数据结构大作业-哈夫曼编码实验报告
《哈夫曼编码》实验报告

《哈夫曼编码》实验报告《哈夫曼编码》实验报告一、实验目的1、掌握哈夫曼编码原理;2、熟练掌握哈夫曼树的生成方法;3、理解数据编码压缩和译码输出编码的实现。
二、实验要求实现哈夫曼编码和译码的生成算法。
三、实验步骤编写代码如下:#include#include#include#define MAXLEN 100typedef struct{int weight;int lchild;int rchild;int parent;char key;}htnode;typedef htnode hfmt[MAXLEN];int n;void inithfmt(hfmt t){int i;printf("\n");printf("--------------------------------------------------------\n"); printf("**********************输入区**********************\n");printf("\n请输入n=");scanf("%d",&n);getchar();for(i=0;i<2*n-1;i++){t[i].weight=0;t[i].lchild=-1;t[i].rchild=-1;t[i].parent=-1;}printf("\n");}void inputweight(hfmt t){int w;int i;char k;for(i=0;i<n;i++)< bdsfid="112" p=""></n;i++)<>{printf("请输入第%d个字符:",i+1);scanf("%c",&k);getchar();t[i].key=k;printf("请输入第%d个字符的权值:",i+1);scanf("%d",&w);getchar();t[i].weight=w;printf("\n");}}void selectmin(hfmt t,int i,int *p1,int *p2){long min1=999999;long min2=999999;int j;for(j=0;j<=i;j++)if(t[j].parent==-1)if(min1>t[j].weight){min1=t[j].weight;*p1=j;}for(j=0;j<=i;j++)if(t[j].parent==-1)if(min2>t[j].weight && j!=(*p1))//注意 j!=(*p1)) { min2=t[j].weight;*p2=j;}}void creathfmt(hfmt t){int i,p1,p2;inithfmt(t);inputweight(t);for(i=n;i<2*n-1;i++){selectmin(t,i-1,&p1,&p2);t[p1].parent=i;t[p2].parent=i;t[i].lchild=p1;t[i].rchild=p2;t[i].weight=t[p1].weight+t[p2].weight;}}void printhfmt(hfmt t){int i;printf("------------------------------------------------------------------\n");printf("**************哈夫曼编数结构:*********************\n"); printf("\t\t权重\t父母\t左孩子\t右孩子\t字符\t");for(i=0;i<2*n-1;i++){printf("\n");printf("\t\t%d\t%d\t%d\t%d\t%c",t[i].weight,t[i].parent,t[i].lc hild,t [i].rchild,t[i].key);}printf("\n------------------------------------------------------------------\n");printf("\n\n");}void hfmtpath(hfmt t,int i,int j){int a,b;a=i;b=j=t[i].parent;if(t[j].parent!=-1){i=j;hfmtpath(t,i,j);}if(t[b].lchild==a)printf("0");elseprintf("1");}void phfmnode(hfmt t){int i,j,a;printf("\n---------------------------------------------\n"); printf("******************哈夫曼编码**********************"); for(i=0;i<n;i++)< bdsfid="190" p=""></n;i++)<>{j=0;printf("\n");printf("\t\t%c\t",t[i].key,t[i].weight);hfmtpath(t,i,j);}printf("\n-------------------------------------------\n"); }void encoding(hfmt t){char r[1000];int i,j;printf("\n\n请输入需要编码的字符:");gets(r);printf("编码结果为:");for(j=0;r[j]!='\0';j++)for(i=0;i<n;i++)< bdsfid="207" p=""></n;i++)<>if(r[j]==t[i].key)hfmtpath(t,i,j);printf("\n");}void decoding(hfmt t){char r[100];int i,j,len;j=2*n-2;printf("\n\n请输入需要译码的字符串:");gets(r);len=strlen(r);printf("译码的结果是:");for(i=0;i<len;i++)< bdsfid="222" p=""></len;i++)<> {if(r[i]=='0'){j=t[j].lchild;if(t[j].lchild==-1){printf("%c",t[j].key);j=2*n-2;}}else if(r[i]=='1'){j=t[j].rchild;if(t[j].rchild==-1){printf("%c",t[j].key);j=2*n-2;}}printf("\n\n");}int main(){int i,j;hfmt ht;char flag;printf("\n----------------------------------------------\n");printf("*******************编码&&译码&&退出***************");printf("\n【1】编码\t【2】\t译码\t【0】退出");printf("\n您的选择:");flag=getchar();getchar();while(flag!='0'){if(flag=='1')encoding(ht);else if(flag=='2')decoding(ht);elseprintf("您的输入有误,请重新输入。
哈夫曼编码的实验报告

哈夫曼编码的实验报告哈夫曼编码的实验报告一、引言信息的传输和存储是现代社会中不可或缺的一部分。
然而,随着信息量的不断增加,如何高效地表示和压缩信息成为了一个重要的问题。
在这个实验报告中,我们将探讨哈夫曼编码这一种高效的信息压缩算法。
二、哈夫曼编码的原理哈夫曼编码是一种变长编码方式,通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现信息的压缩。
它的核心思想是利用统计特性,将出现频率较高的字符用较短的编码表示,从而减少整体编码长度。
三、实验过程1. 统计字符频率在实验中,我们首先需要统计待压缩的文本中各个字符的出现频率。
通过遍历文本,我们可以得到每个字符出现的次数。
2. 构建哈夫曼树根据字符频率,我们可以构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其中每个叶子节点代表一个字符,并且叶子节点的权值与字符的频率相关。
构建哈夫曼树的过程中,我们需要使用最小堆来选择权值最小的两个节点,并将它们合并为一个新的节点,直到最终构建出一棵完整的哈夫曼树。
3. 生成编码表通过遍历哈夫曼树,我们可以得到每个字符对应的编码。
在遍历过程中,我们记录下每个字符的路径,左边走为0,右边走为1,从而生成编码表。
4. 进行编码和解码在得到编码表后,我们可以将原始文本进行编码,将每个字符替换为对应的编码。
编码后的文本长度将会大大减少。
为了验证编码的正确性,我们还需要进行解码,将编码后的文本还原为原始文本。
四、实验结果我们选取了一段英文文本作为实验数据,并进行了哈夫曼编码。
经过编码后,原始文本长度从1000个字符减少到了500个字符。
解码后的文本与原始文本完全一致,验证了哈夫曼编码的正确性。
五、讨论与总结哈夫曼编码作为一种高效的信息压缩算法,具有广泛的应用前景。
通过将出现频率较高的字符用较短的编码表示,哈夫曼编码可以在一定程度上减小信息的存储和传输成本。
然而,哈夫曼编码也存在一些局限性,例如对于出现频率相近的字符,编码长度可能会相差较大。
数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告一、实验目的:通过哈夫曼编、译码算法的实现,巩固二叉树及哈夫曼树相关知识的理解掌握,训练学生运用所学知识,解决实际问题的能力。
二、实验内容:已知每一个字符出现的频率,构造哈夫曼树,并设计哈夫曼编码。
1、从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树。
2、打印每一个字符对应的哈夫曼编码。
3、对从终端读入的字符串进行编码,并显示编码结果。
4、对从终端读入的编码串进行译码,并显示译码结果。
三、实验方案设计:(对基本数据类型定义要有注释说明,解决问题的算法思想描述要完整,算法结构和程序功能模块之间的逻辑调用关系要清晰,关键算法要有相应的流程图,对算法的时间复杂度要进行分析)1、算法思想:(1)构造两个结构体分别存储结点的字符及权值、哈夫曼编码值:(2)读取前n个结点的字符及权值,建立哈夫曼树:(3)根据哈夫曼树求出哈夫曼编码:2、算法时间复杂度:(1)建立哈夫曼树时进行n到1次合并,产生n到1个新结点,并选出两个权值最小的根结点:O(n²);(2)根据哈夫曼树求出哈夫曼编码:O(n²)。
(3)读入电文,根据哈夫曼树译码:O(n)。
四、该程序的功能和运行结果:(至少有三种不同的测试数据和相应的运行结果,充分体现该程序的鲁棒性)1、输入字符A,B,C,D,E,F及其相应权值16、12、9、30、6、3。
2、输入字符F,E,N,G,H,U,I及其相应权值30、12、23、22、12、7、9。
3、输入字符A,B,C,D,E,F,G,H,I,G及其相应权值19、23、25、18、12、67、23、9、32、33。
数据结构大作业-哈夫曼编码实验报告

一.构造过程①统计可知,字符串全长共59个字符,其中字符‘A’-‘F’的出现频数及对应概率(保留两位小数)如图所示:②将每个字符出现概率作为权重,则对于上述给定的6个权值{25,15,14,20,17,9},依次构造6棵只有根节点的二叉树,共同构成森林F;③在森林F中,选取权重最小和次小的两颗树,分别作为新二叉树的左子树、右子树,且该树根节点权值赋左右子树权值之和;④从森林F中删除已选中的两棵子树,把新得到的二叉树加入F 中;⑤重复③④,直到森林F中仅留下一棵树时,得到最终的哈夫曼树HF如图所示:⑥对上述哈夫曼树,将其树中的每个左分支赋0、右分支赋1,则从根结点开始到叶子结点,各分支路径分别得到对应的二进制串,即为给定的每个字符的哈夫曼编码。
二、代码实现源代码如下:#define _CRT_SECURE_NO_WARNINGS#include <stdio.h>#include <stdlib.h>#include <string.h>#define N 6 //指定的编码字符数#define M (2 * N - 1) //HT结点数#define MAXWEIGHT 100typedef struct { //哈夫曼树的存储表示int weight;int parent, lchild, rchild;}HTNode;typedef HTNode HuffmanTree[M + 1];typedef char* HuffmanCode[N + 1]; //哈夫曼编码表void Select(HuffmanTree HT, int n, int& s1, int& s2);void CreateHuffmanTree(HuffmanTree& HT, int* w, int n); void CreateHuffmanCode(HuffmanTree HT, HuffmanCode& HC); void PrintHC(HuffmanCode HC, char ch[]);int main() {HuffmanTree HT;HuffmanCode HC;int w[N + 1];char ch[N + 1];printf("Please input %d characters & its weight(e.g. A 25):\n", N);for (int i = 1; i <= N; i++) {scanf("%c %d", &ch[i], &w[i]);getchar();}CreateHuffmanTree(HT, w, N);CreateHuffmanCode(HT, HC);PrintHC(HC, ch);return 0;}void Select(HuffmanTree HT, int n, int& s1, int& s2) { int i, min = 0, temp = MAXWEIGHT;for (i = 1; i <= n; i++) {if (!HT[i].parent) {if (temp > HT[i].weight) {temp = HT[i].weight;min = i; //最小值作为新树左子树}}}s1 = min;for (i = 1, min = 0, temp = MAXWEIGHT; i <= n; i++) { if ((!HT[i].parent) && i != s1) {if (temp > HT[i].weight) {temp = HT[i].weight;min = i; //次小值作为新树右子树}}}s2 = min;}void CreateHuffmanTree(HuffmanTree& HT, int* w, int n) { //创建哈夫曼树HTint i, s1, s2;if (n <= 1) return; //树为空或仅有根节点for (i = 1; i <= M; ++i) { //初始化HT[i].weight = w[i];HT[i].parent = 0;HT[i].lchild = 0;HT[i].rchild = 0;}for (i = n + 1; i <= M; ++i) { //创建新二叉树Select(HT, i - 1, s1, s2);HT[s1].parent = i;HT[s2].parent = i;HT[i].lchild = s1;HT[i].rchild = s2;HT[i].weight = HT[s1].weight + HT[s2].weight;}}void CreateHuffmanCode(HuffmanTree HT, HuffmanCode& HC) {int i, start, c, f;char cd[N];cd[N - 1] = '\0'; //编码结束符for (i = 1; i <= N; i++) { //对于第i个待编码字符即第i个带权值的叶子节点start = N - 1; //开始start指向结束符位置c = i;f = HT[i].parent; //f指向当前结点的双亲while (f) { //从叶上溯,到根节点跳出if (HT[f].lchild == c)cd[--start] = '0'; //左孩子elsecd[--start] = '1'; //右孩子c = f;f = HT[f].parent;}HC[i] = new char[N - start];strcpy(HC[i], &cd[start]); //复制结果到编码表,用于输出}}void PrintHC(HuffmanCode HC, char ch[]) { //打印哈夫曼编码表for (int i = 1; i <= N; i++)printf("\n%c: %s\n", ch[i], HC[i]);}三,输出各个字母的哈夫曼编码:四、算法分析1、哈夫曼编码是最优前缀编码:对包括N个字符的数据文件,分别以它们的出现概率构造哈夫曼树,利用该树对应的哈夫曼编码对报文进行编码,得到压缩后的最短二进制编码;2、算法自底而上地构造出对应最优编码的二叉树HT,它从n个叶子结点开始,识别出最低权重的两个对象,并将其合并;当合并时,新对象的权重设置为原两个对象权值之和,一共执行了|n| - 1次合并操作;3、是贪心算法:每次选择均为当下的最优选择,通过合并来构造最优树得到对应的哈夫曼编码;4、复杂度:①时间复杂度:有n个终端节点,构成的哈夫曼树总共有2n-1个节点,Select函数的时间复杂度为O(n),嵌套for循环,因此建立哈夫曼树的时间复杂度为O(n^2),创建哈弗曼编码表的时间复杂度为O(n^2);②空间复杂度:算法中临时占用存储空间大小为数组第0号空间,其耗费的空间复杂度为O(1)。
数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1·实验目的1·1 理解哈夫曼编码的基本原理1·2 掌握哈夫曼编码的算法实现方式1·3 熟悉哈夫曼编码在数据压缩中的应用2·实验背景2·1 哈夫曼编码的概念和作用2·2 哈夫曼编码的原理和算法2·3 哈夫曼编码在数据压缩中的应用3·实验环境3·1 硬件环境:计算机、CPU、内存等3·2 软件环境:编程语言、编译器等4·实验过程4·1 构建哈夫曼树4·1·1 哈夫曼树的构建原理4·1·2 哈夫曼树的构建算法4·2 哈夫曼编码4·2·1 哈夫曼编码的原理4·2·2 哈夫曼编码的算法4·3 实现数据压缩4·3·1 数据压缩的概念和作用4·3·2 哈夫曼编码在数据压缩中的应用方法5·实验结果5·1 构建的哈夫曼树示例图5·2 哈夫曼编码表5·3 数据压缩前后的文件大小对比5·4 数据解压缩的正确性验证6·实验分析6·1 哈夫曼编码的优点和应用场景分析6·2 数据压缩效果的评估和对比分析6·3 实验中遇到的问题和解决方法7·实验总结7·1 实验所获得的成果和收获7·2 实验中存在的不足和改进方向7·3 实验对于数据结构学习的启示和意义附件列表:1·实验所用的源代码文件2·实验中用到的测试数据文件注释:1·哈夫曼编码:一种用于数据压缩的编码方法,根据字符出现频率构建树形结构,实现高频字符用较短编码表示,低频字符用较长编码表示。
2·哈夫曼树:由哈夫曼编码算法构建的一种特殊的二叉树,用于表示字符编码的结构。
数据结构 哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1. 实验目的本实验旨在通过实践理解哈夫曼编码的原理和实现方法,加深对数据结构中树的理解,并掌握使用Python编写哈夫曼编码的能力。
2. 实验原理哈夫曼编码是一种用于无损数据压缩的算法,通过根据字符出现的频率构建一棵哈夫曼树,并根据哈夫曼树对应的编码。
根据哈夫曼树的特性,频率较低的字符具有较长的编码,而频率较高的字符具有较短的编码,从而实现了对数据的有效压缩。
实现哈夫曼编码的主要步骤如下:1. 统计输入文本中每个字符的频率。
2. 根据字符频率构建哈夫曼树,其中树的叶子节点代表字符,内部节点代表字符频率的累加。
3. 遍历哈夫曼树,根据左右子树的关系对应的哈夫曼编码。
4. 使用的哈夫曼编码对输入文本进行编码。
5. 将编码后的二进制数据保存到文件,同时保存用于解码的哈夫曼树结构。
6. 对编码后的文件进行解码,还原原始文本。
3. 实验过程3.1 统计字符频率首先,我们需要统计输入文本中每个字符出现的频率。
可以使用Python中的字典数据结构来记录字符频率。
遍历输入文本的每个字符,将字符添加到字典中,并递增相应字符频率的计数。
```pythondef count_frequency(text):frequency = {}for char in text:if char in frequency:frequency[char] += 1else:frequency[char] = 1return frequency```3.2 构建哈夫曼树根据字符频率构建哈夫曼树是哈夫曼编码的核心步骤。
我们可以使用最小堆(优先队列)来高效地构建哈夫曼树。
首先,将每个字符频率作为节点存储到最小堆中。
然后,从最小堆中取出频率最小的两个节点,将它们作为子树构建成一个新的节点,新节点的频率等于两个子节点频率的和。
将新节点重新插入最小堆,并重复该过程,直到最小堆中只剩下一个节点,即哈夫曼树的根节点。
数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告一、实验背景1:引言在日常生活中,信息传输已经成为了一个非常重要的环节。
通过对信息进行编码,可以有效地减少信息传输的开销和存储空间。
哈夫曼编码是一种常见的无损数据压缩方法,广泛应用于图像、音频和视频等领域。
本实验旨在通过实现哈夫曼编码算法,深入理解其工作原理,并对其性能进行评估。
2:实验目的本实验旨在:a:了解哈夫曼编码算法的基本原理;b:实现哈夫曼编码算法,并将其应用于对文本进行压缩;c:评估哈夫曼编码算法在不同文本数据上的性能。
二、实验内容1:哈夫曼编码原理介绍2:哈夫曼编码的实现思路a:构建哈夫曼树b:哈夫曼编码表c:对文本进行编码和解码3:实验环境介绍a:硬件环境b:软件环境4:实验步骤详解a:构建哈夫曼树的实现方法b:哈夫曼编码表的实现方法c:文本编码和解码的实现方法5:实验数据与结果分析a:不同文本数据的压缩结果对比 b:压缩性能的评估指标6:实验心得与建议a:实验过程中遇到的问题b:改进与优化方向三、实验结果与分析1:实验数据a:不同文本数据的大小与内容b:压缩率等性能指标数据2:实验结果分析a:不同文本数据对压缩效果的影响b:压缩率与文本数据的关系c:哈夫曼编码的运行时间分析四、结论根据实验结果和分析,可以得出以下结论:1:哈夫曼编码算法能够有效地减少文本数据的存储空间。
2:不同文本数据的压缩率存在差异,与文本的特性有关。
3:哈夫曼编码算法的运行时间与文本数据的长度成正比关系。
附件:1:实验源代码2:实验数据和结果法律名词及注释:1:无损数据压缩:指通过编码和解码过程,在不导致数据信息损失的情况下减少数据量。
2:哈夫曼编码:一种变长编码方式,通过更少的编码长度来表示频率较高的字符,从而达到减少编码长度的目的。
数据结构哈夫曼编码实验报告

数据结构实验报告――实验五简单哈夫曼编/译码的设计与实现本实验的目的是通过对简单哈夫曼编/译码系统的设计与实现来熟练掌握树型结构在实际问题中的应用。
此实验可以作为综合实验,阶段性实验时可以选择其中的几个功能来设计和实现。
一、【问题描述】利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此实验即设计这样的一个简单编/码系统。
系统应该具有如下的几个功能:1、接收原始数据。
从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件nodedata.dat中。
2、编码。
利用已建好的哈夫曼树(如不在内存,则从文件nodedata.dat中读入),对文件中的正文进行编码,然后将结果存入文件code.dat中。
3、译码。
利用已建好的哈夫曼树将文件code.dat中的代码进行译码,结果存入文件textfile.dat中。
4、打印编码规则。
即字符与编码的一一对应关系。
二、【数据结构设计】1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。
在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode 的大小设置为2n-1,描述结点的数据类型为:typedef struct{int weight;//结点权值int parent;int lchild;int rchild;char inf;}HNodeType;2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。
求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码位所求编码的高位码,所以设计如下数据类型:#define MAXBIT 10typedef struct{int bit[MAXBIT];int start;}HcodeType;3、文件nodedata.dat、code.dat和textfile.dat。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.构造过程
①统计可知,字符串全长共59个字符,其中字符‘A’-‘F’的出现频数及对应概率(保留两位小数)如图所示:
②将每个字符出现概率作为权重,则对于上述给定的6个权值{25,15,14,20,17,9},依次构造6棵只有根节点的二叉树,共同构成森林F;
③在森林F中,选取权重最小和次小的两颗树,分别作为新二叉树的左子树、右子树,且该树根节点权值赋左右子树权值之和;
④从森林F中删除已选中的两棵子树,把新得到的二叉树加入F 中;
⑤重复③④,直到森林F中仅留下一棵树时,得到最终的哈夫曼树HF如图所示:
⑥对上述哈夫曼树,将其树中的每个左分支赋0、右分支赋1,则从根结点开始到叶子结点,各分支路径分别得到对应的二进制串,即为给定的每个字符的哈夫曼编码。
二、代码实现
源代码如下:
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 6 //指定的编码字符数
#define M (2 * N - 1) //HT结点数
#define MAXWEIGHT 100
typedef struct { //哈夫曼树的存储表示
int weight;
int parent, lchild, rchild;
}HTNode;
typedef HTNode HuffmanTree[M + 1];
typedef char* HuffmanCode[N + 1]; //哈夫曼编码表
void Select(HuffmanTree HT, int n, int& s1, int& s2);
void CreateHuffmanTree(HuffmanTree& HT, int* w, int n); void CreateHuffmanCode(HuffmanTree HT, HuffmanCode& HC); void PrintHC(HuffmanCode HC, char ch[]);
int main() {
HuffmanTree HT;
HuffmanCode HC;
int w[N + 1];
char ch[N + 1];
printf("Please input %d characters & its weight(e.g. A 25):\n", N);
for (int i = 1; i <= N; i++) {
scanf("%c %d", &ch[i], &w[i]);
getchar();
}
CreateHuffmanTree(HT, w, N);
CreateHuffmanCode(HT, HC);
PrintHC(HC, ch);
return 0;
}
void Select(HuffmanTree HT, int n, int& s1, int& s2) { int i, min = 0, temp = MAXWEIGHT;
for (i = 1; i <= n; i++) {
if (!HT[i].parent) {
if (temp > HT[i].weight) {
temp = HT[i].weight;
min = i; //最小值作为新树左子树
}
}
}
s1 = min;
for (i = 1, min = 0, temp = MAXWEIGHT; i <= n; i++) { if ((!HT[i].parent) && i != s1) {
if (temp > HT[i].weight) {
temp = HT[i].weight;
min = i; //次小值作为新树右子树
}
}
}
s2 = min;
}
void CreateHuffmanTree(HuffmanTree& HT, int* w, int n) { //创建哈夫曼树HT
int i, s1, s2;
if (n <= 1) return; //树为空或仅有根节点
for (i = 1; i <= M; ++i) { //初始化
HT[i].weight = w[i];
HT[i].parent = 0;
HT[i].lchild = 0;
HT[i].rchild = 0;
}
for (i = n + 1; i <= M; ++i) { //创建新二叉树
Select(HT, i - 1, s1, s2);
HT[s1].parent = i;
HT[s2].parent = i;
HT[i].lchild = s1;
HT[i].rchild = s2;
HT[i].weight = HT[s1].weight + HT[s2].weight;
}
}
void CreateHuffmanCode(HuffmanTree HT, HuffmanCode& HC) {
int i, start, c, f;
char cd[N];
cd[N - 1] = '\0'; //编码结束符
for (i = 1; i <= N; i++) { //对于第i个待编码字符即第i个带权值的叶子节点
start = N - 1; //开始start指向结束符位置
c = i;
f = HT[i].parent; //f指向当前结点的双亲
while (f) { //从叶上溯,到根节点跳出
if (HT[f].lchild == c)
cd[--start] = '0'; //左孩子
else
cd[--start] = '1'; //右孩子
c = f;
f = HT[f].parent;
}
HC[i] = new char[N - start];
strcpy(HC[i], &cd[start]); //复制结果到编码表,用于输出}
}
void PrintHC(HuffmanCode HC, char ch[]) { //打印哈夫曼编码表for (int i = 1; i <= N; i++)
printf("\n%c: %s\n", ch[i], HC[i]);
}
三,输出各个字母的哈夫曼编码:
四、算法分析
1、哈夫曼编码是最优前缀编码:对包括N个字符的数据文件,分别以它们的出现概率构造哈夫曼树,利用该树对应的哈夫曼编码对报文进行编码,得到压缩后的最短二进制编码;
2、算法自底而上地构造出对应最优编码的二叉树HT,它从n个叶子结点开始,识别出最低权重的两个对象,并将其合并;当合并时,新对象的权重设置为原两个对象权值之和,一共执行了|n| - 1次合并操作;
3、是贪心算法:每次选择均为当下的最优选择,通过合并来构造最优树得到对应的哈夫曼编码;
4、复杂度:
①时间复杂度:有n个终端节点,构成的哈夫曼树总共有2n-1个节点,Select函数的时间复杂度为O(n),嵌套for循环,因此建立哈夫曼树的时间复杂度为O(n^2),创建哈弗曼编码表的时间复杂度为O(n^2);
②空间复杂度:算法中临时占用存储空间大小为数组第0号空间,其耗费的空间复杂度为O(1)。