流体力学第五章压力管路的水力计算

合集下载

第五章有压管流水力计算

第五章有压管流水力计算
2 a1v0 pB av2 lB v2 00 zs ( e b ) 2g 2g d 2g
得到
lB v2 zs (1 e b ) d 2g pB
第五章 有压管流水力计 算 第三节 短管应用举例
二、泵装置的水力计算 水力计算包括吸水管及压力水管的计算,主要任务有:管径 的计算,水泵安装高度,水泵的扬程和功率的计算。
hf l
Q vA AC RJ K J K
Q2 H hf 2 l K
长管 : 作用水头全部 消耗于沿程损失
第五章 有压管流水力计 算 第四节 长管的水力计算
流量模数K AC R f (n, d )
Q2 H hf k 2 l K
当v 1.2m / s时(过渡区), k 1 当v 1.2m / s时,k 1
d
4Q v
第五章 有压管流水力计 算 第二节 简单短管的水力计算
四、绘制总水头线和侧压管水头线 (一)、绘制总水头和测压管水头线的具体步骤 (二)、绘制总水头线和测压管水头线应注意的问题 1.沿程水头损失沿管均匀分布,局部水头损失发生在局部边界突 变的概化断面上。 2.在等直径的管段中,测压管水头线与总水头线平行。 3.进口的边界条件 4.出口的边界条件 5.测压管水头线可以上升或下降,但总水头线总是下降。
(i=1,…, n)
流量之和为 总流量,又可 得一个方程
i 1
Qi Ki
i 1
n
n
hf i li
Q
第五章 有压管流水力计 算 第五节 复杂管路水力计算
沿程均匀泄流管
Q h k
f
2
r 2
l
途泄流量Qu ql

流体力学 第5章孔口管嘴出流与管路水力计算

流体力学 第5章孔口管嘴出流与管路水力计算

5.2.3 其他类型管嘴出流
对于其他类型的管嘴出流,其流速、流量的计算公式与圆柱形管嘴公式形式相似。但 流速系数及流量系数各不相同,下面是几种常用的管嘴。
1. 流线形管嘴 如图 5.4(a)所示,流速系数ϕ = μ = 0.97 ,适用于水头损失小,流量大,出口断面上速 度分布均匀的情况。
2. 扩大圆锥形管嘴 如图 5.4(b)所示,当θ = 5°~7°时,μ=ϕ=0.42~0.50 。适合于将部分动能恢复为压能的 情况,如引射器的扩压管。
流体力学
收缩产生的局部损失和断面 C―C 与 B―B 间水流扩大所产生的局部损失,相当于一般锐缘
管道进口的局部损失,可表示为 hw

VB 2 2g
。将
hw 代入上式可得到:
H0
=


) VB2 2g
其中, H 0
=
H
+
α
AV
2 A
2g
,则可解得:
V=
1 α + ζ 2gH 0

2gH 0
(5-8)
1. 自由出流 流体经孔口流入大气的出流称为自由出流。薄壁孔口的自由出流如图 5.1 所示。孔口 出流经过容器壁的锐缘后,变成具有自由面周界的流股。当孔口内的容器边缘不是锐缘状 时,出流状态会与边缘形状有关。
图 5.1 薄壁孔口自由出流
由于质点惯性的作用,当水流绕过孔口边缘时,流线不能成直角地突然改变方向,只 能以圆滑曲线逐渐弯曲,流出孔口后会继续弯曲并向中心收敛,直至离孔口约 0.5d 处。流
5.3.1 短管计算
1. 自由出流
流 体 经 管 路 流 入 大 气 , 称 为 自 由 出 流 ( 图 5.5) 。 设 断 面 A ― A 的 总 水 头 为

流体力学孔口管嘴出流与管路水力计算

流体力学孔口管嘴出流与管路水力计算

流体力学孔口管嘴出流与管路水力计算流体力学是研究流体运动和力学性质的物理学科。

在水力学中,孔口管嘴出流和管路水力计算是流体力学的一个重要应用。

1.孔口管嘴出流孔口管嘴出流是指在一定压力差下,流体从孔口或管嘴中流出的现象。

它是一种自由射流,不受管道限制,流速和流量可以自由变化。

对于理想流体来说,根据贝努利定律和连续性方程,可以得出孔口管嘴出流速度的计算公式:v = √(2gh)其中,v为出流速度,g为重力加速度,h为液面距离孔口或管嘴的高度差。

可以看出,出流速度与液面高度差成正比,与重力加速度的平方根成正比。

对于真实流体来说,考虑到粘性和摩擦等因素,出流速度会稍有减小。

此时,可以使用液体流量系数进行修正。

液体流量系数是指实际流量与理论流量之比,一般使用实验数据来确定。

根据实验结果,可以通过乘以液体流量系数来修正出流速度的计算。

管路水力计算是指在给定管道材料、管径和流体性质的条件下,计算流体在管路中的流动状态、压力损失以及流量等参数。

管路水力计算是实际工程中常见的问题,它可以帮助我们了解管道的输送性能和节能问题。

管道中的流体运动受到多个因素的影响,包括管道长度、管道粗糙度、流速、流量等。

在水力学计算中,一般常用的公式有达西公式和罗斯诺-魏谢巴赫公式。

达西公式可以用来计算管道中流体的摩阻损失,它的计算公式为:ΔP=λ(L/D)(v^2/2g)其中,ΔP为管道中的压力损失,L为管道长度,D为管道直径,v为流速,g为重力加速度,λ为摩阻系数,也称为达西摩阻系数。

罗斯诺-魏谢巴赫公式则可以用来计算管路中流体的水力损失,它的计算公式为:ΔP=ρ(h_f+h_m)其中,ΔP为管路中的总压力损失,ρ为流体密度,h_f为摩阻压力损失,也称为莫阿P(Moody)摩阻,h_m为各种表面或局部的附加压力损失。

除了达西公式和罗斯诺-魏谢巴赫公式,还有一些经验公式和图表可以用来计算管路的压力损失和流量。

这些公式和图表都是根据实验数据和经验总结得出的,可以帮助工程师在实际应用中进行快速计算。

流体力学第五章

流体力学第五章

确定流态 确定流态
确定 β 、 或 λ m 确定 β 、 或 λ m
Δ pp Δ
第五章 压力管路的水力计算

第二类问题: 已知: Δp ,Δz ,d,L,μ,γ,求:Q 分析:
Q Q
vv
Re =
? ?
vd ν
h h ff
确定流态 确定流态

Δ pp Δ
确定 β 、 或 λ m 确定 β 、 或 λ m
管路特性曲线是管路能量平衡(能量供给 =能量消耗)的直观反映。 对于给定管路,其特性曲线一定。 如:对于长管无泵和有泵两种情况,管路特性曲线如下图:
hf
H H0 hf z2-z1 Q Q
H0

管路特性曲线对于确定泵的工况以及自由泄流工况有重要应用价值。 第五章 压力管路的水力计算
§5.2 长管的水力计算
说明:
– 紊流流态——混合摩擦区(大庆设计院推荐公式):
Q1.877ν 0.123 L h f = 0.0802 A d 4.877
其中:A = 10( 0.127 lg ε − 0.627 ) , ε = 即:β= 0.0802A,m=0.123 – 紊流流态——水力粗糙区:
∆ ∆ = r 2d
3. 给定管路流量 Q,在已建成的长输管线 AB段改设串联变径管可以延长 管路的输送距离。
设变径管后
hfO -A fO-A H
未设变径管前
hfO -B fO-B
hf
O
A
B
C
串联变径管后,主管 AB段d(↑),v (↓) ,hf (↓) , 即:hfO -B fO-B <hf。则:作用水头 H仍有部分能量剩余,可供给管中水流继续前进一 段距离至C点。 第五章 压力管路的水力计算

第5章压力管路的水力计算

第5章压力管路的水力计算

又对1管,有:
hf

2m1 m1
Q l 1
1
1
5m1
d1
(c)
由上(a)、(b)、(c)三式解出 n+1个未知数。
校核流态:由Q1 → V1 → Re1 → 定出流态(与假设相同时,Q1为所求) Q2 → V2→ Re2 → 定出流态(与假设相同时,Q2为所求) …… Qn → Vn→ Ren → 定出流态(与假设相同时,Qn为所求)
根据经验,合理经济流速的选择:油田内部或库内管线:1~2 m/s 外输管线:1~3 m/s
13
第5章 压力管路的水力计算
设计管径的步骤大致如下:
① 根据设计流量,在适宜的流速范围内选择几种不
同的管径;
② 按照所选管径算出实际流速;
③ 根据实际流速,管径及油品粘度计算雷诺数,确
定流态,进而计算水头损失;

1 3
(a)

2mn
Q d n
2m1
Q d 1
5mn n
5m1 1
m1 mn
l1 ln

1 n
∵ Q Q1 Q2 Qn

Q 1 Q2 Q3 Qn
(b)
Q1
Q1 Q1
Q1
21
第5章 压力管路的水力计算
如果Q1求出来,则Q2、Q3、…、Qn即可得到。
?前两章介绍了流体流动的基本原理本章介绍这些原理在工程实际中的应用具体应用时常要参考设计和施工的经验对前面所学的公式作一些简化
China University of Petroleum
第5章 压力管路的水力计算
1
第5章 压力管路的水力计算
前两章介绍了流体流动的基本原理,本章介绍这些原理在工程实际中的应 用,具体应用时,常要参考设计和施工的经验,对前面所学的公式作一些 简化。

流体力学管路水力的计算

流体力学管路水力的计算

流体力学管路水力的计算一.问题提出为了实现在已知参数(总流量、粘度、管长、管径、粗糙度、总作用水头等)的情况下,能直接算出已知管路系统的基本流动参数(流速、分流量、损失因数、雷诺数、沿裎损失因数等)的目的,为此特别编写了简单管路系统流动参数计算的程序。

该程序能实现串联和并联管路系统流动参数的计算。

需要指明的是,由于本人编程能力有限,且为了能计算书上例题的管路系统,故第二类问题的串联管路系统有且仅有两个串联管子,其余均为三个管子串联或并联。

二.数学模型及算法1.算法首先,将已知参数的实际管路系统抽象简化为理想物理模型,并根据管路系统类型进行分类;然后,对其进行理论分析,计算出流动参数的计算方程;最后,通过编程实现对所求流动参数的计算。

2.数学模型(1)串联管路系统的第一类问题已知流过串联管路的流量,介质参数(),管路参数(),求所需要的总水头。

如下图:设为入口损失因数,对A、B两截面列伯努力方程有根据连续性方程的又由,由公式可以计算出,从而求出h。

(2)串联管路系统的第二类问题已知总水头h,介质参数(),管路参数(),求通过的流量如下图:设为入口损失因数,对A、B两截面列伯努力方程有根据连续性方程的由此可得又,,由公式可以计算出。

将算出的与所取得对比,若二者之差均满足所取得精度,则计算结束,否则令作为新的重新计算为止。

最终可得流量(3)并联管路系统的第一类问题已知两点间的压力降(即能量损失)h,介质参数(),管路参数(),求总流量如下图:先取const,(i=1,2,3,下同);由达西公式可求得所以由公式可以计算出,将算出的与所取得对比,若二者之差均满足所取得精度,则计算结束,否则令作为新的重新计算为止。

则(4)并联管路系统的第二类问题已知总流量,介质参数(),管路参数(),求各分支管路的流量及能量损失h如下图:根据经验,先取h=const;由此h值根据并联管路第一类问题计算出各分支管路的流量(i=1,2,3,下同);则蒋总流量按如下分配用计算出的流量,结合公式、,可以计算出,从而求出;若中任两个之差满足给定精度,则h为所求值,否则令h=,从头重新计算,直到满足精度为止。

工程流体力学 压力管路的水力计算

工程流体力学 压力管路的水力计算

⎛ d2 ⎞ A V1 = 2 V2 = ⎜ ⎜d ⎟ ⎟ V2 , A1 ⎝ 1⎠
2
⎛ d2 ⎞ ⎟ V孔=⎜ ⎜ d ⎟ V2 ⎝ 孔⎠
2
5-9
⎡⎛ l ⎞⎛ d 2 hw = ⎢⎜ λ1 1 + ζ 1 ⎟ ⎜ ⎟⎜ ⎜ ⎢⎝ d1 ⎠⎝ d1 ⎣
⎛ d2 ⎞ ⎜ ⎟ ⎟ +ζ孔⎜ d ⎠ ⎝ 孔
p0
γ
+
V02 2g
如图:H0=21m
5-12
2、淹没出流
两液面:
H1 = H 2 + ξ孔
Vc =
1
Vc2 V + ξ 扩大 c 2g 2g
2
ζ 扩大 + ζ 孔
2 gH 0 (H0 = H1-H2)
Q=μ A 2 g ⋅ ΔH
二、管嘴泄流
1、标准圆柱管嘴:自孔口接出短管直径与孔口直径相同, 且 l=(3~4)d 2、管嘴与孔口区别: ① 流态不一样,先收缩,再扩大,然后封住出口,均匀泄出。 ② 孔口只有局部阻力,管嘴加上扩大阻力和沿程阻力。 3、流量计算公式 据公式: Q=μ A 2 gH = εϕ A 2 gH
5-5
如何解决这一矛盾,正是一个管径优选问题。钻、采专业大纲要求一般了解。
二、串、并联管路 1、串联管路
① 定义:由不同管径的管道依次连接而成的管路。 ② 水力特征: a、各联结点(节点)处流量出入平衡,即进入节点的总流量等于流出节点的总流量。
∑Q
i
=0
其中,进为正,出为负,它反映了连续性原理。 b、全线水头损失为各分段水头损失之和,即:
按能量比例大小,分为 长 管:和沿程水头损失相比,流速水头和局部水头损失可以忽略的流动管路。 短 管:流速水头和局部水头损失不能忽略的流动管路。

压力管路的水力计算 全部

压力管路的水力计算 全部
前两章介绍了流体流动的基本原理,本章介绍这些原理在工程实际中的应 用,具体应用时,常要参考设计和施工的经验,对前面所学的公式作一些 简化。
压力管路:在压差作用下,管内充满流体流动的管路,称为压力管路。
压力管路
从能量角度划分为
长管 短管
2
第5章 压力管路的水力计算
§5.1 管路特性曲线
管路特性曲线:一条管路上的水头 H 与流量 Q 之间的关系曲线。即H = f (Q), 对特定的管路,其关系一定。
个方程,现只有一个,故不可解。
解法一:流态试算法
先设流态,选用、m,计算
Q 2m hf d 5m m L

计算Re,校核流态。如流态与所设流态一致,则Q为所求,
否则重新设流态计算。
11
第5章 压力管路的水力计算
② 水力光滑区
0.3164 Re0.25
0.3164
d 4Q
0.25

hf
8 2g
z1 z2
p1 p2
,i
hf L

当p2已知,可求得 p1,选泵。
10
第5章 压力管路的水力计算
解法二:用管路特性曲线求Q 先假设几个流量Q1、Q2、……、Qm,按第一类问 题,计算hf1、hf2、 ……、hfm,绘成管路特性曲线, 再由已知hf查得Q。
第三类问题: 已知:L、管路布置(z1,z2)、流量Q, 求:设计最经济管径 d。
例如:管路上的总水头损失
hw
hf
hj
L d
v2 2g
L当 d
v2 2g
Q
v
4
d
2
v
4Q d 2
hw
L L当 d
v2 2g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章压力管路的水力计算主要内容长管水力计算短管水力计算串并联管路和分支管路孔口和管嘴出流基本概念:1、压力管路:在一定压差下,液流充满全管的流动管路。

(管路中的压强可以大于大气压,也可以小于大气压)注:输送气体的管路都是压力管路。

2、分类:按管路的结构特点,分为简单管路:等径无分支复杂管路:串联、并联、分支按能量比例大小,分为长管:和沿程水头损失相比,流速水头和局部水头损失可以忽略的流动管路。

短管:流速水头和局部水头损失不能忽略的流动管路。

第一节管路的特性曲线一、定义:水头损失与流量的关系曲线称为管路的特性曲线。

二、特性曲线llLg V dLgVdllgVdldlgVdlgVhhhfjw+==+=⎪⎪⎭⎫⎝⎛+=+=+=当当当其中,2222222222λλλλλζ(1)把24dQAQVπ==代入上式得:225222284212QQdgLdQgdLgVdLhwαπλπλλ==⎪⎭⎫⎝⎛==(2)把上式绘成曲线得图。

第二节长管的水力计算一、简单长管1、定义:由许多管径相同的管子组成的长输管路,且沿程损失较大、局部损失较小,计算时可忽略局部损失和流速水头。

2、计算公式:简单长管一般计算涉及公式2211AVAV=(3)fhpzpz+++γγ2211=(4)gVDLhf22λ=(5)说明:有时为了计算方便,h f的计算采用如下形式:mmmf dLQh--=52νβ(6)其中,β、m值如下流态βm层流 4.15 1 (a)水力光滑0.0246 0.25 (b)因为g V D L h f 22λ= 且所以(7)a. 层流时,Re 64=λ 代入(7)式得:15112415.415.4--==d LQ d L Q h f νν即:β= 4.15,m =1b. 水力光滑区,25.0Re 3164.0=λ代入(7)式得:25.0525.025.0175.425.075.10246.00246.0--==d LQ d L Q h f νν即:β= 0.0246,m =1c. 由大庆设计院推得经验公式,在混合区:877.4123.0877.10802.0d LQ Ah f ν=即:β= 0.0802A ,m =0.123其中,()0627.0lg 127.0,10r A ∆==-εεd. 粗糙区5225220826.082d L Q Q d g L g V d L h f λπλλ===即:β= 0.0826λ,m =03、简单长管的三类计算问题 (1)第一类:已知:输送流体的性质 μ,γ管道尺寸 d ,L ,Δ 地形 Δz流量 Q , , 求:h f ,Δp ,i解:Q →V →νVd=Re→ 确定流态 → β, m ,λ → h f → 伯努利方程求Δp(2) 第二类:已知:μ,γ,d ,L ,Δ,Δz ,Δp 求:Q解:Q 未知→流态也未知→ β, m ,λ 无法确定 → 试算法或绘图法A. 试算法a 、先假设一流态,取β, m 值,算出Q ’mm mf f L d h Q pz h --='∆+∆=25βνγb 、Q ’ → A Q V '=' →γd V '='e R → β’, m ’ ,校核流态如由 Q ’ →Re ’ 和假设一致, Q ’ 即为所求Q c 、如由 Q ’ →定出的流态和假设不一致,重复a 。

B.绘图法按第一类问题的计算方法,选取足够多 Q ,算出 h f 值,然后绘制图形。

使用时由 h f 查找 Q 即可。

(3) 第三类:已知: Q ,Δp ,Δz ,Δ,L ,μ,γ求: 经济管径d 解:考虑两方面的问题① d ↑,材料费↑,施工费、运输费↑V ↓,损失↓,管理费用↓② d ↓,一次性费用↓V ↑,损失↑,设备(泵)费↑如何解决这一矛盾,正是一个管径优选问题。

钻、采专业大纲要求一般了解。

二、串、并联管路 1、串联管路① 定义:由不同管径的管道依次连接而成的管路。

② 水力特征:a 、各联结点(节点)处流量出入平衡,即进入节点的总流量等于流出节点的总流量。

0∑=iQ其中,进为正,出为负,它反映了连续性原理。

b 、全线水头损失为各分段水头损失之和,即:fn f f f f h h h h h i +++==∑Λ21它反映了能量守恒原理。

2、并联管路① 定义:两条以上的管路在同一处分离,以后又汇合于另一处,这样的组合管道,叫并联管路。

② 水力特征:a 、进入各并联管的总流量等于流出各并联管的总流量之和,即∑=i Q Qb 、不同并联管段A →B ,单位重量液体的能量损失相同,即:Ch h h h f f f f i =====Λ213、分支管路① 定义:自一点分开不再汇合的管路 ② 水力特征:a 、节点处流出与流入的流量平衡b 、沿一条干线上总水头损失为各段水头损失为各段水头损失总和c 、节点处:cpz =+γ4、串、并联管路的水力计算① 串联管路——属于长管计算第一类问题 已知:Q 求:d解:确定合理流速 V 合理=?→ 合理d ② 并联管路——属于长管计算第二类问题 5、串、并联管路在长输管线上的应用 ① 增加输送流量 ② 延伸输送距离 ③ 克服翻越点例1:某水罐1液面高度位于地平面以上z 1=60m ,通过分支管把水引向高于地平面z 2=30m 和z 3=15m 的水罐2和水罐3,假设l 1=l 2=l 3=2500m, d 1=d 2=d 3=0.5m, 各管的沿程阻力系数均为λ=0.04。

试求引入每一水罐的流量。

解:取1-1、2-2两液面列伯努利方程:2121f f h h z z ++=g V d L h gVd L h f f 22222222211111λλ==所以,41.42221=+V V (1) 取1-1、3-3两液面列伯努利方程:3131f f h h z z ++=所以,94.22321=+V V (2) 又⎩⎨⎧==+=321321d d d Q Q Q ⇨ 321V V V += (3)得 ⎪⎩⎪⎨⎧===s m V sm V s m V /39.0/28.1/67.1321 ⇨⎩⎨⎧==s m Q s m Q /0765.0/251.03332第三节 短管水力计算许多室内管线,集油站及压水站内管线管件较多,属于短管。

短管计算问题,多涉及到能量方程的利用:wh gV p z gV p z +++++2222221121γγ=g V h h h cj f w 22出口ζ=+=∑∑一、综合阻力系数已知:大直径管段:直径d 1,长l 1 小直径管段:直径d 2,长l 2 孔板直径:d 孔则全管路总水头损失为:()g Vg V g V g V d l g V d l h h h jf w 22222227654322112222221111ζζζζζζζλλ++++++++=+=∑∑孔孔为了计算方便,一般以出口速度作为标准,把其它速度化成出口速度表示的形式,由连续性方程:22222122121,V d d V V d d V A AV ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛==孔孔=g V g V d l d d d d d l h c w 22222276543222424121111ζζζζζζλζζλ=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++++++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=孔孔ζc ——综合阻力系数二、短管实用计算通式由图A →B ,1-1~2-2断面列能量方程:g V gV p z gV p z c2222222211221ζγγ+++++= ()g V gV p p z z c 21222212121ζγ++-+-=令g V p p z z H 22212101+-+-=γ——称之为作用水头。

则 ()()2222202121QgA Q g V H c c αζζ=+=+=所以211gH A Q cζ+=令 c ζμ+=11——为流量系数,则:02gH A Q μ=例题:书本 P162 书本例5-5 有错P163 (3) 泵的扬程应为:mg V h z H w 607.58.927.196.3)0.24.09.3(222=⨯++--=++∆=N =γQH = 9800×0.2×5.607/60=183.162W ( N =γQH/735=0.2492马力 )第四节 孔口和管嘴泄流基本概念: • 自流管路:完全靠自然位差获得能量来源输送或排泄液体的管路。

• 孔 口:储液罐壁或底部打开的小孔。

• 管 嘴:在孔口处接出短管。

•定水头出流(稳定流):液流流经孔口与管嘴时,液面位置保持不变的流动。

• 自由出流:出流于大气之中。

•淹没出流:流向液体之中。

一、定水头孔口泄流1、定水头薄壁圆形小孔口自由出流。

•薄壁孔口:孔口有尖锐的边缘,液体与孔口周围只有线接触。

•(1) 射流结构分析:收缩断面C -C 的形成:流线特性,流线不能突然转折,液流射出时,将向内部收缩形成收缩断面c -c0.62~0.64(2) 定水头薄壁圆形小孔口自由出流流量计算公式 取0-0~c -c 列方程,压强标准为绝对压强,则有:流速系数:ϕ则即孔口泄流流量计算公式流量系数:εϕμ= (3)说明:① 理理Q AV Q μμ==ϕ——实际流速与理想流速之比。

② εϕμ==0.6~0.62,取0.6③ 对于理想流体:1,1,1,0====μεϕζ孔④ 作用水头:g V p H H 22000++=γ如图:H 0=21m2、淹没出流两液面:g V g V H H c c 222221扩大孔ξξ++=021gH V c 孔扩大ζζ+=(H 0 = H 1-H 2) H g A Q ∆⋅2μ=二、管嘴泄流1、标准圆柱管嘴:自孔口接出短管直径与孔口直径相同,且 l =(3~4)d2、管嘴与孔口区别:① 流态不一样,先收缩,再扩大,然后封住出口,均匀泄出。

② 孔口只有局部阻力,管嘴加上扩大阻力和沿程阻力。

3、流量计算公式 据公式:gH A gH A Q 22εϕμ==c ζϕ+=1164.0,3,02.0===ελd l 取 53.0302.011106.0106.02224=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛⨯=+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⨯=++=d d d l A A d d d l c c c εελλζζζ扩孔81.011=+=c ζϕ由于ε=1,要知μ,须求φ。

实验修正:82.0=μ孔口和管嘴的流量公式:02gH A Q μ=82.0=管嘴μ,6.0=孔口μ三、管嘴流量系数为什么大于孔口流量系数?孔口计算断面为收缩断面C -C ,其压强为 p a ,而管嘴收缩处却不一样,管嘴出口在收缩断面之后,由于在C ’-C ’处液流带走一部分气体形成负压,这就相当于在 1-C 之间增大了一个压头差,当然,流量系数也就增大了。

相关文档
最新文档