拉丁方设计

合集下载

临床试验设计拉丁方设计的原则

临床试验设计拉丁方设计的原则

临床试验设计拉丁方设计的原则
拉丁方设计(Latin Square Design)是一种实验设计方法,常用于处理因变量之间的相关性。

其原则如下:
1.每一个因素水平都被分配到每一个观察次数中,使得每个单元格都包含了所有因素水平的组合。

2.每一个因素水平在实验中出现的次数应该相等,这就是等权原则。

3.如果可能,每个因素水平应该在实验中出现两次,以避免偏斜。

4.如果存在多重共线性问题,可以使用因子分析来提取主要因素,然后将这些因素作为拉丁方设计的因素。

5.拉丁方设计应该包含足够的观察次数,以确保结果的可靠性。

6.在设计拉丁方时,应考虑因素之间的交互作用。

7.拉丁方设计应该尽可能地包含所有可能的因素组合,以充分利用实验资源。

8.拉丁方设计应该尽可能地简单,以减少实验的复杂性和成本。

9.拉丁方设计应该根据实验目标和资源来选择,而不是仅仅因为它是一种流行的设计方法。

第三节 拉丁方设计

第三节 拉丁方设计


丙 戊 甲

甲 丙 乙丙戊 丁 乙 Nhomakorabea甲
戊 丁 丙

乙 甲 丁
(3)随机分配处理。例如,读取5个两 位随机数10、28、81、47、20,则R=1、3、 5、4、2,于是有A(甲)、B(丙)、C (戊)、D(丁)、E(乙)。将上述最后一
个拉丁方的行、列和拉丁字母分别对应于试
验日期、受试者和防护服的最终试验方案见
一、配对实验设计分组
例4-7
试将10对受试者随机分配到甲、
乙两组。
1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 受试者 编号:
1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2 10.2
1. 先将受试者编号; 2. 再从随机数字表或随机排列表任意 定行、列数; 3. 规定甲、乙组的取数。 用随机排列表指定任一行,舍去10-19, 将0-9数依次抄下,单号入甲,双号入乙组, 即:
处理=4,υ 误差=12,查附表10(F界值表)
得,F0.05(4,12)=3.26,F0.05(4,12)=5.67。因F处 理>F0.01(3,12),故P<0.01。同理,种系间、 笼子间P>0.05。
表4-12
变异来源
总变异 剂量(处理)间 种系(行)间
例3.9资料方差分析结果表
SS
4982.96 2690.96 375.76
C=
17012 25
=115736.04
SS总=120719-115736.04=4982.96 SS剂量= 2732+3082+3192+3912+4102 5 3352+3382+3202+3312+3772 5 -115736.04=2690.96 -115736.04=375.76

拉丁方课件

拉丁方课件

4、举例练习
拉丁方设计常被用于平衡实验安排的 时空顺序,也可被用于平衡机体变量 的影响。我们再以下面这个例子对拉 丁方做进一步说明。
(1)问题模式:
• 为了研究生字密度对学生阅读理解的 影响,研究者同时考虑到试验时间和 不同班级可能对阅读理解具有明显影 响,为了将这两个因素的影响从变异 的残差项中分离出去,研究者采用了 拉丁方实验设计。
(2)拉丁方格的组成:
• 拉丁方格是由实验中明显存在的两个额 外变量即实验时间和班级组成,其中班 级分为四档:b1,b2,b3,b4。从四个时间 段的被试中筛选出四个班级的被试各2人, 这样就有共计32名被试参加这一实验。 根据组成拉丁方格,拉丁方格中的每一 个格子中可以有时间段、班级相同的两 名被试,如表3所示。
②事先假设处理水平与无关变量水平间 没有交互作用。如果这个假设不能满足, 对实验中的一个或多个效应的检验可能有偏差
③随机分配处理水平给P2个方格单元 每个处理水平仅在每行每列中出现一次。 每个方格单元中分配一个或多个被试 因此总共需要的被试数量N=np2(n≥1)
拉 丁 方 实 验 设 计
随二 机、 区 组 实 验 设 计
表1 四种实验处理的随机区组实验设计
区组 A1 A2 A3 A4
星期一
星期二
星期三 星期四
3、拉丁方实验设计
• 现在我们进一步设想: 假如,在每天的实验中,一次只能测试一人, 每天参加实验的四名被试只能分别在 下午2~3点、3~4点、4~5点和5~6点 的四个时段接受测试,而测试时段不同也 可能会造成结果变化。这样一来, 每一种实验处理条件安排的时段就 也要取得平衡才行,你不能每天都 在2点钟安排所有被试接受A1处理条件, 或3点钟接受A1处理条件。

拉丁方设计

拉丁方设计

拉丁方设计
拉丁方设计:让建筑更加美观
拉丁方指将建筑外立面进行剪切设计,使其更具有美感和层次感深度,是视觉表现力强且造型新颖打破传统的一种空间建筑的建筑风格。

通过几何形拼接,采用局部有节奏的几何形,用不同的坡度建立层层分明的立面,制作出立体空间;使用视觉冲击技术,将建筑外形特点一目了然,并创造出立体结构的深远视觉冲击,使外观融为一体。

拉丁方设计不仅仅是使建筑外立面变得更加美观,它还可以提供一种新颖的设计语言,利用几何设计可以创造出一种参差错落、画面丰满、立体感十足的建筑外观。

此外,拉丁方设计还可以将建筑融入自然,从而获得更好的室内外景观效果,提高其环境价值,令外观更加鲜明耐看。

拉丁方设计,从而使外立面有新颖的可塑性和生动的活力,通过精心的设计,利用多种形状、纹理和尺度的变化,将外观表现出精致的有机结构,实现三维立体把景点分错落有致。

拉丁方设计,使建筑外立面更加美观,使建筑融入自然,也让城市景观拥有了独特的个性,使得城市在视觉上有惊人的变化,创造出一片新的美景。

拉丁方设计

拉丁方设计

拉丁方设计-----------------------------------------------------------------“拉丁方”的名字最初是由R、A、Fisher给出的。

拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。

在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。

在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位组设计小,试验精确性比随机单位组设计高。

拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计。

这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。

所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。

所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。

因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。

所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。

例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。

像这样的一个方阵列就称为一个拉丁方。

要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。

随机区组设计和拉丁方设计.ppt

随机区组设计和拉丁方设计.ppt
(6)每个方格中的被试接受安排好的实验处理。
3. 图示和数据收集 自变量A(P=4),额外变量B和C(P=4)。
选取标准块 a1 a2 a3 a4 a2 a3 a4 a1 a3 a4 a1 a2 a4 a1 a2 a3
行随机化和列随机化
C1 C2 C3 C4 B1 a2 a1 a3 a4 B2 a4 a3 a1 a2 B3 a1 a4 a2 a3 B4 a3 a2 a4 a1
如果每个方格之内安排2个被试,那么需要 2*4*4=32个被试
C1 C2 C3 C4 B1 a2 a1 a3 a4
s1 s2
B2 a4
s3 s4
a3
s5 s6
a1
s7 s8
a2
s9 s10
B3 a1
s11 s12 s13 s14 s15 s16
a4 a2 a3
s17 s18 s19 s20 s21 s22 s23 s24
aj代表自变量A的不同水平; Sij 代表被试(Subject); Yj代表每组被试因变量观测值的平均数
注:所有被试首先在额外变量上匹配分成了5个区 组。这里每个区组4个被试,还可以是8,12等4的 倍数。
4. 补充说明
(1)某些时候区组内的被试可以是一个人或一个团 体,让这个人或这一组人接受所有自变量水平的 处理。这实际上是组内设计或重复测量设计。
2. 设计方案
(1)确定一个P*P的拉丁方标准块。
(2)将额外变量一的P个水平依次在横向分配, 额外变量二的P个水平依次在纵向分配。
(3)方阵内的字母A、B、C ……P依次分配给自 变量的P个水平。
(4)进行拉丁方的行随机化和列随机化,形成 随机化的拉丁方阵。
(5)选定K*P2个被试(K>=1),将他们随机分派 到P*P个方格中去。

拉丁方实验设计涉及的统计学原理以及使用中的几个问题

拉丁方实验设计涉及的统计学原理以及使用中的几个问题

拉丁方实验设计涉及的统计学原理以及使用中的几个问题拉丁方实验设计(Latinsquaredesign,LSD)是指利用全排列采样技术对地层因素(如温度、盐度、污染物等)和人工因素(如抽样时期、采样设备等)为每个试验单元构建定量模型的一类实验设计方法,它已经成为多元统计分析(Multivariate statistical analysis)中的重要工具之一。

它使实验者能够迅速而有效地研究出实验变量,也能够发现更多实验变量与实验结果之间的关系及其趋势。

拉丁方实验设计涉及的统计学原理主要有:(1)排列和组合原理。

实验设计的本质是一种排列,因此拉丁方实验设计的基本思想是利用排列的原理来解决实验问题。

拉丁方实验设计需要通过排列和组合手段,让实验变量的不同效应在实验中得到充分展现。

(2)分组原理。

拉丁方实验设计是把所有实验观测数据进行分组处理,使实验结果能够达到最大程度的描述和控制。

每一个分组中,实验设计要求所有变量的单位观测值(平均)达到均衡,这样就可以有效地消除每个实验变量的误差影响。

(3)协方差原理。

拉丁方实验设计涉及的统计学原理还包括协方差原理,它是实验设计时最重要的原理之一。

协方差原理指的是两个变量之间的关系,它可以帮助实验者有效地控制实验当中的干扰因素,以便更好地控制实验结果。

在实际使用拉丁方实验设计过程中,实验者会遇到几个常见的问题:(1)实验变量选择问题。

由于拉丁方实验设计本身具有排列、组合、分组和协方差原理,在实际使用中,实验变量的选择非常重要,否则试验结果会不准确。

(2)试验设计问题。

拉丁方实验设计的本质是实验变量的排列,因此实验者需要合理设计实验,以便能够更好地揭示不同实验变量之间的关系。

(3)实验结果分析问题。

拉丁方实验设计得出的实验结果需要进行相应的分析才能够得出准确的结论,而且拉丁方实验设计是包含多种因素的实验设计,实验结果分析需要对多种变量进行分析,因此,分析的结果会更加准确。

《拉丁方设计》课件

《拉丁方设计》课件

稳定性:拉丁方设计 可以保证实验组和对 照组的稳定性,避免 实验结果受到实验组 稳定性的影响。
03
拉丁方设计的原理
拉丁方的构成ቤተ መጻሕፍቲ ባይዱ素
拉丁方:一种数学结构,由n个元素组成,每个元素都有唯一的位置 拉丁方性质:每个元素在每行、每列、每个子方中只出现一次 拉丁方分类:根据元素排列方式,可以分为标准拉丁方、非标准拉丁方等 拉丁方应用:在密码学、组合数学、计算机科学等领域有广泛应用
拉丁方在实验设计中的作用
平衡性:拉丁方设计 可以平衡实验组和对 照组的数量,避免实 验结果受到实验组数 量的影响。
随机性:拉丁方设计 可以保证实验组和对 照组的随机性,避免 实验结果受到实验组 选择的影响。
重复性:拉丁方设计 可以保证实验组和对 照组的重复性,避免 实验结果受到实验组 重复次数的影响。
拉丁方在医学研究中的应用
临床试验设计:拉丁方设计可以 提高临床试验的效率和准确性
疾病诊断和治疗:拉丁方设计可 以用于疾病的诊断和治疗,提高 诊断和治疗的准确性
添加标题
添加标题
添加标题
添加标题
药物疗效评估:拉丁方设计可以 帮助评估药物的疗效和安全性
医学研究数据分析:拉丁方设计 可以用于医学研究数据的分析和 解释,提高研究结果的可靠性和 准确性
拉丁方的设计原则
拉丁方设计是基于拉丁字母的排列组合,通过改变字母的位置和顺序来形成不同的图案。
拉丁方设计的原则之一是保持图案的对称性和平衡性,使得图案看起来更加美观。
拉丁方设计的另一个原则是保持图案的连续性和流动性,使得图案看起来更加自然。
拉丁方设计的最后一个原则是保持图案的多样性和创新性,使得图案看起来更加有趣和 吸引人。
拉丁方的元素可以是数字、字母或其他符号,但通常用数字表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)共轭方:一个标准方的每一直行均为另一个 标准方的横行,则二标准方为共轭方。如
ABCD BCDA CDAB DABC
直行调成横行
ABCD BCDA CDAB DABC
共轭方通常只要写出一个标准方,将直行调 成横行,得到另一标准方。
2、拉丁方设计的步骤
在拉丁方设计时,先根据处理数K即横行、 直列单位组数先确定采用几阶拉丁方,再 选一K×K的标准方,然后在标准方的基础 上,对直列E BDECA C E ADB ACBED
(2)随机调动横行次序。用抽签法得到随机数列 2、4、5、3、1,将上一拉丁方的第2横行排 在新拉丁方的第1横行,第4横行排在新拉丁 方的第2横行,第5横行排在新拉丁方的第3横 行,第3横行排在新拉丁方的第4横行,第1横 行排在新拉丁方的第5横行,即成如下形式的 拉丁方。
1、定义:用r个拉丁字母排列成r行r列的方阵, 使每行每列中的每个字母只能出现一次,这 样的方阵叫r阶拉丁方或r×r拉丁方。
2、N阶拉丁方格 ➢ 2阶或2×2拉丁方
AB
BA
ABC BCA CAB
➢ 3阶或3×3拉丁方
AB CD BCDA CDAB DA BC
➢ 4阶或4×4拉丁方
一、拉丁方设计的特点
二、拉丁方设计 1、标准方和共轭方 (1)标准方:拉丁方第一行和第一列均为顺序排
列的拉丁方。例如3×3拉丁方,只有一个标准方。 如图
AB C
BC A
CA B
思考
4×4标准拉丁方有几个?
N阶拉丁方格的个数
计算总数S
实例 r=2时,K=1,S=1·2! ·1!=2 r=3时,K=1,S=1·3! ·2!=12 r=2时,K=1,S=4·4! ·3!=576
例题:试作5×5拉丁方的设计。
(1)随机调动直行的次序。用抽签法得随机 数列5、2、4、1、3,将标准方的第5列排在 新拉丁方的第1列,第2列与原拉丁方相同, 第4列排在新拉丁方的第3列,第1列排在新 拉丁方的第4列,第3列排在新拉丁方的第5 列,形成的新拉丁方。
12345 ABCDE BAE CD CDAE B DEBAC E CDBA
三、输出结果分析 按SPSS输出表格分析
DAC B E C E ADB ACBED → BDECA E BDAC
24513 53421 45132 12354 31245
第二节 SPSS数据处理
一、输入数据 Dependent variable、row-block、column-block 按列 输入数据。
二、操作过程 Analyze — General Linear Model—Univariate — Dependent variable—Factors ( row-block、columnblock )—Model — Option —Continue —ok
第七章拉丁方设计(Latin square design)
第一节拉丁方试验设计
随机区组设计控制了区组内的小区差异, 提高了试验的精确性,但只进行了一个方向的 局部控制,而另一个方向,即区组间的差异没 有被控制,因而试验的精确性也受到一定的限 制。
拉丁方设计横行和直行都可以成区组,从 两个方向都进行了局部控制,因而拉丁方试验 的精确度比随机区组设计更高。
1 EBDAC 2 DACBE 3 BDECA → 4 CEADB 5 ACB ED
1 DACBE 2 CEADB 3 ACB ED 4 BDECA 5 EBDAC
(3)随机决定各字母代表的处理。将5个处理编 号,抽签得到随机数列4、1、5、2、3,与A、 B、C、D、E相对应,即A-4,B-1,C-5,D-2, E-3,将字母换成处理代号。
(一)优点
1、每一横行或直行都成为一个区组(或重复),每一处 理在每一横行或每一直行只能出现一次,而且随机 排列。
2、处理数、重复数、横行数、直行数均相等。 3、由于从两个方向分成区组,具有双重环境差异的控 制作用。 4、试验误差小,具有高的精确度。 (二)缺点 1、拉丁方的处理数目常受到限制,一般用于5-8个处理 的试验。 2、缺乏随机区组设计的灵活性。 3、处理较少时,要采用复拉丁方,如3个(3×3)及2 个(4×4)拉丁方。
相关文档
最新文档