数学建模MATLAB之线性规划

合集下载

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。

本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。

一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。

通常包括最大化或最小化目标函数,并满足一系列约束条件。

1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。

决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。

1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。

通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。

二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。

整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。

2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。

2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。

三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。

3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。

3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划和整数规划是数学规划中常见的两种优化问题。

Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数来解决这些问题。

本文将介绍如何使用Matlab求解线性规划和整数规划问题,并提供详细的步骤和示例代码。

一、线性规划问题的求解线性规划问题可以表示为如下形式的数学模型:```minimize c'*xsubject to A*x <= blb <= x <= ub```其中,c是目标函数的系数向量,x是决策变量向量,A是不等式约束矩阵,b 是不等式约束向量,lb和ub分别是决策变量的下界和上界。

Matlab中求解线性规划问题可以使用`linprog`函数。

下面是一个示例:```matlabc = [1; 2; 3]; % 目标函数的系数向量A = [1, -1, 2; 3, 1, 0]; % 不等式约束矩阵b = [4; 5]; % 不等式约束向量lb = zeros(3, 1); % 决策变量的下界ub = [Inf; Inf; 10]; % 决策变量的上界[x, fval] = linprog(c, A, b, [], [], lb, ub);```在上面的示例中,我们定义了目标函数的系数向量c,不等式约束矩阵A,不等式约束向量b,以及决策变量的下界lb和上界ub。

然后使用`linprog`函数求解线性规划问题,得到最优解x和最优目标函数值fval。

二、整数规划问题的求解整数规划问题是线性规划问题的一个扩展,要求决策变量取整数值。

Matlab中求解整数规划问题可以使用`intlinprog`函数。

下面是一个示例:```matlabc = [1; 2; 3]; % 目标函数的系数向量A = [1, -1, 2; 3, 1, 0]; % 不等式约束矩阵b = [4; 5]; % 不等式约束向量lb = zeros(3, 1); % 决策变量的下界ub = [Inf; Inf; 10]; % 决策变量的上界intcon = [1; 2]; % 决策变量的整数约束[x, fval] = intlinprog(c, intcon, A, b, [], [], lb, ub);```在上面的示例中,我们除了定义了线性规划问题的参数外,还定义了决策变量的整数约束intcon。

线性规划问题求解----数学建模实验报告

线性规划问题求解----数学建模实验报告

084实验报告1、实验目的:(1)学会用matlab软件解决线性规划问题的最优值求解问题。

(2)学会将实际问题归结为线性规划问题用MATLAB软件建立恰当的数学模型来求解。

(3)学会用最小二乘法进行数据拟合。

(4)学会用MATLAB提供的拟合方法解决实际问题。

2、实验要求:(1)按照正确格式用MATLAB软件解决课本第9页1.1、1.3,第100页5.1、5.3这几个问题,完成实验内容。

(2)写出相应的MATLAB程序。

(3)给出实验结果。

(4)对实验结果进行分析讨论。

(5)写出相应的实验报告。

3、实验步骤:(1)、对于习题1.1:a.将该线性规划问题首先化成MATLAB标准型b.用MATLAB软件编写正确求解程序:程序如下:c=[3,-1,-1];a=[4,-1,-2;1,-2,1]; b=[-3;11]aeq=[-2,0,1]; beq=1;[x,y]=linprog(-c,a,b,aeq,beq,zeros(3,1))x,y=-y(2)、对于习题1.3:a.建立适当的线性规划模型:对产品I 来说,设以A1,A2完成A 工序的产品分别为x 1,x 2件,转入B 工序时,以B1,B2,B3完成B 工序的产品分别为x 3,x 4,x 5件;对产品II 来说,设以A1,A2完成A 工序的产品分别为x 6,x 7件,转入B 工序时,以B1完成B 工序的产品为x 8件;对产品III 来说,设以A2完成A 工序的产品为x 9件,则以B2完成B 工序的产品也为x 9件。

由上述条件可得x 1+x 2=x 3+x 4+x 5, x 6+x 7=x 8.由题目所给的数据可建立如下的线性规划模型:Min z =(1.25-0.25)( x 1+x 2)+(2-0.35) x 8+(2.8-0.5) x 9-3006000(5x 1+10x 6)-32110000(7x 2+9x 7+12x 9)- 2504000(6x 3+8x 8)-7837000 (4x 4+11x 9)-2004000⨯7x 5s.t.{ 5x 1+10x 6≤60007x 2+9x 7+12x 9≤100006x 3+8x 8≤40004x 4+11x 9≤70007x 5≤4000x 1+x 2=x 3+x 4+x 5 x 6+x 7=x 8x i ≥0,i =1,2,3,…9 b.运用MATLAB 软件编写程序求解:程序如下:c=[0.75,1-(321*7*0.0001),-16*6,(-783*4)/7000,-7/20,-0.5,-321*9*0.0001,1.15,2.3-(321*12*0.0001-(783*11)/7000)]; a=[-5,0,0,0,0,-10,0,0,0;0,-7,0,0,0,0,-9,0,-12;0,0,-6,0,0,0,0,-8,0;0,0,0,-4,0,0,0,0,-11;0,0,0,0,-7,0,0,0,0]; b=[-6000;-10000;-4000;-7000;-4000];aeq=[1,1,-1,-1,-1,0,0,0,0;0,0,0,0,0,1,1,-1,0];beq=[0;0];[x,y]=linprog(c,a,b,aeq,beq,zeros(3,1))(3)、对于习题5.1:用MATLAB中的三次函数,二次函数,四次函数进行数据拟合,然后与原来结果进行比较。

matlab线性规划

matlab线性规划

matlab线性规划线性规划(Linear Programming)是运筹学中的一种优化问题,指的是在一定的约束条件下,寻找一个线性函数的最优值。

该方法被广泛运用于经济学、管理学、工程学等各个领域。

在MATLAB中,我们可以使用线性规划工具箱来进行线性规划问题的求解。

在MATLAB中,线性规划问题可以通过函数linprog来求解。

linprog函数的一般形式如下:x = linprog(f, A, b, Aeq, beq, lb, ub)其中f是目标函数的系数矩阵,A和b是约束条件Ax ≤ b的系数矩阵和右侧向量,Aeq和beq是等式约束条件Aeqx = beq的系数矩阵和右侧向量,lb和ub是变量的下界和上界向量。

解x是一个n维向量,即最优解。

下面举一个简单的例子来说明如何使用MATLAB求解线性规划问题:假设我们有如下线性规划问题:最大化目标函数 f = [3, 4] * x约束条件为:A = [1, 1; 2, 1; -1, 2]b = [5; 8; 2]lb = [0; 0]ub = []我们可以使用linprog函数来求解:f = [-3, -4]; % 目标函数系数矩阵A = [1, 1; 2, 1; -1, 2]; % 不等式约束条件系数矩阵b = [5; 8; 2]; % 不等式约束条件右侧向量lb = [0; 0]; % 变量的下界向量ub = []; % 变量的上界向量x = linprog(f, A, b, [], [], lb, ub)最终得到的解x为[2; 3],即最优解为x1 = 2,x2 = 3,最优值为f(x) = 17。

通过MATLAB的线性规划工具箱,我们可以方便地求解各种线性规划问题。

无论是简单的二维问题还是更加复杂的高维问题,都可以通过MATLAB轻松求解。

matlab求解线性规划

matlab求解线性规划

matlab求解线性规划MATLAB是一个强大的工具,可以用于求解线性规划问题。

线性规划是一种最优化问题,目标是在满足一系列线性约束条件下,找到一个使目标函数取得最大或最小值的解。

在MATLAB中,可以使用线性规划工具箱来求解线性规划问题。

线性规划工具箱提供了一些函数,如linprog,intlinprog和quadprog,这些函数可以用于求解线性规划问题。

解线性规划问题的一般步骤如下:1. 定义目标函数。

目标函数是要优化的函数,可以是线性函数。

例如,如果我们要最小化一个函数f(x)=c1x1+c2x2+...+cnxn,则可以将目标函数表示为向量c=[c1,c2,...,cn]的内积与向量x=[x1,x2,...,xn]。

2. 定义约束条件。

约束条件是对决策变量的限制条件。

一般情况下,约束条件可以表示为Ax<=b,其中A是一个矩阵,x是决策变量向量,b是一个向量。

例如,如果我们有两个约束条件2x1+x2<=10和x1+3x2<=12,则可以将约束条件表示为矩阵A=[2,1;1,3]和向量b=[10;12]。

3. 调用线性规划函数。

在MATLAB中,可以使用linprog函数来求解线性规划问题。

linprog函数有几个输入参数,包括目标函数系数向量c,约束条件矩阵A和向量b,以及可选参数lb和ub。

参数lb和ub是可选参数,用于指定决策变量的下界和上界。

例如,要求解上述线性规划问题,可以调用linprog函数如下:x = linprog(c, A, b)函数linprog返回一个向量x,其中包含目标函数取得最小值时的决策变量的取值。

4. 分析结果。

一旦线性规划问题被求解,我们可以通过检查目标函数的值和决策变量的取值来分析结果。

例如,目标函数的值就是目标函数取得最小值时的值,其中决策变量的取值可以用x变量表示。

总结而言,MATLAB是一个功能强大的工具,可以用于求解线性规划问题。

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。

整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。

在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。

以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。

1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。

目标函数可以是最小化或者最大化某个线性表达式。

b. 定义约束条件:其次,需要定义线性规划问题的约束条件。

约束条件可以是等式或者不等式形式的线性表达式。

c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。

d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。

e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。

2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。

b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。

c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。

d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。

下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。

例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为200元。

生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。

工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。

求解如何安排生产,使得利润最大化。

1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。

数学建模MATLAB之线性规划

数学建模MATLAB之线性规划
数学建模与数学实验
线性规划
实验目的
1. 了解线性规划的基本内容.
2. 掌握用数学软件包求解线性规划问题.
实验内容
1. 两个引例. 2. 用数学软件包MATLAB求解线性规划问题. 3. 用数学软件包LINDO、LINGO求解线性规划问题. 4. 建模案例:投资的收益与风险. 5. 实验作业.
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
8 4 x1 8 3 x 2 32 x1 24 x 2 因检验员错检而造成的损失为:
( 8 25 2 % x1 8 15 5 % x 2 ) 2 8 x1 12 x 2
故目标函数为:
min z ( 32 x1 24 x 2 ) ( 8 x1 12 x 2 ) 40 x1 36 x 2
建立模型
决策变量 目标函数 x1桶牛奶生产A1 x2桶牛奶生产A2
获利 24×3x1 获利 16×4 x2 每天获利 m ax z 7 2 x1 6 4 x 2
原料供应
x 1 x 2 50
12 x 1 8 x 2 480
约束条件
劳动时间 加工能力 非负约束
Hale Waihona Puke 3 x 1 100 x1 , x 2 0

设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3, 在乙车床上加工工件1、2、3的数量分别为x4、x5、x6,可建立以 下线性规划模型:
min z 13 x 1 9 x 2 10 x 3 11 x 4 12 x 5 8 x 6
x 1 x4 400 x x5 6 0 0 2 x3 x6 5 0 0 s.t. 0 .4 x1 1 .1 x 2 x 3 8 0 0 0 .5 x 1 .2 x 1 .3 x 9 0 0 4 5 6 x i 0, i 1, 2, , 6

用Matlab软件求线性规划

用Matlab软件求线性规划

Matlab软件
Matlab软件
结果输出如下: Optimization terminated successfully. x= 0.0000 50.0000 0.0000 f = -100.0000 当A、B、C产品的日产量分别为0件,50件,0件时, 总收益为100元/件
Matlab软件
例1
3 4
2
6 5
3
150h 200kg
每天供应原材料200kg,每天可供使用的劳动力为150h, 求各种产品的日产量为多少时,总收益最大?
Matlab软件
问题的求解:
产品A 劳动力(h/件) 7 原材料(kg/件) 4 利润 (元/kg) 4 产品B 3 4 2 产品C 资源限量 6 150h 5 200kg 3
目标函数:max(min)z=c1x1+c2x2+c3x3+…+cnxn 约束条件:a11x1+a12x2+a13x3+…+a1nxn ≤(= ≥)b1 a21x1+a22x2+a23x3+…+a2nxn ≤(=≥)b2 … … … … am1x1+am2x2+am3x3+…+amnxn ≤(= ≥)bn 非负性约束:x1 ≥0,x2 ≥0,…,xn ≥0
车床 类 型 甲 乙 单位工件所需加工台时 数 可用台 时数 800 900 单位工件的加工费用
工件1
0.4 0.5
工件2
1.1 1.2
工件3
1.0 1.3
工件1
13 11
工件2
9 12
工件3
10 8
Matlab软件

设在甲车床上加工工件1、2、3的数量分别为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m in z ( 6
3
x1 4) x 2 x 3

x 1 30 0 x 2 50
x 3 20
s .t .
1 0
1 1
x1 1 x2 0 x 3

120 50
于加工三种工件.假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用三种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表.问怎样分配车床的加工任务,才能既满足加工工件的要 求,又使加工费用最低?
车床 类 型 甲 乙 单位工件所需加工台时数 工件 1 0.4 0.5 工件 2 1.1 1.2 工件 3 1.0 1.3 单位工件的加工费用 工件 1 13 11 工件 2 9 12 工件 3 10 8 可用台 时数 800 900
解: 编写M文件xxgh2.m如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; To MATLAB (xxgh2) vlb=[30,0,20]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
约束条件为:
8 25 x1 8 15 x 2 1800 8 25 x1 1800 8 15 x 2 1800 x 0, x 0 1 2
线性规划模型:
min z 40 x1 36 x 2
s.t.
5 x1 3 x 2 4 5 x1 9 x2 15 x 0, x 0 1 2
3. 模型:min z=cX
s.t. AX b
Aeq X beq
VLB≤X≤VUB 命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB)
[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束: Aeq beq=[ ]. [2]其中X0表示初始点 4. 命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
0 . 02 x 1 0 . 05 x 4 700
0 . 02 x 2 0 . 05 x 5 100 0 . 03 x 3 0 . 08 x 6 900
xj 0 j 1, 2, , 6
解 编写M文件xxgh1.m如下: c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900];

优化模型的分类
实际问题中 m in ( 或 m ax ) z f ( x ), x ( x1 , , x n ) T 的优化模型 s.t. g i ( x ) 0, i 1, 2, , m x是决策变量 线性规划(LP) 二次规划(QP) 非线性规划(NLP) f(x)是目标函数 数学规划 0-1整数规划 一般整数规划 纯整数规划(PIP) 混合整数规划(MIP) gi(x)0是约束条件
x1 x2 x 3 ,X x4 x5 x 6 0
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 400 0 X 600 50 Nhomakorabea 1
编写M文件xxgh3.m如下: f = [13 9 10 11 12 8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [800; 900]; Aeq=[1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; To MATLAB (xxgh3) beq=[400 600 500]; vlb = zeros(6,1); vub=[]; [x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3, 在乙车床上加工工件1、2、3的数量分别为x4、x5、x6,可建立以 下线性规划模型:
min z 13 x 1 9 x 2 10 x 3 11 x 4 12 x 5 8 x 6
x 1 x4 400 x x5 6 0 0 2 x3 x6 5 0 0 s.t. 0 .4 x1 1 .1 x 2 x 3 8 0 0 0 .5 x 1 .2 x 1 .3 x 9 0 0 4 5 6 x i 0, i 1, 2, , 6
8 4 x1 8 3 x 2 32 x1 24 x 2 因检验员错检而造成的损失为:
( 8 25 2 % x1 8 15 5 % x 2 ) 2 8 x1 12 x 2
故目标函数为:
min z ( 32 x1 24 x 2 ) ( 8 x1 12 x 2 ) 40 x1 36 x 2
建立模型
决策变量 目标函数 x1桶牛奶生产A1 x2桶牛奶生产A2
获利 24×3x1 获利 16×4 x2 每天获利 m ax z 7 2 x1 6 4 x 2
原料供应
x 1 x 2 50
12 x 1 8 x 2 480
约束条件
劳动时间 加工能力 非负约束
3 x 1 100 x1 , x 2 0
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
To MATLAB (xxgh1)
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例2
min z 6 x 1 3 x 2 4 x 3 s.t. x1 x 2 x 3 1 2 0
min z 40
问题
x1 36 x 2

s . t.
5
x1 3 x 2
( 45 )
编写M文件xxgh4.m如下:
c = [40;36]; A=[-5 -3]; b=[-45]; Aeq=[]; To MATLAB (xxgh4) beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
数学建模与数学实验
线性规划
实验目的
1. 了解线性规划的基本内容.
2. 掌握用数学软件包求解线性规划问题.
实验内容
1. 两个引例. 2. 用数学软件包MATLAB求解线性规划问题. 3. 用数学软件包LINDO、LINGO求解线性规划问题. 4. 建模案例:投资的收益与风险. 5. 实验作业.
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
X beq
, 则令Aeq=[ ],
例1
max
s.t.
z 0 . 4 x 1 0 . 28 x 2 0 . 32 x 3 0 . 72 x 4 0 . 64 x 5 0 . 6 x 6 0.01 x1 0.01 x 2 0.01 x 3 0.03 x 4 0.03 x 5 0.03 x 6 850
x1 30 0 x 2 20 x3
例3 问题一的解答
改写为: s.t.
问题
min z 13
0 .4 0 1 .1 0 1 0
9
0 0 .5
10
0 1 .2
11
12
8 X
0 800 X 1 .3 900
1桶 牛奶 或 12小时 8小时 3千克A1 获利24元/千克
4千克A2
获利16元/千克
每天: 50桶牛奶 时间: 480小时 至多加工100千克A1 制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/千克,是否应改变生产计划?
结果为: x = 9.0000 0.0000 fval =360 即只需聘用9个一级检验员.
注:本问题应还有一个约束条件:x1、x2取整数.故它是
一个整数线性规划问题.这里把它当成一个线性规划来解, 求得其最优解刚好是整数:x1=9,x2=0,故它就是该整数 规划的最优解.若用线性规划解法求得的最优解不是整数, 将其取整后不一定是相应整数规划的最优解,这样的整数 规划应用专门的方法求解.
结果:
x =
0.0000 600.0000 0.0000 400.0000 0.0000 500.0000 fval =1.3800e+004
即在甲机床上加工600个工件2,在乙机床上加工400个工件1、 500个工件3,可在满足条件的情况下使总加工费最小为13800.
例2 问题二的解答
改写为:
X2
30.000000
0.000000
ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 48.000000
3)
4)
0.000000
40.000000 2
2.000000
0.000000
NO. ITERATIONS=
返 回
用LINDO、LINGO优化工具箱解线性规划
一、LINDO软件包
下面我们通过一个例题来说明LINDO 软件包的使用方法.
相关文档
最新文档