过习题的练习,能够熟练利用反证法解决问题.课堂小结反证法证明的一般步骤:第一步,假设命题的结论不成立.第二步,从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,已证明的定理、性质或题设条件相矛盾的结果.第三步,由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.设计意图:通过对本节课所学内容的归纳总结,加深学生对所学知识的理解和掌握,培养学生归纳、总结能力.随堂小测1.“a<b”的反面应是(D)A.a≠bB.a>bC.a=bD.a=b或a>b2.证明“在△ABC中至多有一个直角或钝角”,第一步应假设(B)A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角3.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中(B)A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°4.用反证法证明“如果一个三角形没有两个相等的角,那么这个三角形不是等腰三角形”的第一步是假设如果一个三角形没有两个相等的角,那么这个三角形是等腰三角形.5.完成下列证明.在△ABC中,如果△C是直角,那么△B一定是锐角.证明:假设结论不成立,则△B是直角或钝角.当△B是直角时,则△A+△B+△C>180°,这与三角形的内角和等于180°矛盾;当△B是钝角时,则△A+△B+△C>180°,这与三角形的内角和等于180°矛盾.综上所述,假设不成立.△如果△C是直角,那么△B一定是锐角.设计意图:当堂训练,当堂检测,查漏补缺.课堂8分钟.1.教材第164页习题第1,2题.2.七彩作业.17.5反证法反证法证明的一般步骤:第一步,假设命题的结论不成立.第二步,从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,已证明的定理、性质或题设条件相矛盾的结果.第三步,由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.教学反思。
冀教版-数学-八年级上册-《反证法》教学设计

17.5反证法教材分析:反证法一节中,除介绍了反证法及证明命题的一般步骤外,还运用反证法对平行线的性质定理进行了证明,体现了本套教材在内容上的完整性,同时对直角三角形全等的“斜边、直角边”定理也用反证法给出了证明。
使学生从中体会反证法的价值.教学目标:1.通过实例,体会反证法的含义.2.知道反证法证明命题的一般步骤.3.借助实例感受反证法的思想.重点:反证法的含义及反证法的基本步骤.难点:会用反证法证明简单的命题.教学过程:一、情境引入路边苦李:王戎7岁时与小伙伴外出玩耍,看到路边的李树上结满了李子。
小伙伴们纷纷去摘李子,只有王戎原地不动。
一位路人问为什么?王戎回答说:“树在道边而多子,此必苦李。
”小伙伴们摘下一个尝了尝,果然是苦李。
王戎怎样知道李子是苦的呢?他用了什么推理方法?二、探索新知自主预习:课本162内容,与小组同学交流。
结合课前预习,让学生讨论、归纳以下问题:1.反证法的概念:2.用反证法证明一个命题,一般有那几个步骤?(1)(2)(3)三、例题讲解课本163页例1 、例2四、巩固提升1、填空:已知:如右图,直线l1,l2,l3在同一平面内,且l1∥l2,13与11相交于点P. 求证:13与l2相交.证明:假设,,即∥,又∵∥(已知),∴过直线12外一点P有两条直线11,13与直线12平行,这与“”相矛盾,∴假设不成立,即求证的命题成立,∴13与12相交.2.已知:k为整数,且k2为奇数,求证:k一定是奇数。
3.已知:m,n是整数,m+n是奇数。
求证:m,n不能全为奇数。
4.证明:三角形的三个内角中至少有一个角不小于60。
五、课堂小结本节课你学到了什么?六、作业164页1、2。
教案:14.1 勾股定理 第四课时 反证法-数学八年级上册

课 题:14.1 勾股定理第四课时 反证法&.教学目标:1.知道什么是反证法,了解用反证法证题的步骤。
2.会用反证法证不易直接证法证明的简单问题。
3.通过利用反证法推证命题,体会逆向思维,培养学生的逆向思维能力及思考问题的全面性。
&.教学重点、难点:重点:反证法推证命题的步骤。
难点:反证法的逻辑推理过程。
&.教学过程:一、情景导入古时候有一个卖矛和盾的商人,卖矛的时候说他的矛是世界上最锐利的矛,什么样的盾都能戳破;卖盾的时候说他的盾是世界上最坚固的盾,什么样的矛都戳不破。
于是,就有人问他:“假设你说的都是真的,那么用你的矛戳你的盾,会如何呢?”这个商人无言以对。
提出疑问的人用的是一种什么样的逻辑方法呢?本节我们学习逻辑推理的另一种方法——反证法。
二、探究新知我们知道:在ABC ∆中,若c AB =,a BC =,b AC =,且︒=∠90C ,则222c b a =+. 问题:在ABC ∆中,若c AB =,a BC =,b AC =,且︒≠∠90C ,请问结论222c b a ≠+成立吗?为什么?解析:如果我们从条件︒≠∠90C 出发证明结论是很困难的,我们可采用下面的方法证明: 假设222c b a =+,由勾股定理的逆定理可知ABC ∆是直角三角形,且︒=∠90C ,这与已知条件︒≠∠90C 矛盾.假设不成立,从而说明原结论222c b a ≠+成立。
这种证明方法与前面的证明方法不同,它是首先假设结论的反面成力,然后经过正确的逻辑推理得出与已知、定理、公理矛盾的结论,说明假设不成立,从而得到原结论正确,像这样的证明方法叫做反证法。
&.反证法的定义:首先假设结论的反面成力,然后经过正确的逻辑推理得出与已知、定理、公理矛盾的结论,说明假设不成立,从而得到原结论正确,像这样的证明方法叫做反证法。
探究1:通过例题,你能归纳出反证法证明的一般步骤吗?步骤:(1)假设命题的结论不成立,即假设结论的反面是正确的;(2)从这个假设出发,经过逻辑推理,推出与公理、已证的定理、定义或已知条件相矛盾的结论;(3)由矛盾判定假设不正确,从而得出原结论正确。
冀教版八年级上学期数学17.5反证法优秀教学案例

为了实现上述目标,教师在教学过程中应注重理论知识与实际应用的结合,通过引入生动有趣的例子,让学生在实际问题中感受反证法的意义和价值。同时,教师还应引导学生参与课堂讨论,鼓励他们提出自己的观点和疑问,以提高学生的逻辑思维能力和推理能力。
反证法是数学证明中的一种重要方法,通过对结论的否定假设,逐步推理得出矛盾,从而证明原结论的正确性。在本节课中,教师需要引导学生了解反证法的含义、步骤,并通过典型例题展示反证法的应用,使学生能够熟练运用反证法解决问题。
针对本节课的内容,教师可以设计以下教学活动:首先,通过引入与生活密切相关的问题,激发学生的兴趣和探究欲望;其次,引导学生了解反证法的定义和步骤,使其明确反证法的逻辑结构;然后,通过典型例题的讲解,让学生体会反证法的应用,提高解题能力;最后,布置具有挑战性的练习题,培养学生的创新意识和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们学习数学的积极性。
2.培养学生勇于挑战、追求真理的精神,增强他们的自信心。
3.培养学生团队协作、共同进步的价值观,提高他们的综合素质。
为了实现上述目标,教师应以亲切、鼓励的态度对待学生,关注学生的情感需求,营造一个和谐、愉快的课堂氛围。同时,教师还应注重培养学生的团队协作精神,组织一些小组活动,让学生在合作中发现问题、解决问题,共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,提高自我认知能力。
2.学生互相评价,取长补短,共同进步。
3.教师对学生的学习情况进行总结性评价,激发学生的学习积极性。
在教学过程中,教师应引导学生对自己的学习过程进行反思,让学生明确自己的优点和不足,提高自我认知能力。同时,教师还可以组织学生进行互相评价,让他们在评价中取长补短,共同进步。最后,教师应对学生的学习情况进行总结性评价,以激发学生的学习积极性,提高他们的学习动力。
17.5 反证法 课件 2024-2025学年冀教版数学八年级上册

肯定结论
由矛盾的结果,判定假设不成立,从而 说明命题的结论是正确的
3. 适合用反证法的命题类型
知1-讲
(1) 结论以否定形式出现的命题,如钝角三角形中不能有
两个钝角;
(2)唯一性命题,如不重合的两条直线相交只有一个交点;
(3) 结论以“至多”“至少”等形式叙述的命题,如一个
凸多边形中至多有三个锐角 .
两条平行线中的一条相交,则它必与另一条相交 . 解:已知:在同一平面内,l1∥l2,l1与l3相交于点A, 如图所示.
求证:l3必与l2相交. 证明:假设l3与l2不相交, 则l1∥l2,l3∥l2,∴l1∥l3,这与已知中l1与l3相交于点A 相矛盾,∴假设不成立. 故l3必与l2相交.
课堂小结
解:已知: ∠ A, ∠ B, ∠ C 是△ ABC 的三个内角知1-. 练 求证: ∠ A, ∠ B, ∠ C 中不能有两个角是钝角 .
证明: 假设∠ A, ∠ B, ∠ C 中有两个角是钝角,
不妨设∠ A>90° , ∠ B>90° ,
则∠ A+ ∠ B+ ∠ C>180° .
否定结论. 推出矛盾.
所有情况 . 如果结论的反面只有一种情况,那
么只需要否定这种情况,就足以证明原命题的
结论是正确的;如果结论的反面不止一种情况,
那么必须把各种可能的情况全部列举出来,并
且要一一加以否定,才能证明原命题的结论是
正确的 .
知1-练
例1 求证:在一个三角形中,不能有两个角是钝角 .
解题秘方:本题是命题类证明题,需要先写出已 知、求证,然后利用所学知识写出证 明过程 . 本题不易直接证明,可考虑 运用反证法来证明 .
这与三角形内角和定理相矛盾,故∠ , ∠ B 均大于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反证法》教案
教学目标
1、使学生初步掌握反证法的概念及反证法证题的基本方法.
2、培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点
反证法证题的步骤.
教学难点
理解反证法的推理依据及方法.
教学方法
讲练结合教学.
教学过程
一、提问:
师:通过预习我们知道反证法,什么叫做反证法?
生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法.
师:本节将进一步研究反证法证题的方法,反证法证题的步骤是什么?
生:共分三步:
(1)假设命题的结论不成立,即假设结论的反面成立;
(2)从假设出发,经过推理,得出矛盾;
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.
师:反证法是一种间接证明命题的基本方法.在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明.
例如:在△ABC中,AB=c,BC=a,AC=b,如果∠C=9 0°,a、b、c三边有何关系?为什么?
解析:由∠C=90°可知是直角三角形,根据勾股定理可知a2+b2=c2.
二、探究
问题:
若将上面的条件改为“在△ABC中,AB=c,BC=a,AC =b,∠C≠90°”,请问结论a2+b2≠c2成立吗?请说明理由.
探究:
假设a2+b2=c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾.假设不成立,从而说明原结论a2+b2≠c2成立.
这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确.像这样的证明方法叫做反证法.
三、应用新知
例1:在△ABC中,AB≠AC,求证:∠B≠∠C
证明:假设,∠B=∠C,则AB=AC这与已知AB≠AC矛盾.假设不成立.∴∠B≠∠C.
小结:反证法的步骤:假设结论的反面不成立→逻辑推理得出矛盾→肯定原结论正确.
例2已知:如图有a、b、c三条直线,且a//c,b//c.求证:a//b
证明:假设a与b不平行,则可设它们相交于点A.那么过
点A就有两条直线a、b与直线c平行,这与“过直线外一点有且只有一条直线与已知直线平行”矛盾,假设不成立.∴a//b.
小结:根据假设推出结论除了可以与已知条件矛盾以外,还可以与我们学过的定理、公理矛盾.
例3求证:在一个三角形中,至少有一个内角小于或等于60°.
已知:△ABC,求证:△ABC中至少有一个内角小于或等于60°.
证明:假设△ABC中没有一个内角小于或等于60°.
则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+6 0°+60°=180°.
即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立.
∴△ABC中至少有一个内角小于或等于60°.
三、课堂练习:课本P164练习.
四、课时小结
本节重点研究了反证法证题的一般步骤及反证法证明
命题的应用.对于反证法的熟练掌握还需在今后随着学习的深入,逐步加强和提高.
五、课后作业:课本P164习题.。