原子吸收光谱定量分析方法

合集下载

原子吸收光谱分析-下

原子吸收光谱分析-下

体元素不同可能带来影响。
(2)标准溶液浓度应使 A ~ C 在直线的范围内, C
不能太大,一般控制A在0.2~0.8之间。
(3) 测定过程中应保持测定条件不变。 • 标准曲线法简便、快速,适用于组分比较简单的样 品,适用于大批量的样品分析。但样品的情况不清 或很复杂时分析误差较大,可用其他方法定量。
检测限 (Detection limit, DL)
• 检出限不仅与灵敏度有关,而且还考虑 到仪器噪声!因而检测限比灵敏度具有更 明确的意义,更能反映仪器的性能。只有 同时具有高灵敏度和高稳定性时,才有低 的检出限。
——测定条件的选择 • 分析方法的精密度和准确度除了与仪器的性能有 关外,还与测定条件有关,注意选择: 1、试样取量及处理
用有机溶剂
(二)化学干扰及其抑制
指待测元素与其它组分之间的化学作用所引起的干扰效应 ,主要 影响到待测元素的原子化效率,是选择性干扰,为主要干扰源
1. 化学干扰的类型
(1)待测元素与其共存物质作用生成难挥发的化合物,致使参 与吸收的基态原子减少。 a、铝、硅、硼、钛、铍在火焰中易生成难熔化合物 b、硫酸盐、磷酸盐与钙生成难挥发物。 (2)待测原子发生电离反应,生成离子,不产生共振吸收,总 吸收强度减弱,电离电位≤6eV的元素易发生电离,火焰温度越高 ,干扰越严重,(如碱及碱土元素)。
• 氘灯是连续光谱( 190-360nm ),它和空心阴极灯的锐线
光源通过切光器交替照射在原子化器上。 氘灯的能量被背景和被测元素吸收,但被测元素是线吸收,
它占整个连续光谱的吸收信号很小,可以忽略。因此可以
认为,氘灯测得的就是背景吸光度。 A氘=A背 • 空心阴极灯测得的是被测元素吸光度和背景吸光度,
例如:钙电离,在溶液中加入大量易电离的 钾或铯,有大量电子存在,抑制钙的电离,提高 测定灵敏度。 K ---- K+ + e

原子吸收光谱定量分析方法

原子吸收光谱定量分析方法

原子吸收定量分析方法一、定量分析方法(P145)⑴标准曲线法:配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。

(2)标准加入法当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。

取若干份体积相同的试液(cX),依次按比例加入不同量的待测物的标准溶液(cO):浓度依次为:cX,cX+cO,cX+2cO,cX+3cO,cX+4cO …分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 …直线外推法:以对浓度做图得一直线,图中cX点即待测溶液浓度。

(3)稀释法:⑷内标法:在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。

内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量二、灵敏度和检出限(1)灵敏度1、定义:在一定浓度时,测定值(吸光度)的增量(△ A)与相应的待测元素浓度(或质量)的增量(△ c或A m)的比值(即分析校正曲线的斜率)PS:习惯上用特征浓度和特征质量表征灵敏度2、特征浓度定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度3、特征质量定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。

(2)检出限定义:适当置信度下,能检测出的待测元素的最低浓度或最低质量。

用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

(3)测定条件的选择1.分析线的选择每种元素都有几条可供选择使用的吸收线。

一般选待测元素的共振线作为分析线,可以得到最好的灵敏度。

在测量高含量元素时,也可选次灵敏线。

2.单色器光谱通带的选择(调节狭缝宽度)光谱通带的选择以排除光谱干扰和具有一定透光强度为原则。

原子吸收光谱法(atomic absorption spectrometry,简称AAS)

原子吸收光谱法(atomic absorption spectrometry,简称AAS)

双光束型:来自光源的光束被分 成两束,一束作测量光束,通过 火焰;另一束作参比光束;交替 进入单色器到达光电倍增管检测 比较
– 特点:消除因光源波动造成的影响,
但不能抵消因火焰波动造成的影响
完整版ppt
16
四、定量分析方法
1、标准曲线法:吸光度—浓度标准曲线
– 方法:
配制一组含有不同浓度被测元素的标准溶液 在与试样测定完全相同的条件下,按浓度由低到高的顺序测定吸 光度值 绘制吸光度对浓度的校准曲线。 测定试样的吸光度 查校准曲线上用内插法求出被测元素的含量。
完整版ppt
12
火焰原子化器和石墨炉原子化器可测定的元素
H Li Be Na Mg
火焰 火焰 & 石墨炉
He B C N O F Ne Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Zn Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
e- e-
e-
Dynode (9-13)
Quartz Window
*100 Million Amplification of Signal
Photomultiplier Tube Operation
三、原子吸收分光光度计
单光束型:空白溶液调透光率T 到100%。测试剂溶液的透射比
– 特点:仪器结构简单,不能消除因 光源波动造成的影响,基线漂移
完整版ppt
6
完整版ppt
7
原子化器
原子化:将试样转变为原子蒸汽的过程
原子化器的功能:提供能量使试样干燥、蒸 发和原子化。同时入射光束在这里被基态原 子吸收,因此也可把它视为“吸收池”。

6.6 原子吸收光谱法的定量分析及应用

6.6 原子吸收光谱法的定量分析及应用

仪器分析《仪器分析》课程组第六章原子吸收光谱法第六章原子吸收光谱法➢6.1 原子吸收光谱法的基本原理➢6.2 原子吸收的测量➢6.3 原子吸收分光光度计➢6.4 干扰及其消除➢6.5 操作条件选择➢6.6 原子吸收光谱法的定量分析及应用6.6 原子吸收光谱法的定量分析及应用◆6.6.1 定量分析方法◆6.6.2 原子吸收分析应用•定量依据:AAS法定量分析依据是比尔定律:A=K'C式中,C为待测元素的浓度,K,在一定实验条件下是一个常数。

它表示,在一定实验条件下,吸光度与浓度成正比。

所以,通过测定吸光度就可以求出待测元素的含量。

•定量分析方法:(1)工作曲线法:配制加有试剂空白的一组含有不同浓度被测元素的系列标准溶液,在与试样测定条件完全相同的情况下,按浓度由低到高的顺序测定其吸光度值;绘制吸光度对浓度的校准曲线;依据测定试样的吸光度,在校准曲线上用内插法即可求出被测元素的含量。

应当注意的问题:注意适宜的浓度范围;标样与试样尽量具有基本相似的化学组成;同批测定时要尽量控制测定条件相同且时时进行浓度校正。

(2)标准加入法:配置含有等量试样溶液的系列浓度的标准加入溶液,测量系列浓度的标准加入溶液的吸光度,绘制标准曲线图,并外推到吸光度为零时与浓度轴的交点,交点至坐标原点的距离即为被测元素的浓度。

对于基体效应影响较大或无法确证时,可以采用标准加入法。

应当注意的问题:实际应用中标准曲线至少安排四个点,且各点均在线性范围内;标准加入后形成的工作曲线应有适当的斜率,接近1最好,斜率太小会导致较大误差。

图标准加入法测定示意图•AAS 的优点:灵敏度高:火焰法,可达10-6g,有时达ng级;石墨炉法可达10-9~ 10-14g。

准确度高:RSD 可达1~3%。

选择性极好:干扰小。

测定范围广:可测70种元素。

原子吸收测定元素一览表•AAS分析应用:应用广泛的微量金属元素的首选测定方法。

(1) 头发中微量元素测定—微量元素与健康关系;(2) 水中微量元素测定—环境中重金属污染分布规律;(3) 水果、蔬菜中微量元素的测定—营养健康与食品安全;(4) 矿物、合金及各种材料中微量元素的测定;(5) 各种生物试样中微量元素的测定。

原子吸收光谱法的定量分析方法和测定条件的选择

原子吸收光谱法的定量分析方法和测定条件的选择

Ax c 当A=0时, k
cx
A kc Ax
A—c曲线
方法
特点
适用范围
注意事项
横 向 比 较
标准 曲线 法
简便、快 速、可扣 除空白值
1.所用标准溶液系列浓度应在 A-C曲线的线性范围内 2.标准溶液与试样溶液要用相 组成简单、 同的试剂处理。 大量试样 3.扣除空白值。 的快速分 4.测定过程中,操作条件不变。 析 5.标准试样的组成应尽量与待 测溶液相同。
火焰的氧化性随火焰高度 的变化而变化
Mg Ag
Cr
原则:使测量光束从自由 原子浓度最大的火焰区通 过,保证最大的吸收灵敏 度。
相对吸收值 自由原子在火焰中的分布
5.狭缝宽度的选择
单色器分辨能力大,或光源辐射弱或共振线吸收 小,应选择较宽的狭缝宽度。 单色器分辨能力小,火焰的背景发射强,或吸收 线附近有干扰时,应选择较窄的狭缝宽度。 合适的狭缝宽度应通过实验确定 原则:能将吸收线与邻近的干扰线分开
一、AAS的定量分析方法
定量依据 标准曲线法
标准加入法
定量依据
强度为 I0 的某一波长的辐射通过均匀的原 子蒸气时,根据吸收定律,有 I I 0 exp( K 0l )
I0 和I分别为入射光和透射光的强度,K0为峰值吸收系数, l为原子蒸气层厚度
当在原子吸收线中心频率附近一定频率范围 Δv测量,则 v I 0 Ivdv
E K S lg ai
二、测定条件的选择
分析线 的选择 放大倍 数的选 择
狭缝宽 度
火焰原 子化法 仪器工 作条件
燃烧器 高度
空心阴 极灯电 流
火焰
1.分析线的选择
(1)一般选择最灵敏线(主共振线) (2)最灵敏线受干扰较大或测定高含量元素时,选 择次灵敏线或其它谱线 最适宜的分析线应视具体情况通过实验决定,其 原则是选用干扰小的谱线作为分析线。

原子吸收光谱法

原子吸收光谱法

影响吸收谱线轮廓的主要因素
• 自然变宽N:与原子发生能级跃迁时激发态原 子的寿命有关, N一般情况下约10-5 nm。 • 多普勒变宽(热变宽)D: 由原子在空间作 无规热运动引致的, D约为10-3 nm。
D 7.16 10 0
7
T Ar
• 碰撞变宽(压力变宽) C 洛伦兹变宽L :由待测原子与其他共存元素
• 富燃火焰(还原火焰)
燃助比大于化学计量数, 如燃助比为
1:3的乙炔-空气。 此类火焰中有大量燃气未燃烧完全, 而含有较多的C-、CH-基等。因此火焰 温度较低, 且具有还原性, 适于有些易 形成难离解氧化物的元素的测定。
• 贫燃火焰(氧化火焰)
燃助比小于化学计量数, 如燃助比为 1:6的乙炔-空气。 此类火焰氧化性强, 温度较低, 适于 易离解、易电离的元素的测定, 如碱 金属。
• 石墨管
长约50mm,内径5mm, 管中央有一小孔,用以放臵试 样。
K0 2 D ln 2 e
2

mc
fN 0
• 吸收线半宽度: 一般在0.01~0.1Å • 发射线半宽度: 一般在0.005~0.02
Å
实际测量(测量吸光度)
• 根据光吸收定律
A lg T lg I I0 A为 吸 光 度 ; T 为 透 光 率 ; I 为 透 射 光 强 度 ; I 0为 入 射 光 强 度 ; K 为 吸 收 系 数 ; l为 蒸 气 厚 度 将 K 用 K 0代 替 , 可 得 A lg e 又 K0 2 D
仪器组成系统
• • • • 光源 原子化系统 单色器 检测系统和数据处理与控制系统
光源
• 要求 (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大、稳定性好且谱线背景小; (4) 操作方便、经久耐用。 • 原子吸收分光光度计的光源通常是空心阴 极灯。

(完整word版)原子吸收光谱分析解读

(完整word版)原子吸收光谱分析解读

原子吸收光谱分析4。

2.1 概述4。

2。

1。

1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。

本章重点介绍应用广泛的原子吸收光谱法。

2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。

2.1。

2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。

用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。

4。

2。

1。

3 方法特点灵敏度高,10—9g/ml-10—12g/ml。

选择性好,准确度高。

单一元素特征谱线测定,多数情况无干扰。

测量范围广.测定70多种元素。

操作简便,分析速度快。

4。

2.2 原子吸收法基本原理 4。

2。

2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。

对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。

➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。

2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。

吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。

原子吸收定量分析方法

原子吸收定量分析方法

Ax Vs cx cs ( Ax s Ax ) Vx
可得Cx。
2.外推法 操作步骤
取若干份体积相同的样品溶液(cx)。
从第二份开始加入不同量的待测元素的标准溶液, 并稀释至一定体积,则各溶液浓度分别为:cx ,
cx+ c1 ,cx+ c2 ,cx+ c3 ,cx+ c4 。 测得相应的吸光度 Ax,A1,A2,A3,A4。
解:根据所给条件列表如下 从图上查出,吸光 度为0.135时,相当于标 准水样1.91mL。
C Mg 1 1.91 0.0953 g / ml 20
A
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 1 2 3 4 5 6 标准溶液体积(ml)
例:用原子吸收分光光度法测定矿石中的钼,称取试 4.23g。经溶解处理后,转移入100mL容量瓶中、吸取两份 10.00mL矿样试液,分别放入两个50.00mL容量瓶中,其中一 个再加入10mL(20.0μg/mL)标准钼溶液,都稀释到刻度。 在原子吸收分光光度计上分别测得吸光度为0.314和0.816, 计算矿石中钼的含量。
作图外推,直线与横坐标轴交点为-1.0。即
10ml试样溶液含镁 1.0g。试样中镁的浓度为:
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -2 -0.1 0 1 -1 -0.2 -0.3
A
2
345来自6 789
镁加入量
wMg
1.0 10 6 100 % 0.0019 % 10 0.2687 50
相同条件下,测待测试样溶液吸光度为Ax。
以A-c曲线上,查出 Ax对应的cx,即求得待测试
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子吸收定量分析方法
一、定量分析方法(P145)
(1)标准曲线法:
配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。

(2) 标准加入法
当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。

取若干份体积相同的试液(cX),依次按比例加入
不同量的待测物的标准溶液(cO):
浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO …
分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 …
直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。

(3)稀释法:
(4)内标法:
在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。

内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量
二、灵敏度和检出限
(1)灵敏度
1、定义:
在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率)
PS:习惯上用特征浓度和特征质量表征灵敏度
2、特征浓度
定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度
3、特征质量
定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。

(2)检出限
定义:
适当置信度下,能检测出的待测元素的最低浓度或最低质量。

用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

(3)测定条件的选择
1.分析线的选择
每种元素都有几条可供选择使用的吸收线。

一般选待测元素的共振线作为分析线,可以得到最好的灵敏度。

在测量高含量元素时,也可选次灵敏线。

2.单色器光谱通带的选择(调节狭缝宽度)
光谱通带的选择以排除光谱干扰和具有一定透光强度为原则。

无邻近干扰线(如测碱及碱土金属)时,选较大的通带,以提高信噪比和测量精密度,降低检出限;反之(如测过渡及稀土金属),宜选较小通带,以提高仪器的分辨率,改善线性范围,提高灵敏度。

3.空心阴极灯电流的选择
在保证有稳定和足够的辐射光通量的情况下,尽量选较低的灯电流。

实际工作中,通过绘制吸光度-灯电流曲线选择最佳灯电流。

一般空心阴极灯上标有允许使用的最大工作电流,一般为1-6mA,需要预热10-30min。

4.火焰的选择
依据不同试样元素选择不同火焰类型。

5.观测高度
调节观测高度(燃烧器高度),可使元素通过自由原子浓度最大的火焰区,灵敏度高,观测稳定性好。

相关文档
最新文档