小学奥数 小升初应用题重点考查内容—牛吃草问题

合集下载

(完整版)小学奥数之牛吃草问题(含答案)

(完整版)小学奥数之牛吃草问题(含答案)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

(完整版)小升初数学牛吃草问题

(完整版)小升初数学牛吃草问题

小升初----牛吃草问题英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲:板块一:一块地的“牛吃草问题”【例 1】 一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【解析】 设1头牛1天的吃草量为“1”,27头牛吃6周共吃了276162⨯=份;23头牛吃9周共吃了239207⨯=份.第二种吃法比第一种吃法多吃了20716245-=份草,这45份草是牧场的草963-=周生长出来的,所以每周生长的草量为45315÷=,那么原有草量为:16261572-⨯=.供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612÷=(周)可将原有牧草吃完,即它可供21头牛吃12周.【巩固】 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【解析】 设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200⨯=份;15头牛吃10天共吃了1510150⨯=份.第一种吃法比第二种吃法多吃了20015050-=份草,这50份草是牧场的草201010-=天生长出来的,所以每天生长的草量为50105÷=,那么原有草量为:200520100-⨯=.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205÷=(天)可将原有牧草吃完,即它可供25头牛吃5天.【例 2】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【巩固】牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头牛96天可以把草吃完.【例 3】 有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【解析】 设1头牛1天的吃草量为“1”,那么每天生长的草量为()()1730192430249⨯-⨯÷-=,原有草量为:()17930240-⨯=.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完,如果不卖掉这4头牛,那么原有草量需增加428⨯=才能恰好供这些牛吃8天,所以这些牛的头数为()24088940+÷+=(头).【巩固】 一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【解析】 设1头牛1天的吃草量为“1”,那么每天生长的草量为()()44053040301⨯-⨯÷-=,原有草量为:()5130120-⨯=.如果4头牛吃30天,那么将会吃去30天的新生长草量以及90原有草量,此时原有草量还剩1209030-=,而牛的头数变为6,现在就相当于:“原有草量30,每天生长草量1,那么6头牛吃几天可将它吃完?”易得答案为:()30616÷-=(天).模块二:“牛吃草问题”的变形【例 4】 一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?【解析】 设1人1小时淘出的水量是“1”,淘水速度是(58103)(83)2⨯-⨯÷-=,原有水量(102)324-⨯=,要求2小时淘完,要安排242214÷+=人淘水练习 一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?【例 5】 画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队。

小学奥数 牛吃草问题 知识点+例题+练习 (分类全面)

小学奥数 牛吃草问题 知识点+例题+练习 (分类全面)
例5、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?
拓展:自动扶梯以均匀速度行驶着,小明和小红从扶梯上楼。已知小明每分钟走25级台阶,小红 每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上。该扶梯共有多少级台阶?
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
解决牛吃草问题主要抓住两个量:
(1)、原有草量
(2)、每天生长草量
例1、牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。如果牧草每周匀速生长,可供21头牛吃几周?
例6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水。如果用12人舀水,3小时舀完。如果只有5个人舀水,要10小时才能舀完。现在要想2小时舀完,需要多少人?
拓展:有一水池,池底有泉水不断涌出。用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?
教学内容
牛吃草问题
教学目标
能理解牛吃草问题并会解决问题
重点
用二元一次方程组求原有草量和每天生长草量
难点
用二元一次方程组求原有草量和每天生长草量




课堂精讲
顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

小升初数学牛吃草问题及答案 (89)

小升初数学牛吃草问题及答案 (89)

小升初数学牛吃草问题
1.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?
【分析】这是典型的牛吃草问题,要先求出变化的量(船每分钟涌进的水量)和不变的量(船里原有的水量);由于每人的工作效率是一定的,所以可以用3人淘水和6人淘水的工作总量之差÷时间差(40﹣16)即为船每分钟涌进的水量,然后用三人40分钟的工作总量﹣40分钟涌进的水量就是船里原有的水量,进而可以求出5人,多少时间可以把水淘完.
【解答】解:设每人每分钟的淘水量为1份,
船每分钟涌进的水量为:(3×40﹣6×16)÷(40﹣16)
=24÷24
=1(份)
船里原有水量为:
3×40﹣40×1=80(份)或6×16﹣16×1=80(份);
船每分钟涌进的水即1份,要用1人去淘,剩下5﹣1=4人就要去淘原有的水:
80÷(5﹣1)
=80÷4
=20(分钟)
答:5人淘水20分钟可以把水淘完.
【点评】本题关键是先求出:船每分钟涌进的水量和船里原有的水量,这是牛吃草问题应用题解答的突破口.
第1 页共1 页。

小升初数学牛吃草问题及答案 (50)

小升初数学牛吃草问题及答案 (50)

小升初数学牛吃草问题
1.一堆草,可供3头牛和5只羊吃15天,或供5头牛和6只羊吃10天,那么这堆草可以供8牛头和11只羊吃多少天?
【分析】由题意知:(3头牛+5只羊)吃15天的量=(5头牛+6只羊)吃10天的量,这样可算出“一头牛每天的吃草量=3只羊一天的吃草量”;所以8头牛和11只羊可以吃的天数我们可以等式(3×3+5)×15÷(8×3+11)算出(即用草的总量÷每天消耗的量=天数).
【解答】解:5×10﹣3×15=5
6×10﹣15×3=15
5:15=1:3(1头牛相当于3只羊的消耗)
(3×3+5)×15÷(8×3+11)=6(天)
答:这堆草可以供8头牛和11只羊吃6天.
【点评】解此题的关键是想到算出牛与羊消耗量之间的关系,这样便于解答.
第1 页共1 页。

小升初数学牛吃草问题及答案 (26)

小升初数学牛吃草问题及答案 (26)

小升初数学牛吃草问题
1.牧场上一片青草,每天生长速度相同,可供27头牛吃6天,或供69只羊吃9天,如果1头牛的吃草量等于3只羊的吃草量,那么这片青草可供11头牛和30只羊吃几天?
【分析】假设每头牛每天吃青草1份,69只羊相当于69÷3=23头牛,先求出青草的生长速度:(23×9﹣27×6)÷(9﹣6)=15(份);然后求出草地原有的草的份数27×6﹣15×6=72(份);30只羊相当于30÷3=10头牛,再让11+10=21头牛中的15头吃生长的草,剩下的6头牛吃草地原有的72份草,可吃:72÷6=12(天).
【解答】解:假设每头牛每天吃青草1份,
69÷3=23(头)
30÷3=10(头)
青草的生长速度:
(23×9﹣27×6)÷(9﹣6)
=45÷3
=15(份)
草地原有的草的份数:
27×6﹣15×6
=162﹣90
=72(份)
11+10=21(头)
每天生长的15份草可供15头牛去吃,那么剩下的21﹣15=6头牛吃72份草:
72÷(21﹣15)
=72÷6
=12(天)
答:这片青草可供11头牛和30只羊吃12天.
【点评】此题属于典型的牛吃草的最基本类型的题目,只要设出每头牛每天吃“1”份草,求出牧场每天的长草量和牧场原有的草量,问题即可解决.
第1 页共1 页。

(完整版)小升初牛吃草问题

(完整版)小升初牛吃草问题

牛吃草问题【小升初前沿】牛吃草问题是牛顿问题,因牛顿提出而得名的。

“一堆草可供10 头牛吃 3 天,供6头牛吃几天?”这题很简单,用3X10弋=5 (天)。

如果把“一堆草” 换成“一片正在生长的草地”,问题就不那么简单了。

因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。

解答这类题的关键是要想办法从变化中找到不变的量。

牧场上原有的草是不变的,新长出来的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。

正确计算草地上原有的草及每天长出的新草,问题就容易解决了。

【考点攻略】生长模型:(1)设定一头牛一天吃草量为“ 1”(2)草的生长速度=(对应的牛头数>吃的较多天数-对应的牛头数X吃的较少的天数)十(吃的较多的天数-吃的较少的天数)(3)原有草量=牛头数X吃的天数-草的生长速度X吃的天数求:(4)吃的天数=原有草量十(牛头数-草的生长速度)或(5)牛头数=原有草量却吃的天数+草的生长速度。

枯萎模型:(1)设定一头牛一天吃草量为“ 1”(2)草的生长速度=(对应的牛头数X乞的较少天数-对应的牛头数X吃的较多的天数)十(吃的较多的天数-吃的较少的天数)(3)原有草量=牛头数X吃的天数+草的生长速度X吃的天数求:(4)吃的天数=原有草量十(牛头数+草的生长速度)或(5)牛头数=原有草量却吃的天数-草的生长速度。

牢记两类模型,理解模型的计算方法和原理,并且能够正确的分析题目,理解题目,就可以轻而易举的解决“牛吃草问题”。

【真题试炼】【例1】一片青草地,每天都匀速长出青草,这片青草可供27 头牛吃 6 周或者23 头牛吃9 周。

那么这片草地可供21 头牛吃几周?【练1】牧场上一片草地,每天牧草都匀速生长。

这片牧草可供10 头牛吃20天,或者可供15 头牛吃10 天。

问可供25 头牛吃几天?【练2】一片草地,每天都匀速长出青草。

如果可供24 头牛吃 6 天,20 头牛吃10 天吃完。

秋季六年级奥数-[第8讲]小升初应用题重点考查内容-牛吃草问题

秋季六年级奥数-[第8讲]小升初应用题重点考查内容-牛吃草问题

秋季班六年级奥数
小升初应用题重点考查内容——
牛吃草问题
(★★)
有一块匀速生长的草场,27头牛6周可以吃完,或者23头牛9周可以吃完。

若是21头牛,要几周才可以吃完?
(★★★)
有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。

那么它可供几头牛吃20天?
(★★★)
有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?
(★★★★)
有三块草地,面积分别为5公顷、15公顷和24公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。

问:第三块草地可供多少头牛吃80天?
(★★★★)
画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。

求第一个观众到达的时间。

(★★★★★)
小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米,_____分钟可以追上小明?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初应用题重点考查内容——
牛吃草问题
(★★)
有一块匀速生长的草场,27头牛6周可以吃完,或者23头牛9周可以吃完。

若是21头牛,
要几周才可以吃完?
(★★★)
有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。

那么它可供几头牛
吃20天?
(★★★)
有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草
吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。

那么,17头牛和20只羊多少天可
将草吃完?
1
(★★★★)
有三块草地,面积分别为5公顷、15公顷和24公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。

问:第三块草地可供多少头牛吃80天?
(★★★★)
画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。

求第一个观众到达的时间。

(★★★★★)
小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米,_____分钟可以追上小明?
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.★★★牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?
A.19 B.25
C.15 D.30
2.★★★牧场上长满牧草,牧草每天匀速生长,这片牧草每天可供54头牛吃12天,或者可供44头牛吃16天,那么这片牧草可供38头牛吃多少天?
A.24 B.20
C.25 D.21
3.★★★★牧场有一片青草,每天生长速度相同。

已知这片青草可供18只羊吃20天,或可供100只兔子吃12天。

如果一只羊的吃草量等于4只兔子的吃草量,那么10只羊和70只兔子一块吃这片青草,可以吃几天?
A.10 B.11
C.12 D.10.5
4.★★★★牧场有三块草地,面积分别是4、8、12公亩,草地上的草一样密,生长一样快。

第一块地可供10只小鹿吃15天,第二块地可供14只小鹿吃25天,第三块地可供15
A.45 B.40
C.43 D.50
5.★★★★画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点10分就不再有人排队;如果开5个入场口,8点50分就没有人排队。

求第一个观众到达的时间。

A.7:40 B.7:35
C.7:20 D.7:10。

相关文档
最新文档