微积分三大中值定理详解54页PPT

合集下载

微分中值定理【高等数学PPT课件】

微分中值定理【高等数学PPT课件】

可导,且
证:设辅助函数
显然 在 因此至少存在
上满足罗尔定理条件, 使得
推广: 存在
使
例3. 若
可导, 试证在其两个零点间一定有 的零点.
的零点. 的零点.
(2) 提示: 欲证:
使
只要证
亦即
二、拉格朗日中值定理
满足: (1) 在区间 [ a , b ] 上连续
(2) 在区间 ( a , b ) 内可导
证: 在 I 上任取两点
日中值公式 , 得
由 的任意性知, 在 I 上为常数 .
例1. 证明等式 证: 设
由推论可知
(常数)
令x=0,得
又 经验: 欲证
故所证等式在定义域
上成立.

只需证在 I 上
自证:
例2. 证明不等式 证: 设 中值定理条件, 因此应有
即 因为
故 推论2: 若函数f 和g 均在区间上可导,且
证: M 和最小值 m .
若M=m,则 因此
故在[ a , b ]上取得最大值
若 M > m , 则 M 和 m 中至少有一个与端点值不等,
不妨设
则至少存在一点
使
则由费马引理得
注意: 1) 定理条件条件不全具备, 结论不一定成立. 例如,
2) 定理条件只是充分的. 本定理可推广为 在 ( a , b ) 内可导, 且
至少存在一点
使
证: 问题转化为证
作辅助函数
显然 ,
在 [ a , b ] 上连续 , 在 ( a , b ) 内可导, 且 由罗尔定理知至少存在一点
思路: 利用逆向思维找即出定一理个结满论足成罗立尔.定证理毕条件的函数
拉格朗日中值定理的有限增量形式:

《中值定理》课件

《中值定理》课件

魏尔斯特拉斯逼近定理
魏尔斯特拉斯逼近定理是中值定理中的一种,它指出任何连续函数都可以中值定理是中值定理中的一种,它描述了函数在一个区间内存在某个点,该点处的瞬时变化率等于该区间 平均变化率的值。
柯西中值定理
柯西中值定理是中值定理中的一种,它更具有一般性,适用于实数区间和复 数区间上的函数。它指出了当两个函数经过某个点处函数值相等时,这两个 函数在某个点处的导数也相等。
《中值定理》PPT课件
欢迎来到本次关于《中值定理》的PPT课件。在这个课件中,我们将深入探讨 中值定理的定义、数学表述、证明以及应用,并比较三种不同中值定理之间 的异同。接下来,让我们开始吧!
什么是中值定理
中值定理是微积分中的重要定理之一,它研究函数在一个区间上的平均变化率与瞬时变化率之间的关系。它包括三 种不同的定理,分别是魏尔斯特拉斯逼近定理、拉格朗日中值定理和柯西中值定理。
总结
通过比较三种不同中值定理的异同,我们能更好地了解它们在解决不同问题 时的特点和适用范围。中值定理在微积分、数学物理以及其他领域都有广泛 的应用。继续深入学习中值定理,将为你的数学知识打下坚实的基础。

高数微积分中值定理课件

高数微积分中值定理课件

微分中值定理
19
第19页,幻灯片共46页
推论 如果函 f(x数 )在区I间 上的导数,恒为零 那末 f(x)在区I间 上是一个 . 常数
证: 在 I 上任取两点 x 1,x2(x 1x2),在[x1,x2]上用拉
氏中值公式 , 得
f(x2)f(x1)f()x ( 2 x 1 )0 (x1x2)
f(x 2 ) f(x 1 ) 由 x1, x2 的任意性知, f (x) 在 I 上为常数 .
x
3
定义:
设函数f (x)在区间(a,b)内有定义, x0是(a,b)内的一个点 , (1)如果存在着点 x0的一个邻域 ,对于这邻域内的任何x,点
除了点x0外, f (x) f (x0)均成立, 就称f (x0)是函数f (x)的一个极大值 ; (2)如果存在着点 x0的一个邻域 ,对于这邻域内的任何x,点 除了点x0外, f (x) f (x0)均成立, 就称f (x0)是函数f (x)的一个极小值 .
关于高数微积分中值 定理
1
第1页,幻灯片共46页
第一节 中值定理
一、罗尔(Rolle)定理 二、拉格朗日(Lagrange)中值定理
三、柯西(Cauchy)中值定理
2
第2页,幻灯片共46页
1.函数极值的定义
y
A
yf(x)
B E
C
D
a o x1
x2 x3
x4
b x 5 x 6
x
y
y
o
x0
x
o
x0
第3页,幻灯片共46页
又 f(0)ar0 cs airn0 cc 0 o s , 即C .
22
2
arcxsa in rcxco.s

§3.1-微分中值定理PPT课件

§3.1-微分中值定理PPT课件

1 x2
1 x2
f ( x) C , x [1,1]
又 f (0) arcsin 0 arccos 0 0 ,

C
.
arcsin
x
arccos
x
2
.
2
2
2
说明 欲证x I , f ( x) C0 ,只需证在 I上
f ( x) 0,且 x0 自证 arctan x arc
则在开区间 (a, b)内至少存在一点 ,使得 f (b) f (a) f ( ) F (b) F (a) F ( )
广义微分中值定理
20
微分中值定理
柯西(1789 – 1857)
法国数学家, 他对数学的贡献主要集中 在微积分学, 复变函数和微分方程方面 . 一生发表论文800余篇, 著书 7 本 ,《柯 西全集》共有 27 卷. 其中最重要的的是为巴黎综合学 校编写的《分析教程》,《无穷小分析概论》, 《微积 分在几何上的应用》 等, 有思想有创建, 对数学的影 响广泛而深远 . 他是经典分析的奠人之一, 他为微积分 所奠定的基础推动了分析的发展.
0
由条件,则 f ( x1 ) f ( x2 ), 即在区间I中任意两
点的函数值都相等,所以, f ( x) C.
17
微分中值定理
例2 证明 arcsin x arccos x (1 x 1). 2
证 设 f ( x0) arcsin x0 arccos 0x, x [1,1]
f ( x) 1 ( 1 ) 0.由推论
f (1) 0 f (2) (2) 结论正确
方程f ( x) 0, 即3x2 8x 7 0有实根
x1
1 (4 3
37),

第六节微分中值定理7928251页PPT

第六节微分中值定理7928251页PPT
结论亦 f(b 可 )f(a写 )f(成 ).
ba
证明:作辅助函数 F (x )f(x )f(b )f(a )x, b a
几何解释:
y
C
连续光滑曲线 y f (x) 在
点A、B处纵坐标相,等
则弧AB上至少有一C点, 在该点处的切线是水 的.平o a 1
yf(x)
2 b x
物理解释: 变速直线运动在折返点处,瞬时速度等于零.
3、罗尔定理还指出了这样的一个事实: 若 f (x) 可导,则 f(x)=0 的任何两个实根之间,
第六节 ——第十二节
中值定理
罗尔中值定理
推广
拉格朗日中值定理
柯西中值定理
泰勒公式
(第七节)
研究函数性质及曲线性态 应用
利用导数解决实际问题
第六节 微分中值定理
一、罗尔(Rolle)定理 二、拉格朗日(Lagrange)中值定理 三、柯西(Cauchy)中值定理
一、罗尔(Rolle)定理
1.引理(费马(Fermat)定理)
设函数f(x)在点x0 的某邻域U(x0,)内
有定义并且在 x0
处可导,如果对任意 y
的xU(x0,),有
f(x) f(x0) (或f(x) f(x0))

f(x0)0.
o x0 x
若 f ( x 0 ) 0 ,则 x 0 为 称 f ( x ) 函 的 驻点 . 数 (或称为临界点,稳定点)
至少有 f(x) =0 的一个实根.
例2 不求导数, 判断函数 f(x) = (x 1) (x 2) (x 3)
的导数f(x)有几个零点及这些零点所在的范围.
4. 注意 1)若罗尔定理的三个条件中有一个不满

微积分三大中值定理详解共54页文档

微积分三大中值定理详解共54页文档
微积分三大中值定理详解Байду номын сангаас
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
1
0















56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。

3.1 微分中值定理

3.1 微分中值定理
使 (0 ) = 0 .
π
自证: arctan + arccot = , ∈ (−∞, +∞).
2
第一节 微分中值定理
第三章 微分中值定理与导数的应用

例3 证明当 > 0时,
< ln( 1 + ) < .
1+

设 () = ln( 1 + ), 则()在[0, ]上满足拉格朗日中值定理的条件,
第一节 微分中值定理
第三章 微分中值定理与导数的应用
二、拉格朗日中值定理
拉格朗日定理
如果函数()满足
(1) 在闭区间[, ]上连续;
(2) 在开区间(, )内可导,
() − ()
.
则在开区间 , 内至少存在一点 , 使得 ′( ) =

几何解释∶
在曲线弧 上至少有一点 , 在该点处的切线平行于弦.
第一节 微分中值定理
第三章 微分中值定理与导数的应用
第三章 微分中值定理与导数的应用
分析:
欲证 ′ (
() − ()
)=

将 变为




′ ()
() − ()
=

适当变形
() − ()
() −



=0
设为辅助函数
验证辅助函数满足罗尔定理条件, 得出结论.
则在开区间 , 内至少存在一点 ,使得
() − () ( )
(( ), ( ))
几何解释∶
在曲线弧上至少有一点, 在该点处的切线平行于弦.
第一节 微分中值定理
第三章 微分中值定理与导数的应用

[理学]高等数学35微分中值定理 课件

[理学]高等数学35微分中值定理 课件
0
(b )若M . 所以最值不可能同时在端点取得 . 那么 f ( xm ) 0.
0
0
设 M f (a ), 则在(a, b) 内至少存在一点 ,使 f ( ) M . [a , b], 有 f ( x ) f ( ),
由费马引理, f ( ) 0.
14
F ( x), 使得F ( x) f ( x),
利用Rolle定理来证明. 关键是找辅助函数 F ( x).
19
微分中值定理
例3 设 f ( x)在a, b 上连续, 0 a b ,
在 a, b内可导, 且f (a) b, f (b) a.
f ( ) 至少存在 a, b ,使得 f ( )=.
x a 0
x b 0
则在( a , b )内至少存在一点
使
提示 f ( a 0) , x a 设F ( x ) f ( x ) , a x b 证 F(x)在[a,b]上 f ( b 0) , x b 满足罗尔定理 .
16
微分中值定理
几何意义
7
微分中值定理
推论

f ( x)在 a, b 上可微, 且在 a, b内部 f ( x)在 a, b
取到最大(最小)值,又
内部只有一个临界点, 则该临界点就是 函数的最大(最小)值点.
8
微分中值定理
求连续函数 f (x)在闭区间[a, b]上的最 大(小)值的方法: (1) 将闭区间[a, b]内所有驻点和导数不存在的 点(即为可能极值点)处的函数值和 区间端点的 函数值 f (a), f (b)比较, 其中最大(小)者 就是 f (x) 在闭区间[a, b]上的最大(小)值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档