因动点产生的面积问题
因动点产生的面积问题

例21:2011年四川省南充市中考第22题抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q 的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标.解答:解:(1)∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3,答:抛物线解析式为y=x2﹣2x﹣3.(2)解:AC=3,AC所在直线的解析式为:y=﹣x﹣1,∠BAC=45°,∵平行四边形ACQP的面积为12,∴平行四边形ACQP中AC边上的高为=2,过点D作DK⊥AC与PQ所在直线相交于点K,DK=2,∴DN=4,∵ACPQ,PQ所在直线在直线ACD的两侧,可能各有一条,∴PQ的解析式或为y=﹣x+3或y=﹣x﹣5,∴,解得:或,,方程无解,即P1(3,0),P2(﹣2,5),∵ACPQ是平行四边形,A(﹣1,0),C(2,﹣3),∴当P(3,0)时,Q(6,﹣3),当P(﹣2,5)时,Q(1,2),∴满足条件的P,Q点是P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2)答:点P,Q的坐标是P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2).(3)解:设M(t,t2﹣2t﹣3),(﹣1<t<3),过点M作y轴的平行线,交PQ所在直线雨点T,则T(t,﹣t+3),MT=(﹣t+3)﹣(t2﹣2t﹣3)=﹣t2+t+6,过点M作MS⊥PQ所在直线于点S,MS=MT=(﹣t2+t+6)=﹣(t﹣)2+,∴当t=时,M(,﹣),△PQM中PQ边上高的最大值为,答:△PQM 的最大面积是,,点M 的坐标是(,﹣).点评:本题主要考查对用待定系数法求二次函数的解析式,二次函数的最值,平行四边形的性质,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度.例22:2010年广东省湛江市中考第28题如图,在平面直角坐标系中,点B 的坐标为(-3,-4),线段OB 绕原点逆时针旋转后与x 轴的正半轴重合,点B 的对应点为点A .(1)直接写出点A 的坐标,并求出经过A 、O 、B 三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点C ,使BC +OC 的值最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)点P 是抛物线上的一个动点,且在x 轴的上方,当点P 运动到什么位置时,△PAB 的面积最大?求出此时点P 的坐标和△PAB 的最大面积.解:(1)A(5,0) ………1分由抛物线经过点O ,可设抛物线的解析式为bx ax y +=2…2分⎩⎨⎧=-=+4390525b a b a 解得⎪⎪⎩⎪⎪⎨⎧=-=6561b a …………………………4分 ∴抛物线的解析式为x x y 65612+-=…………………………5分 (2)如图,由(1)得抛物线的对称轴是直线25=x ,点O 、A 关于直线25=x 对称,连接AB 交直线25=x 于点C ,则点C 使BC+OC 的值最小………………………6分设直线AB 的解析式为b kx y +=,得⎩⎨⎧-=+-=+4305b k b k ,解得⎪⎪⎩⎪⎪⎨⎧-==2521b k∴直线的解析式为2521-=x y ………………………8分把25=x 代入2521-=x y ,得45-=y ,∴点C 的坐标为)45,25(-………………9分(3)如图,过点P 作y 轴的平行线交AB 于点D ,设点P 的横坐标为x ,得)6561,(2x x x P +-, )2521,(-x x D ………………10分∴PAD PBD PAB S S S ∆∆∆+==)(21B A x x PD -∙=))((21B A D p x x y y --=[])3(5)2521()6561(212--⨯⎥⎦⎤⎢⎣⎡--+-x x x =1034322++-x x =332)1(322+--x ∴当1=x 时,PAB S ∆的最大值为332………………12分 把1=x 代入x x y 65612+-=,得32=y ,∴此时点P 的坐标为)32,1(………………13分例23:2012年广东省广州市中考数学模拟第25题平面直角坐标系中,平行四边形ABOC 如图放置,点A 、C 的坐标分别为(0,3)、(1-,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形'''A B OC 。
因动点产生的面积问题

80因动点产生的面积问题★林广姗所谓的因动点产生的面积问题就是解决一个会移动的点在坐标系中的位置转变所形成的几何面积问题。
在往年真题中我们可以看到中考命题组特别喜爱动点面积相结合的问题,因动点产生的面积问题大多以函数为背景,充分结合函数、方程、转化及数形结合等思想进行展开,而学生对知识点多且题型复杂的动点问题也是又爱又恨。
在数学教学中,教师可以从哪些方向带着学生不慌不忙延伸拆解每一道题,让学生动脑生趣,不再害怕此类问题。
引言:在中考中,数学要如何和他人拉开距离,保持领先?那么我们就要教会学生破解压轴题,而作我们首要突破的热点压轴题则是动点问题,其中因动点产生的面积问题则是学生们最怕见到的压轴题类型。
如何让学生对动点产生兴趣?高效利用每一道真题,延伸派生,让学生一题多思。
接下来笔者将会对两道中考真题进行思路点拨和延伸,旨在与大家交流研讨。
一、思路建立阶段面积是平面图形中的一个重要的概念,关联着平面图形中的要素边与角,因点的运动而产生的面积问题,是一次函数图象与二次函数图象相结合的形式,经常出现的面积问题有规则图形(如直角三角形、平行四边形、特殊平行四边形的面积)以及不规则图形的面积计算,求解不规则几何图形的面积是中考压轴常考的题型,此类题目运算量较大,要根据不同题目的动点问题思考解的可变性和多可能性。
求解动点相关面积问题经常用到下列与面积有关的方法:平面几何的割与补、等积变形、等比转化等数学思想方法。
解决与面积相关的动点存在性题目,出现频率较高的题型和使用较多的解题策略有两种:一是据图形确定存在性,再列出方程,求解并检验方程的根.二是先认为关系存在,然后列出方程,再据方程的反推假设是否成立.而教师对真题进行延展派生时,可通过以下几个方面进行延展: (1)在原图中加一或多条辅助线,构成新图形,再求解新平面几何图形的面积;(2)改变面积比例求对应点坐标;(3)改变动点活动范围,例如当动点跑出函数外时;(4)求构成特殊图形时特殊点的坐标,例如直角三角形、等腰三角形、等边三角形、平行四边形、特殊的平行四边形等。
因动点产生的面积问题

1
例题 5 如图平面直角坐标系中,O 是坐标原点,抛物线y = ������ 2 − 4������ + ������与������轴
交于 A、B 两点(点 A 在点 B 的左侧) ,与������轴的负半轴交于点 C,且OB = OC。 1) 求该抛物线的解析式及点 B 的坐标; 2) P 是线段 OB 上的一点,过点 P 作PD ⊥ ������轴,与抛物线交于 D 点,直线 BC 能 否把∆������������������分成面积之比为2: 3的两部分?如能, 请求出点 P 的坐标; 如不能, 请说明理由。
������
Hale Waihona Puke 例题 3 如图,已知直线y = 2 ������与双曲线 y = ������ (k > 0)交于 A、B 两点,且点 A
的横坐标为 4. 1) 求 K 的值; 2) 若双曲线上的一点 C 的纵坐标为 8,求 AOC 的面积; 3) 过原点 O 的另一条直线交双曲线与 P、Q 两点(P 点在第一象限) ,若由 A、 B、P、Q 为顶点组成的四边形面积为 24,求点 P 的坐标。
第五篇因动点产生的面积问题 例题 1 如图已知一次函数y = ax − a(a ≠ 0)的图像是直线l,点 E 是直线l与y轴的
交点。 1) 证明:当a取不等于 0 的实数时,直线l都经过x轴上的一个定点 P,并求这个 定点 P 的坐标; 2) 在x轴上找出点 Q,使 S∆PQE=2S∆OPE ,求出点 Q 的坐标。
例题 2 如图,点 P、点 Q 分别在x轴、y轴上。
1) 已知点 P(3,0) ,Q(0,4) ,点 M 在线段 PQ 上,直线 OM 把∆POQ 分成两 个三角形,且这两个三角形的面积的比是 2:1,求直线 MO 的函数解析式; 2) 如图,已知 P(m,0) ,Q(0,n) (m>0,n>0),反比例函数y = ������ 的图像与线 段 PQ 交于 C、D 两点,若 S∆POC=S∆COD=S∆DOQ 求 n 的值。
因动点产生的面积问题

因动点产生的面积问题1.如图1, 四边形OABC是矩形, 点A.C的坐标分别为(3,0), (0,1). 点D是线段BC上的动点〔与端点B.C不重合〕, 过点D作直线交折线OAB于点E.〔1〕记△ODE的面积为S, 求S与b的函数关系式;〔2〕当点E在线段OA上时, 假设矩形OABC关于直线DE的对称图形为四边形O1A1B1C1, 试探究四边形O1A1B1C1与矩形OABC的重叠局部的面积是否发生变化?假设不变, 求出重叠局部的面积;假设改变,请说明理由.图12.如图1, 直角梯形OABC的边OA在y轴的正半轴上, OC在x轴的正半轴上, OA=AB=2, OC=3, 过点B作BD⊥BC, 交OA于点D. 将∠DBC绕点B按顺时针方向旋转, 角的两边分别交y轴的正半轴、x轴的正半轴于E和F.〔1〕求经过点A.B.C三点的抛物线的解析式;〔2〕当BE经过〔1〕中抛物线的顶点时, 求CF的长;〔3〕连结EF, 设△BEF与△BFC的面积之差为S, 问当CF为何值时S最小, 并求出最小值.图13.如图1, 在△ABC中, ∠C=90°, AC=3, BC=4, CD是斜边AB上的高, 点E在斜边AB上, 过点E 作直线与△ABC的直角边相交于点F, 设AE=x, △AEF的面积为y.〔1〕求线段AD的长;〔2〕假设EF⊥AB, 当点E在斜边AB上移动时,①求y与x的函数关系式〔写出自变量x的取值范围〕;②当x取何值时, y有最大值?并求出最大值.〔3〕假设点F在直角边AC上〔点F与A、C不重合〕, 点E在斜边AB上移动, 试问, 是否存在直线EF 将△ABC的周长和面积同时平分?假设存在直线EF, 求出x的值;假设不存在直线EF, 请说明理由.图1 备用图4.如图1, : 抛物线y=x2+bx-3与x轴相交于A.B两点, 与y轴相交于点C, 并且O..OC.〔1〕求这条抛物线的解析式;〔2〕过点C作CE // x轴, 交抛物线于点E, 设抛物线的顶点为点D, 试判断△CDE的形状, 并说明理由;〔3〕设点M在抛物线的对称轴l上, 且△MCD的面积等于△CDE的面积, 请写出点M的坐标〔无需写出解题步骤〕.图15.如图1, 在平面直角坐标系xOy中, 直角梯形OABC的顶点O为坐标原点, 顶点A.C分别在x轴、y 轴的正半轴上, CB∥OA, OC=4, BC=3, OA=5, 点D在边OC上, CD=3, 过点D作DB的垂线DE, 交x 轴于点E.〔1〕求点E的坐标;〔2〕二次函数y=-x2+bx+c的图像经过点B和点E.①求二次函数的解析式和它的对称轴;②如果点M在它的对称轴上且位于x轴上方, 满足S△CEM=2S△ABM, 求点M的坐标.图16.如图1, 直线l经过点A(1, 0), 且与双曲线(x>0)交于点B(2, 1). 过点(p>1)作x轴的平行线分别交曲线(x>0)和(x<0)于M、N两点.〔1〕求m的值及直线l的解析式;〔2〕假设点P在直线y=2上, 求证: △PMB∽△PNA;〔3〕是否存在实数p, 使得S△AMN=4S△AMP?假设存在, 请求出所有满足条件的p的值;假设不存在,请说明理由.图1因动点产生的面积问题1.〔2021年广州市中考第25题〕如图1, 四边形OABC是矩形, 点A.C的坐标分别为(3,0), (0,1). 点D是线段BC上的动点〔与端点B.C不重合〕, 过点D作直线交折线OAB于点E.〔1〕记△ODE的面积为S, 求S与b的函数关系式;〔2〕当点E在线段OA上时, 假设矩形OABC关于直线DE的对称图形为四边形O1A1B1C1, 试探究四边形O1A1B1C1与矩形OABC的重叠局部的面积是否发生变化?假设不变, 求出重叠局部的面积;假设改变,请说明理由.图1思路点拨1. 数形结合, 用b表示线段OE、CD.AE、BE的长.2.求△ODE的面积, 要分两种情况.当E在OA上时, OE边对应的高等于OC;当E在AB边上时, 要利用割补法求△ODE的面积.3. 第〔2〕题中的重叠局部是邻边相等的平行四边形.4.图形翻折、旋转等运动中, 计算菱形的边长一般用勾股定理.总分值解答(1)①如图2, 当E在OA上时, , 由可知, 点E的坐标为(2b,0), OE=2b.此时S=S△ODE=.②如图3, 当E在AB上时, , 把y=1代入可知, 点D的坐标为(2b-2,1), CD=2b-2, BD=5-2b.把x=3代入可知, 点E的坐标为, AE=, BE=.此时S=S矩形OABC-S△OAE-S△BDE -S△OCD=.(2)如图4, 因为四边形O1A1B1C1与矩形OABC关于直线DE对称, 因此DM=DN,那么重叠局部是邻边相等的平行四边形, 即四边形DMEN是菱形.作DH⊥OA, 垂足为H. 由于CD=2b-2, OE=2b, 所以EH=2.设菱形DMEN的边长为m.在Rt△DNH中, DH=1, NH=2-m, DN=m, 所以12+(2-m)2=m2.解得.所以重叠局部菱形DMEN的面积为.图2 图3 图4考点伸展把此题中的矩形OABC绕着它的对称中心旋转, 如果重叠局部的形状是菱形〔如图5〕, 那么这个菱形的最小面积为1, 如图6所示;最大面积为, 如图7所示.图5 图6 图72.2021年湖州市中考第24题如图1, 直角梯形OABC的边OA在y轴的正半轴上, OC在x轴的正半轴上, OA=AB=2, OC=3, 过点B作BD⊥BC, 交OA于点D.将∠DBC绕点B按顺时针方向旋转, 角的两边分别交y轴的正半轴、x 轴的正半轴于E和F.〔1〕求经过点A.B.C三点的抛物线的解析式;〔2〕当BE经过〔1〕中抛物线的顶点时, 求CF的长;〔3〕连结EF, 设△BEF与△BFC的面积之差为S, 问当CF为何值时S最小, 并求出最小值.图1 图2思路点拨1. 过点B向坐标轴作垂线, 图形中就构造出丰富的余角, 从而构造出相似三角形. 此题中因为点B的坐标特殊, 因此构造出全等三角形.2.用CF表示△BEF与△BFC的面积之差, 首先要判断△BEF是等腰直角三角形, 这样△BEF的面积就转化为求BF2的问题.总分值解答(1)根据题意可得A(0,2), B(2,2), C(3,0). 设抛物线的解析式为y=ax2+bx+c,那么解得, , . 所以抛物线的解析式为.(2)由, 得抛物线的顶点G的坐标为〔〕.如图2, 过点B作x轴的垂线, 垂足为M, 过点E作y轴的垂线, 交BM于N.因为∠BEN与∠FBM都是∠EBN的余角, 所以∠BEN=∠FBM.又因为BM=EN=2, 所以△BMF≌△ENB. 因此BE=BF, BN=FM.当BE经过抛物线的顶点G时, . 此时.(3)设CF的长为a. 在Rt△BFM中, .因为△BEF是等腰直角三角形, 所以.因此.所以当CF=2时, S取得最小值, 最小值为.考点伸展:图2是一个典型图, 在这个图形中, △BMC≌△BAD, △BFC≌△BED, △BFM≌△BEA≌△ENB, △BEF与△BDC、△BAM都是等腰直角三角形.如果把此题中的条件“角的两边分别交y轴的正半轴、x轴的正半轴于E和F〞改为“角的两边分别交y 轴、x轴于E和F〞, 那么上述结论依然成立〔如图3, 图4〕.图3 图43.如图1, 在△ABC中, ∠C=90°, AC=3, BC=4, CD是斜边AB上的高, 点E在斜边AB上, 过点E 作直线与△ABC的直角边相交于点F, 设AE=x, △AEF的面积为y.〔1〕求线段AD的长;〔2〕假设EF⊥AB, 当点E在斜边AB上移动时,①求y与x的函数关系式〔写出自变量x的取值范围〕;②当x取何值时, y有最大值?并求出最大值.〔3〕假设点F 在直角边AC 上〔点F 与A 、C 不重合〕, 点E 在斜边AB 上移动, 试问, 是否存在直线EF 将△ABC 的周长和面积同时平分?假设存在直线EF, 求出x 的值;假设不存在直线EF, 请说明理由.图1 备用图 思路点拨1. 第〔1〕题求得的AD 的长, 就是第〔2〕题分类讨论x 的临界点.2. 第〔2〕题要按照点F 的位置分两种情况讨论.3.第〔3〕题的一般策略是:先假定平分周长, 再列关于面积的方程, 根据方程的解的情况作出判断. 总分值解答(1) 在Rt △ABC 中, AC =3, BC =4, 所以AB =5. 在Rt △ACD 中, .(2) ①如图2, 当F 在AC 上时, . 在Rt △AEF 中, . 所以 . 如图3, 当F 在BC 上时, . 在Rt △BEF 中, . 所以 . ②当 时, 的最大值为 ;当 时, 的最大值为 .因此, 当 时, y 的最大值为 .图2 图3 图4(3)△ABC 的周长等于12, 面积等于6.先假设EF 平分△ABC 的周长, 那么AE =x, AF =6-x, x 的变化范围为3<x ≤5.因此 .解方程 , 得 .因为 在3<x ≤5范围内〔如图4〕, 因此存在直线EF 将△ABC 的周长和面积同时平分.考点伸展如果把第〔3〕题的条件“点F 在直角边AC 上〞改为“点F 在直角边BC 上〞, 那么就不存在直线EF 将△ABC 的周长和面积同时平分.先假设EF 平分△ABC 的周长, 那么AE =x, BE =5-x, BF =x +1. 因此21133sin (5)(1)(45)22510BEF S BE BF B x x x x ∆=⋅⋅=-+⨯=---. 解方程 . 整理, 得 . 此方程无实数根.4.如图1, : 抛物线y =x2+bx -3与x 轴相交于A.B 两点, 与y 轴相交于点C, 并且OA = OC. 〔1〕求这条抛物线的解析式;〔2〕过点C 作CE // x 轴, 交抛物线于点E, 设抛物线的顶点为点D, 试判断△CDE 的形状, 并说明理由;〔3〕设点M 在抛物线的对称轴l 上, 且△MCD 的面积等于△CDE 的面积, 请写出点M 的坐标〔无需写出解题步骤〕.思路点拨1. 求抛物线的解析式, 关键是求点A 的坐标, 根据条件, 数形结合. 2.判断△CDE 的形状是等腰直角三角形, 可以方便第〔3〕求解点M 的坐标.总分值解答 〔1〕因为抛物线y =x2+bx -3与y 轴交于点C(0, -3), OA =OC, 所以点A 的坐标为(-3, 0).将A (-3, 0)代入y =x2+bx -3, 解得b =2. 因此抛物线的解析式为y =x2+2x -3. 〔2〕由y =x2+2x -3=(x +1) 2-4, 得顶点D 的坐标为(-1, -4) . 因为CE // x 轴所以点C 与点E 关于抛物线的对称轴对称. 因此CE =2, DE =DC. 由两点间的距离公式, 求得DC = . 于是可得DE2+DC2=CE2.所以△CDE 是等腰直角三角形.〔3〕M1〔-1, -2〕, M2〔-1, -6〕.考点伸展第〔3〕题的解题思路是这样的:如图2, 如图3, 因为△MCD 与△CDE 是同底的两个三角形, 如果面积相等, 那么过点E 作CD 的平行线, 与抛物线的对称轴的交点就是要探求的点M .再根据对称性, 另一个符合条件的点M 在点D 的下方, 这两个点M 关于点D 对称.还有更简单的几何说理方法:因为△CDE 是等腰直角三角形, 对于点D 上方的点M, 四边形CDEM 是正方形, 容易得到点M 的坐标为〔-1, -2〕.再根据对称性, 得到另一个点M 的坐标为〔-1, -6〕.图2 图35.如图1, 在平面直角坐标系xOy 中, 直角梯形OABC 的顶点O 为坐标原点, 顶点A.C 分别在x 轴、y 轴的正半轴上, CB ∥OA, OC =4, BC =3, OA =5, 点D 在边OC 上, CD =3, 过点D 作DB 的垂线DE, 交x 轴于点E. 〔1〕求点E 的坐标;〔2〕二次函数y =-x2+bx +c 的图像经过点B 和点E. ①求二次函数的解析式和它的对称轴;②如果点M 在它的对称轴上且位于x 轴上方, 满足S △CEM =2S △ABM, 求点M 的坐标.图1思路点拨1. 这三道题目步步为赢, 错一道题目, 就要影响下一道的计算.2. 点M 在抛物线的对称轴上且位于x 轴上方, 要分两种情况讨论, 分别为点M 在线段FB 和FB 的延长线上. 因为用点M 的纵坐标表示△ABM 的底边长, 因点M 的位置不同而不同.总分值解答〔1〕因为BC ∥OA, 所以BC ⊥CD. 因为CD =CB =3, 所以△BCD 是等腰直角三角形. 因此∠BCD =45°. 又因为BC ⊥CD, 所以∠ODE =45°. 所以△ODE 是等腰直角三角形, OE =OD =1. 所以点E 的坐标是〔1, 0〕.〔2〕①因为抛物线y =-x2+bx +c 经过点B 〔3, 4〕和点E 〔 1, 0〕, 所以 解得 所以二次函数的解析式为y =-x2+6x -5, 抛物线的对称轴为直线x =3.②如图2, 如图3, 设抛物线的对称轴与x 轴交于点F, 点M 的坐标为〔3, t 〕.CEM MEF COE OFMC S S S S ∆∆∆=--梯形111(4)321442222t t t =+⨯-⨯⨯-⨯⨯=+. 〔ⅰ〕如图2, 当点M 位于线段BF 上时, .解方程 , 得 . 此时点M 的坐标为〔3, 〕.〔ⅱ〕如图3, 当点M 位于线段FB 延长线上时, .解方程, 得.此时点M的坐标为〔3, 8〕.图2 图3考点伸展对于图2, 还有几个典型结论: 此时, C.M、A三点在同一条直线上;△CEM的周长最小. 可以求得直线AC 的解析式为, 当x=3时, . 因此点M〔3, 〕在直线AC上. 因为点A.E关于抛物线的对称轴对称, 所以ME+MC=MA+MC. 当A.M、C三点共线时, ME+MC最小, △CEM的周长最小.6.如图1, 直线l经过点A(1, 0), 且与双曲线(x>0)交于点B(2, 1). 过点(p>1)作x轴的平行线分别交曲线(x>0)和(x<0)于M、N两点.〔1〕求m的值及直线l的解析式;〔2〕假设点P在直线y=2上, 求证: △PMB∽△PNA;〔3〕是否存在实数p, 使得S△AMN=4S△AMP?假设存在, 请求出所有满足条件的p的值;假设不存在,请说明理由.思路点拨1. 第〔2〕题准确画图, 点的位置关系尽在图形中.2. 第〔3〕题把S△AMN=4S△AMP转化为MN=4MP, 按照点M与线段NP的位置关系分两种情况讨论.总分值解答〔1〕因为点B(2, 1)在双曲线上, 所以m=2. 设直线l的解析式为, 代入点A(1, 0)和点B(2, 1), 得解得所以直线l的解析式为.〔2〕由点(p>1)的坐标可知, 点P在直线上x轴的上方.如图2, 当y=2时, 点P的坐标为(3, 2). 此时点M的坐标为(1, 2), 点N的坐标为(-1, 2).由P(3, 2)、M(1, 2)、B(2, 1)三点的位置关系, 可知△PMB为等腰直角三角形.由P(3, 2)、N(-1, 2)、A(1, 0)三点的位置关系, 可知△PNA为等腰直角三角形.所以△PMB∽△PNA.图2 图3 图4〔3〕△AMN和△AMP是两个同高的三角形, 底边MN和MP在同一条直线上.当S△AMN=4S△AMP时, MN=4MP.①如图3, 当M在NP上时, xM-xN=4(xP-xM). 因此.解得或〔此时点P在x轴下方, 舍去〕. 此时.②如图4, 当M在NP的延长线上时, xM-xN=4(xM-xP). 因此.解得或〔此时点P在x轴下方, 舍去〕.此时.考点伸展在此题情景下, △AMN能否成为直角三角形?情形一, 如图5, ∠AMN=90°, 此时点M的坐标为〔1, 2〕, 点P的坐标为〔3, 2〕.情形二, 如图6, ∠MAN=90°, 此时斜边MN上的中线等于斜边的一半.不存在∠ANM=90°的情况.图5 图6。
二次函数--由动点生成面积问题

二次函数--由动点生成面积问题二次函数是数学中重要的一个概念,它描述了一类以二次项为主导的多项式函数。
而这篇文章将重点探讨一个有趣的问题:如何由动点生成二次函数并应用于面积问题。
首先,我们需要了解什么是动点。
动点是平面上一个不固定的点,它的位置随着时间的推移而变化。
在二维平面上,我们通常用坐标系来描述动点的位置,其中x轴和y轴代表两个独立的变量。
考虑以下问题:假设我们有一条规定的直线,上面有两个动点A和B,它们沿着直线运动。
我们假设初始时刻A和B分别位于直线的两个不同的点,运动速度相同且方向相反。
我们还假设直线是垂直于x轴的。
为了简化问题,我们将直线的方程表示为 y = kx + b,其中 k 是直线的斜率,b 是 y 轴的截距。
此外,我们假设 A 和 B 分别运动的距离为 d1 和 d2,而 d1 和 d2 的长度相等。
我们的目标是通过动点A和B的运动来生成一个面积问题,并进一步将其转化为二次函数。
为了实现这一目标,我们需要引入一个新的点C,它是动点A和B的垂直平分线上的一个固定点。
通过仔细观察,我们可以发现三角形ABC的两条边的长度与动点A和B的距离之间存在一定的关系。
假设三角形ABC的高度为h,底边的长度为b,同时A和B分别位于底边的两个端点。
根据数学原理,我们可以通过两个已知长度和一个夹角来计算一个三角形的面积。
那么如何计算三角形ABC的面积呢?首先,我们可以根据两个动点A和B的运动距离d1和d2来计算出三角形底边的长度b。
由于d1和d2的长度相等,我们可以将它们的和除以2来得到b的长度。
即b=(d1+d2)/2接下来,我们需要确定三角形ABC的高度h。
由于点C是动点A和B的垂直平分线上的一个固定点,因此我们可以用坐标系来表示其位置。
假设点C的坐标为(x0,y0)。
由于点C是动点A和B的垂直平分线的交点,因此动点A在以点C为圆心的圆上运动。
同样地,动点B也在以点C为圆心的圆上运动。
我们可以将动点A和B的位置分别表示为(x1,y1)和(x2,y2)。
动点产生的面积问题

例1.已知△ABC 中,AB =4,BC =6,AC >AB ,点D 为AC 边上一点,且DC =AB ,E 为BC 边的中点,联结DE ,设AD =x 。
设ABEDCDES y S ∆=四边形,求y 关于x 的函数关系式,并写出定义域。
【解法点拨】:一.寻找题目中的已经条件:1.边:AB =4,BC =6,DC =AB ;2.特殊点:E 为BC 边的中点;3.动点:点D 为AC 边上一动点。
(2)求面积比ABEDCDES S ∆四边形:方法一:用含x 的代数式单独表示四边形ABED 和三角形CDE ∆的面积; 方法二:用面积比求解,ABED CDE S S ∆四边形=1ABD BDE ABDCDE CDES S S S S ∆∆∆∆∆+=+; 又因为ABD DBC S S ∆∆=24ABD CDE S x S ∆∆=即2ABD CDE S xS ∆∆=,即可求得。
【满分解答】:连BD ,∵点E 为BC 中点,∴BDE CDE S S ∆∆= ∴1ABD BDE ABDCDE CDES S S y S S ∆∆∆∆∆+==+∵4ABD DBC S x S ∆∆=,∴24ABD CDE S x S ∆∆=,即2ABD CDE S x S ∆∆= ∴12xy =+(0<x <6) 例2.如图,已知在直角梯形ABCD 中,BD ∥BC ,AB BC ⊥,11AD =,13BC =,12AB =.动点P 、Q 分别在边AD 和BC 上,且2BQ DP =.线段PQ 与BD 相交于点E ,过点E 作EF ∥BC ,交CD 于点F ,射线PF 交BC 的延长线于点G ,设DP x =. (1)求CFDF的值。
(★★★★)(2)当点P 运动时,试探究四边形EFGQ 的面积是否会发生变化?如果发生变化,请用x 的代数式表示四边形EFGQ 的面积S ;如果不发生变化,请求出这个四边形的面积S 。
【参考教法】:可参考以下教法,以问题式引导学生分析题目、解决问题 一.寻找题目中的不变条件或特殊条件,让学生找找看。
中考数学复习之因动点产生的面积问题解题策略

因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。
中考专题3解答(由动点形生成的面积问题)

由动点形生成的面积问题例题1【2010四川宜宾答案】解:(1)由题意知:A (0,6),C (6,0), 设经过点A 、B 、C 的抛物线解析式为y=ax 2+bx+c则:⎪⎩⎪⎨⎧++=+-==c b a c b a c 63603906解得:⎪⎪⎩⎪⎪⎨⎧==-=6131c b a∴该抛物线的解析式为6312++-=x x y (2)如图:设点P (x ,0), ∵PE ∥AB ,∴△CPE ∽△ABC , ∴2ABC CPE )BCCPS (△△=S又∵S △ABC =21BC ×OA=27 ∴2CPE )9x -627(△=S ∴S △CPE =3)6(2x -=124312+-x xS △ABP =21BP ×OA=3x+9设△APE 的面积为S则S= S △ABC —S △ABP —S △CPE =427)23(3163122+--=++-x x x 当x=23时,S 最大值为427 ∴点P 的坐标为(23,0)(3)假设存在点G (x ,y ),使△AGC 的面积与(2)中△APE 的最大面积相等.在(2)中,△APE 的最大面积为427,过点G 做GF 垂直y 轴与点F . ①当y >6时,S △AGC =S 梯形GFOC —S △GFA —S △AOC =21(x+6)y —21x (y-6)—21×6×6=3x+3y-18 即3x+3y-18=427,yxCBOA又∵点G 在抛物线上,6312++-=x x y , ∴3x+3)631(2++-x x -18=427解得:23,2921==x x ,当x=29时,y=415,当x=23时,y=427.又∵y >6,∴ 点G 的坐标为(23,427) ②当y <6时,如图: S △AGC =S △GAF +S 梯形GFOC —S △AOC =21x (6—y )+)6(21+x y -18=3x+3y-18即3x+3y-18=427, 又∵点G 在抛物线上,6312++-=x x y , ∴3x+3)631(2++-x x -18=427解得:23,2921==x x ,当x=29时,y=415,当x=23时,y=427.又因为y <6,所以点G 的坐标为(29,415).综和①②所述,点G 的坐标为(23,427)和(29,415).(3)解法2:可以向x 轴作垂线,构成了如此下图的图形:则阴影部分的面积等于S △AGC =S △GCF +S 梯形AGFO —S △AOC下面的求解过程略.这样作可以避免了分类讨论.例题2【2010 湖北孝感答案】(1)解:).)2(41(14122-=+-=x y x x y 或 (2)证明:设点141)12,(2+-=--x x y m m 在二次函数的图像上,则有:.141122-+=-m m m整理得,0842=+-m m.01684)4(2<-=⨯--=∆∴原方程无解141)12,(2+-=--∴x x y m m 不在二次函数点的图象上 说明:由,01)121()12(14122>+---++m m m m 得到从而判断点)12,(--m m 不在二次函数图像上的同样给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因动点产生的面积问题
1 2
1.如图1,已知抛物线y=-x + bx+c (b 、c 是常数,且cv 0)与x 轴交于A 、B 两点(点 A 在点B
2 与y 轴的负半轴交于点 C,点A 的坐标为(一1,0).
b = ______ ,点B 的横坐标为 ________ (上述结果均用含
c 的代数式表示);
连结BC ,过点A 作直线 AE//BC ,与抛物线交于点 E.点D 是x 轴上一点,坐标为(2,0),当C 、
D 、
E 三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点 P 是x 轴下方的抛物线上的一动点,连结
PB 、卩)设^ PBC 的面积为
S.
① 求S 的取值范围; ② 若△ PBC 的面积S 为正整数,则这样
的△ PBC 共有
的左
侧), 个.
图1
2如图1,在平面直角坐标系中放置一直角三角板,其顶点为
原点0逆时针旋转90°,得到三角形 A B 0 .
(1) 一抛物线经过点 A '、B '、B ,求该抛物线的解析式;
(2) 设点P 是第一象限内抛物线上的一个动点,是否存在点
积的4倍?若存在,请求出点 P 的坐标;若不存在,请说明理由;
(3)
在(2)的条件下,试指出四边形 PB A B 是哪种形状的四边
形?并写出它的两条性质. A(0, 1)、B(2, 0)、0(0, 0),将此三角板绕 P,使四边形 PBAB 的面积是^ ABO 面
3•如图1,直线I 经过点A(1 , 0),且与双曲线y=m (x > 0)交于点B(2, 1).过点P(p,p-1)( p> 1)作x
x
轴的平行线分别交曲线 y =m (x> 0)和y =_m (xv 0)于M 、N 两点.
x x 求m 的值及直线I 的解析式; 若点P 在直线y= 2上,求证:△ PMB sA PNA ; 是否存在实数 P,使得S A AMN = 4S A AMP ?若存在,请求出所有满足条件的 P 的值;若不存在,请
图1
(1) (2) (3) 说明理由.
4.已知二次函数 y = ax2 + bx + c (a>0)的图象经过点 C(0, 1),且与x轴交于不同的两点 A、B,若点A的坐标是(1,0),点B在点A的右侧.
(1)c= _____ ;
(2)求a的取值范围;
(3)若过点C且平行于x轴的直线交该抛物线
于另一点D, AD、BC交于点卩,记^ PCD
的面积为&,△ PAB的面积为S2,求S i — S2的值.。