四川省高三上学期摸底数学试卷(理科)

合集下载

四川省成都市石室中学高三数学模拟(理科)

四川省成都市石室中学高三数学模拟(理科)

四川省成都市石室中学高三数学模拟试卷(理科)一、选择题:只有唯一正确答案,每小题5分,共50分2.(5分)复数的虚部是()解:复数==i3.(5分)已知,则的值为()...)﹣﹣﹣)﹣(﹣)4.(5分)阅读右边的程序框图,运行相应的程序,则输出s的值为()6.(5分)函数f(x)=Asin(ωx+φ)的部分图象如图所示,则此函数的解析式为()..D,由=3,T=.x+∴×.2=≥﹣8.(5分)O为平面上的定点,A、B、C是平面上不共线的三点,若,则△ABC是(),由条件可得2,故⊥∵∴﹣2∴•,∴⊥9.(5分)反复抛掷一枚质地均匀的骰子,每一次抛掷后都记录下朝上一面的点数,当记录10.(5分)已知关于x的方程﹣2x2+bx+c=0,若b、c∈{0,1,2,3,4},记“该方程有实数....二、填空题:每小题5分,共25分11.(5分)已知数列{a n}的前n项和,则a n=﹣3×2n﹣1(n∈N*).,得(12.(5分)(1+2x)n的展开式中x3的系数等于x2的系数的4倍,则n等于8.(•,4=4,=2×,解得13.(5分)如图是一个空间几何体的主视图、左视图、俯视图,如果主视图、左视图所对应的三角形皆为边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体积为.高为的正四棱锥,,高为的正四棱锥V==故答案为:14.(5分)设向量与的夹角为θ,,,则cosθ等于.先求出解:∵∴=∴==故答案为:15.(5分)定义在(﹣1,1)上的函数f(x)满足:对任意x,y∈(﹣1,1),恒成立.有下列结论:①f(0)=0;②函数f(x)为(﹣1,1)上的奇函数;③函数f(x)是定义域内的增函数;④若,且a n∈(﹣1,0)∪(0,1),则数列{f(a n)}为等比数列.其中你认为正确的所有结论的序号是①②④.,可证出,当,,则,则,所以,,,则=f三、解答题(共6小题,满分75分)16.(12分)已知△ABC的面积S满足,的夹角为θ.(Ⅰ)求θ的取值范围;(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.)由题意知=3tan∵∴,∴,∴.,∴,即时,,)的最大值为17.(12分)三棱锥P﹣ABC中,PA=PB=PC,∠ACB=90°,AC=CB=2.(Ⅰ)求证:平面PAB⊥平面ABC;(Ⅱ)若,且异面直线PC与AD的夹角为60°时,求二面角P﹣CD﹣A的余弦值.中,∴∵为正三角形,解得,,,∵,∴,∵,取的法向量为∴18.(12分)设函数y=f(x)满足:对任意的实数x∈R,有f(sinx)=﹣cos2x+cos2x+2sinx ﹣3.(Ⅰ)求f(x)的解析式;(Ⅱ)若方程有解,求实数a的取值范围.先验证当时方程2a=的值域即可,分类讨论:①当时,当时,时,,则,因为函数时,,则,,+3(19.(12分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)﹣﹣取最大值,且时,当且仅当x=x=21.(13分)设数列{a n}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)若,求数列{b n}的前n项和S n;(Ⅲ)若,求证:.∴,)证明:22.(14分)已知函数.(Ⅰ)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;(Ⅱ)当x>0时,恒成立,求整数k的最大值;(Ⅲ)试证明:(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))>e2n﹣3.时,恒成立,即)知:)解:由题恒成立,即,则,则,知:∴=高考资源网版权所有!投稿可联系QQ:1084591801。

2021届四川省成都市普通高中高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)

2021届四川省成都市普通高中高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)

绝密★启用前四川省成都市普通高中2021届高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|02}A x x =<<,{|1}B x x =≥,则A B =C(A)}10|{≤<x x (B)}10|{<<x x(C)}21|{<≤x x (D)}20|{<<x x解:{|12}A B x x =≤<,故选C2.复数i i i z (22-=为虚数单位)在复平面内对应的点位于B (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 解:22(2)24242(2)(2)555i i i i z i i i i +-+====-+--+,其在复平面内对应的点的坐标为24(,)55-,故选B 3.已知函数=)(x f ⎩⎨⎧>≤-.0,ln 0|,1|x x x x ,则1(())f f e =D (A)0 (B)1 (C)1-e (D)2 解:11()ln 1f e e ==-,1(())(1)|2|2f f f e=-=-=,故选D 4.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部,教育部,团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高=(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日’’宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 8217 37 93 23 78 87 35 20 96 4384 26 34 91 64 84 42 17 53 3157 24 55 06 88 77 04 74 47 6721 76 33 50 25 83 92 12 06 76若从随机数表第6行第9列的数开始向右读则抽取的第5名学生的学号是C(A)17 (B)23 (C)35 (D)37 解:读取的前5名学生的学号依次是:39,17,37,23,35, 故选C5. ‘‘3=k ”是“直线2+=kx y 与圆122=+y x 相切”的A(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件解:直线2+=kx y 与圆122=+y x 相切时1=,解得k =.故选A6.已知离心率为2的双曲线22221(0x y a a b -=>,)0>b 与椭圆22184x y +=有公共焦点,则双曲线的方程为C。

成都市高三数学理科摸底测试

成都市高三数学理科摸底测试

成都市高中毕业班摸底测试数 学(理科)一.选择题:(本题共14个小题,每小题5分,共70分) 1.条件:||p x x =,条件2:q x x ≥-,则p 是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.函数22(1)y x x x =+<-的反函数是A.1(1)y x =<- B.1(1)y x =>-C.1(1)y x =<-D.1(1)y x =>-3.如果向量a 和b 满足||1,||a b = ()a a b ⊥-,那么a 与b 的夹角大小为 A.30°B.45°C.75°D.135°4.将椭圆229161864710x y x y +---=按向量a 平移,使中心与原点重合,则a的坐标为A.(1,2)B.(-1,-2)C.(-1,2)D.(1,-2)5.若θ是第三象限角,且445sin cos 9θθ+=,那么sin 2θ的值为A.23B.23-C.3D. 3-6.与函数222x y -=+的图象关于直线y x =对称的曲线经过点A.(2,3)B.(2,2)C.(3,2)D.(3,3)7.在同一个坐标系内,为了得到3sin(2)4y x π=+的图象,只需将3cos 2y x =的图象A.向左平移4πB. 向右平移4π C. 向左平移8π D. 向右平移8π 8.已知(2,3),(3,2)M N ---,直线l 经过(1,1)A 且与线段MN 相交,则直线l 的斜率k 的范围 A.34k ≥或4k ≤- B.344k -≤≤C.344k ≤≤ D.344k -≤≤ 9.如图,A 是平面BCD 外的一点,E 、F 、G 分别是BD 、DC 、CA 的中点。

设过这三点的平面为α,则在图中的6条直线AB ,AC ,AD ,BC ,CD ,DB 中,与平面α平行的直线有 A.0条 B.1条 C.2条 D.3条 10.甲、乙、丙三个单位分别需要招聘工作人员2名、1名、1名,现从10名应聘人员中招聘4人到甲、乙、丙三个单位,那么不同的招聘方法共有 A.1260种 B.2025种 C.2520种 D.5040种 11.321()nx x+的展开式中第6项系数最大,则不含x 的项为A .210 B. 10 C. 462 D. 25212.若θ是第三象限角,那么sin(cos )cos(sin )θθ的值A.大于零B.小于零C.等于零D.不能确定13.过椭圆22421x y +=的一个焦点1F 的直线交椭圆于A 、B 两点,则A 、B 与椭圆的另一个焦点2F 构成的2ABF △的周长为A.2B.4D.14.若12()(),,(),()22xa b abf x a b R A f B f C f a b++=∈===+、,则A 、B 、C 的大小为 A.A ≤B ≤C B.A ≤C ≤B C.C ≤B ≤AD.B ≤C ≤A二.填空题:(本大题共4小题,每小题5分,共20分) 15.若01a b <<<,则log ,log ,log a b bbb a a之间的大小关系是 16.已知m l 、是异面直线,给出下列命题:①一定存在平面α过m 且与l 平行; ②一定存在平面α与m ,l 都垂直; ③一定存在平面α过m 且与l 垂直;④一定存在平面α与m ,l 的距离都相等。

四川省成都市第二十中学校2022-2023学年高三上学期第一次模拟考试理科数学试题(含答案解析)

四川省成都市第二十中学校2022-2023学年高三上学期第一次模拟考试理科数学试题(含答案解析)

四川省成都市第二十中学校2022-2023学年高三上学期第一次模拟考试理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|(3)(1)0}A x x x =-+≤,{}2|1B y y x ==+,则A B ⋃等于()A .(1,)+∞B .[1,)-+∞C .(1,3]D .(1,)-+∞2.在复平面内,复数z 满足(1i)2z +=,则复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为A S 和B S ,样本极差分别为A y 和B y ,则()A .>AB x x ,A B S S >,A B y y <B .<A B x x ,A B S S >,A B y y >C .>A B x x ,A B S S <,A B y y >D .<A B x x ,A B S S <,A B y y <4.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .655.若直线():430R l mx y m m --+=∈与曲线()()22231x y -+-=有公共点,则m 的取值范围为()A .⎡⎣B .(C .⎡⎢⎣⎦D .⎛ ⎝⎭6.如图,C ,D 为以AB 的直径的半圆的两个三等分点,E 为线段CD 的中点,F 为BE的中点,设AB a=,AC b = ,则AF = ()A .5182a b+ B .5142a b+C .5184a b+D .5144a b+7.下列命题中,不正确的是()A .“若11a b<,则a b >”的否命题为假命题B .在锐角ABC 中,不等式sin cos A B >恒成立C .在ABC 中,若cos cos a A b B =,则ABC 必是等腰直角三角形D .在ABC 中,若2π,3B b ac ==,则ABC 必是等边三角形8.函数()()()sin 0,0,0f x A x A ωϕωπϕ=+>>-<<,其部分图像如图所示,下列说法正确的有()①2ω=;②56π=-ϕ;③3x π=是函数()f x 的极值点;④函数()f x 在区间7,1212ππ⎛⎫⎪⎝⎭上单调递增;⑤函数()f x 的振幅为1.A .①②④B .②③④C .①②⑤D .③④⑤9.已知n S 为数列{}n a 的前n 项和,且()*1121,2n n S a n N a +=+∈=,则下列式子正确的是()A .20212022202032a =B .20212022202232a =C .202120212019342S =-+D .202020212020312S =+10.设1F ,2F 分别为双曲线22221x ya b-=(a >0,b >0)的左、右焦点,若双曲线上存在一点P使得12PF PF +=,且12PF PF ab ⋅=,则该双曲线的离心率为()A .2BCD11.已知函数()2,1x f x x e =++若正实数,m n 满足(9)(2)2f m f n -+=,则21m n+的最小值为()A .8B .4C .83D .8912.如图,在棱长为2的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点,则下列结论正确的有()①棱AB 上一定存在点Q ,使得1QC D Q ⊥②三棱锥F EPH -的外接球的表面积为8π③过点E F G ,,作正方体的截面,则截面面积为④设点M 在平面11BB C C 内,且1//A M 平面AGH ,则1A M 与AB 所成角的余弦值的最大值为3A .1个B .2个C .3个D .4个二、填空题13.已知实数x ,y 满足01,0,2,x y x y ≤≤⎧⎪≥⎨⎪+≤⎩则32x y +的最大值为_______.14.已知平面向量()2,0a = ,()1,2b =-r ,若向量()c a a b b =+⋅ ,则c = ______.(其中c用坐标形式表示)15.已知△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c .若3A π=,4c =,△ABC的面积为ABC 的外接圆的半径为________.16.已知O 为坐标原点,抛物线C :()220y px p =>上一点A 到焦点F 的距离为4,设点M 为抛物线C 准线l 上的动点,给出以下命题:①若△MAF 为正三角形时,则抛物线C 方程为24y x =;②若AM l ⊥于M ,则抛物线在A 点处的切线平分MAF ∠;③若3MF FA =,则抛物线C 方程为26y x =;④若OM MA +的最小值为C 方程为28y x =.其中所有正确的命题序号是________.三、解答题17.设n S 为数列{}n a 的前n 项和,已知37a =,1222(2)n n a a a n -=+-≥.(1)证明:{}1n a +为等比数列;(2)求{}n a 的通项公式,并判断,,n n n a S 是否成等差数列?18.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.19.如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE V 沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)设F 为1CD 的中点,若M 为线段AB 上的一点,满足14AM AB =.求证:MF ∥平面1D AE ;(2)求点B 到平面1CD E 的距离.20.已知椭圆()2222:10x y C a b a b +=>>,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122B B =,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)当1k =时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.21.已知函数()ln f x x kx =-(R k ∈),()()2xg x x e =-.(1)求函数()f x 的极值点;(2)若()()1g x f x -≥恒成立,求k 的取值范围.22.如图,在平面直角坐标系xOy 中,以坐标原点为极点,极轴所在的直线为x 轴,建立极坐标系,曲线1C 是经过极点且圆心在极轴上直径为2的圆,曲线2C 是著名的笛卡尔心形曲线,它的极坐标方程为[]()1sin 0,2ρθθπ=-∈.(1)求曲线1C 的极坐标方程,并求曲线1C 和曲线2C 交点(异于极点)的极径;(2)曲线3C 的参数方程为cos 3sin3x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩(t为参数).若曲线3C 和曲线2C 相交于除极点以外的M ,N 两点,求线段MN 的长度.23.设函数()45f x x x =-+-的最小值为m .(1)求m ;(2)设123,,x x x R +∈,且123x x x m ++=,求证:22231212311114x x x x x x ++≥+++.参考答案:1.B【分析】根据集合的运算的定义求解.【详解】由(3)(1)0x x -+≤解得13x -≤≤,所以13{|}A x x =-≤≤,又因为211y x =+≥,所以{}|1B y y =≥,所以[1,)A B =-+∞ .故选:B.2.D【分析】先求出复数z ,即可求出答案.【详解】()()()21i 21i 1i 1i 1i z -===-++-,复数z 对应的点为()1,1-则复数z 对应的点位于第四象限故选:D.3.B【分析】观察图形可知,样本A 的数据均在[]2.5,10之间,样本B 的数据均在[]10,15之间,利用平均数,标准差,极差的定义可得解.【详解】观察图形可知,样本A 的数据均在[]2.5,10之间,样本B 的数据均在[]10,15之间,由平均数的计算可知<A B x x ,样本极差A B y y >样本B 的数据波动较小,故A B S S >,故选:B 4.C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.5.C【分析】根据直线与圆相交,结合点到直线的距离公式可得出关于实数m 的不等式,即可解得实数m 的取值范围.【详解】曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,由题意可知,圆心()2,3到直线l 的距离应小于等于半径1,1=≤,解得m ≤≤故选:C.6.A【分析】直接利用向量的线性运算计算即可.【详解】因为C ,D 为以AB 的直径的半圆的两个三等分点则AB //CD ,且2AB CD=又E 为线段CD 的中点,F 为BE 的中点()()1111111122222242AF AE AB AE AB AC CE AB AC CD AB=+=+=++=∴++25111152828182AC AB AB AC AB a b =++==++故选:A.7.C【分析】根据不等式的性质和正弦定理,余弦定理即可判断求解.【详解】对于A ,原命题的否命题为“若11a b≥,则a b ≤”,由11a b ≥得,110b a a b ab--=≥,得0b a ≥>或0a b ≤<或0b a <<,所以该否命题为假命题,故A 正确;对于B ,在锐角ABC 中,因为ππ()2C A B =-+<,所以π2A B >-,因为π,0,2A B ⎛⎫∈ ⎪⎝⎭,所以ππ0,22B ⎛⎫-∈ ⎪⎝⎭,又因为sin y x =在π0,2⎛⎫⎪⎝⎭单调递增,所以π2sin sin A B >-⎛⎫ ⎪⎝⎭,即sin cos A B >,故B 正确;对于C ,在ABC 中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B∴=,(0,π),22A B A B ∈∴= 或2π2A B =-,得A B =或π2A B +=,ABC ∴ 是等腰三角形或直角三角形,故C 错误;对于D ,由余弦定理2222cos b a c ac B =+-得222b a c ac =+-,又因为2b ac =,所以22220,()0a c ac a c +-=-=,所以a c =,又因为π3B =,所以ABC 是等边三角形,故D 正确,故选:C.8.C【分析】根据函数()f x 的部分图像求出函数的解析式,即可判断①②⑤是否正确;若=3x π是函数()f x 的极值点则=03f π⎛⎫⎪⎭'⎝,可判断③是否正确;求出()f x 的单调增、减区间,即可验证④是否正确;【详解】设()f x 的最小正周期为T ,根据函数()f x 的部分图像可知,512π,1112π是函数()f x 的两个相邻的零点,115212122T πππ∴=-=,T π∴=,222T ππωπ∴===,故①正确;根据函数()f x 的部分图像可知,1A =,故⑤正确;1A = ,2ω=,()()sin f x A x =+ωϕ,()()sin 2f x x ϕ∴=+,将5012π⎛⎫⎪⎝⎭,代入()()sin 2f x x ϕ=+中,5sin 2=012πϕ⎛⎫∴⨯+ ⎪⎝⎭,5=26k πϕπ∴+,56=2k πϕπ∴-,0πϕ-<< ,∴当0k =时,56π=-ϕ,故②正确;()5sin 26f x x π⎛⎫∴=- ⎪⎝⎭()562cos 2f x x π⎛⎫∴=- ⎪⎝⎭',若=3x π是函数()f x 的极值点则必有=03f π⎛⎫ ⎪⎭'⎝,而52cos 2=2cos 03636f ππππ⎛⎫⎛⎫⎛⎫=⨯--= ⎪ ⎪ ⎪⎝⎭⎝⎭'⎝⎭,3x π∴=不是函数()f x 的极值点,故③错误;由5222262k x k πππππ-≤-≤+,得263k x k ππππ+≤≤+,()f x \的单调递增区间为2[]63k k ππππ++,,由53222262k x k πππππ+≤-≤+得,2736k x k ππππ+≤≤+,()f x \的单调递减区间为27[]36k k ππππ++,()f x \在126ππ⎛⎫ ⎪⎝⎭,上单调递减,在7612ππ⎛⎫⎪⎝⎭,上单调递增,()f x \在71212ππ⎛⎫⎪⎝⎭,上不单调,故④错误.故选:C 9.D【分析】由已知得()*121n n S a n N +=+∈,+1221n n S a +=+,两式作差得+2132n n a a +=,再求得212a =,2132a a ≠,得数列{}n a 从第2项起构成以32为公比的等比数列,求得2n ≥时,n a ,n S ,代入判断可得选项.【详解】解:因为()*121n n S a n N +=+∈,所以+1221n n S a +=+,两式作差得()()+1+212+121n n n n S S a a +-=-+,即+1+2122n n n a a a +=-,所以+2132n n a a +=,又12a =,1221a a =+,解得212a =,211132242aa ==≠,所以数列{}n a 从第2项起构成以32为公比的等比数列,所以12a =,()22113,32222n n n n n a ---⎛⎫⨯=≥ ⎪⎝⎭=,()2111221333132+1++++2+22312++++1,23122222n n n n n a n S a a ---⎡⎤⎛⎫⎛⎫===⨯⎢⎥ ⎪ ⎝⎭⎝⎭⎢⎥⎣⎛⎫- ⎪⎛⎫⎝⎭=≥ ⎪⎭-⎦⎝ ,所以20222202020222022120213322a --==,故A 不正确,B 不正确;2021120012022+1+13322S -⎛⎫⎛⎫= ⎪ ⎝⎭⎝⎭=,所以202020212020312S =+,故C 不正确,D 正确,故选:D.10.B【分析】由双曲线的定义得到122PF PF a -=,再由题意知12PF PF +=,12PF PF ab ⋅=,三个式子组合即可得到22484ab b a =-,解出ba的值,在由双曲线的离心率为c e a =.【详解】()221212=8PF PF PF PF b+=∴+ ,,即222121228PF PF PF PF b ++⋅=①.根据双曲线的定义可得()2212122=4PF PF a PF PF a-=∴-,,即222121224PF PF PF PF a +-⋅=②,①减去②得2212484PF PF b a ⋅=-.12PF PF ab ⋅= ,故222222484221210bb b b ab b a ab b a aa a a ⎛⎫⎛⎫=-⇒=-⇒-⇒--= ⎪ ⎪⎝⎭⎝⎭,解得1b a =或12b a -=(舍).双曲线的离心率为c e a ==故选:B.11.D【分析】构造函数()()1g x f x =-,由导数结合奇偶性得出()g x 在R 上单调递增,进而得出29m n +=,最后由基本不等式得出答案.【详解】函数()f x 定义域为R ,令()()2111xg x f x x e =-=+-+21()111x x x e h x e e -=-=++,111()()1x x x x e e h x h x e e -----===-++易知y x =和2()11xh x e =-+均奇函数,所以()g x 为奇函数()()22101+xx e g x e +'=>,所以()g x 在R 上单调递增由()()922f m f n -+=得()()91210f m f n --+-=即()()()922g m g n g n -=-=-,所以920m n -+=,即29m n +=则()()211211418222449999m n m n m n m n n m ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当33,2m n ==时,取等号故选:D【点睛】关键点睛:本题考查点较为综合,解决时关键在于利用导数得出29m n +=,进而由基本不等式得出最值.12.C【分析】根据题意,建立空间直角坐标系,设出Q 点坐标,求出满足题意的位置即可,经计算可知Q 点不存在,故①错误;根据三棱锥F EPH -的几何特征,可计算出其外接球半径,所以②正确;由图可知,过点E F G ,,的截面为边长是的正六边形,即可计算其面积,所以③正确;利用空间向量写出1A M 与AB 所成角的余弦值的表达式求其最值即可,所以④正确.【详解】建立如图空间直角坐标系,设(2,,0)Q a ,其中102,(0,2,0),(0,0,2)a C D ≤≤,所以1(2,2,0),(2,,2)QC a D Q a =--=-,若棱AB 上存在点Q ,使得1QC D Q ⊥,则10QC D Q =,整理得2(1)30a -+=,此方程无解,①不正确;设AB 的中点为K ,则四边形PHKE 其外接圆的半径为1r =,又FK ⊥底面ABCD ,所以三棱锥F EPH -的外接球的半径为R ==所以其表面积为8π,②正确;过点E F G ,,作正方体的截面,截面如图中六边形所示,因为边长均为,且对边平行,所以截面六边形为正六边形,其面积为16sin 602S =⨯=③正确;点M 在平面11BB C C 内,设(,2,)M m n ,则1(2,0,2),(2,0,0),(0,2,1),(1,2,0),(2,2,0)A A G H B ,1(2,2,2),(2,2,1),(1,0,1),(0,2,0)A M m n AG GH AB =--=-=-=设()n x y z = ,,是平面AGH 的一个法向量,则·0·0n AG n GH ⎧=⎪⎨=⎪⎩ ,令1z =可得112x y ==,,即1(1,,1)2n = ,因为1//A M 平面AGH ,所以10A M n =,即3m n +=,设1A M 与AB 所成角为θ,则11cos A M ABA M ABθ==,当32m =时,2269y m m =-+取最小值92,所以1A M 与AB所成角的余弦值的最大值为3,故④正确;故选:C.13.5【分析】本题考查简单的线性规划,属基础题,根据约束条件画出可行域,将目标函数看成直线,直线经过可行域内的点,观察可得何时目标值取得要求的最值,进而得解.【详解】解:根据方程组画出可行域如图所示,可以求得B (1,1),当直线32x y z +=经过点B 时取得最大值为5,故答案为:5.14.()4,4-【分析】根据向量的线性坐标运算,以及向量数量积的坐标运算可求得答案.【详解】解:因为平面向量()2,0a = ,()1,2b =-r ,所以()21+022a b ⋅=⨯-⨯=-,所以()()()()()22021244c a a b b a b =+⋅=+-=--=- ,,,,故答案为:()4,4-.15.2【分析】利用三角形面积公式求解2b =,再利用余弦定理求得a =,进而得到外接圆半径.【详解】由14sin 23b π⨯⋅=,解得2b =.22224224cos 123a π∴=+-⨯⨯=.解得a =.24sin3R π∴==,解得2R =.故答案为:2.16.①②③④【分析】根据抛物线的标准方程及抛物线的几何性质依次判断即可.【详解】①若△MAF 为正三角形时,122p AM ==,故①正确;②若AM l ⊥于M ,设()00,A x y ,过A 的切线m 方程为:00x ty ty x =-+,代入22y px =得2002220y pty pty x -+-=,()()20024220pt pty x ∆=---=,又202y px =Q ,()200tp y ∴-=,y t p =,所以过A 点的切线的斜率为0p k y =,因为00022MF y yk p p p -==---,所以过A 的切线m MF ⊥,又AM AF =,故抛物线在A 点处的切线平分MAF ∠,②正确③若3MF FA =,则A M F 、、三点共线,4,12AF MF ==,由三角形的相似比得12,3164pp ==,故③正确;④设(),0B p -则14,2A p ⎛- ⎝,O B 、关于准线l 对称,OM BM =,O M BM MA A M B A =+≥==+1402p ->Q ,解得4p =,故④正确.故答案为:①②③④17.(1)证明见解析(2)21nn a =-,n ,n a ,n S 成等差数列【分析】(1)由已知可得:37a =,3232a a =-,解得23a =,可得1121,21n n n n a a a a -+=+=+,可得()111212n n a n a ++=+ ,即可证明;(2)由(1)知,12nn a +=,可得n S ,n a .只要计算20n n n S a +-=即可.【详解】(1)证明:37a = ,3232a a =-,23a ∴=,1121,21n n n n a a a a -+∴=+=+,11a ∴=,()111121222n n n n a a n a a +++==++ ,112a +=,{1}n a ∴+是首项为2公比为2的等比数列.(2)由(1)知,12n n a +=,∴21nn a =-,∴11222212n n n S n n ++-=-=---,∴12222(21)0n n n n n S a n n ++-=+----=,2n n n S a ∴+=,即n ,n a ,n S 成等差数列.18.(1)男30人,女45人(2)710【分析】(1)根据频率分布直方图求出男、女生优秀人数即可;(2)求出样本中的男生和女生的人数,写出所有的基本事件以及满足条件的基本事件的个数,从而求出满足条件的概率即可.【详解】(1)由题可得,男生优秀人数为()1000.010.021030⨯+⨯=人,女生优秀人数为()1000.0150.031045⨯+⨯=人;(2)因为样本容量与总体中的个体数的比是51304515=+,所以样本中包含男生人数为130215⨯=人,女生人数为145315⨯=人.设两名男生为1A ,2A ,三名女生为1B ,2B 3B .则从5人中任意选取2人构成的所有基本事件为:{}12,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}21,A B ,{}22,A B ,{}23,A B ,{}12,B B ,{}13,B B ,{}23,B B 共10个,记事件C :“选取的2人中至少有一名男生”,则事件C 包含的基本事件有:{}12,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}21,A B ,{}22,A B ,{}23,A B 共7个.所以()710P C =.【点睛】本题考查了频率分布问题,考查了古典概型概率问题,是一道中档题.19.(1)证明见解析(2)d =【分析】(1)取1D E 的中点N ,证明AMFN 是平行四边形,得到AN MF ∥,再利用线面平行的判定定理证明;(2)取AE 的中点O ,BC 的中点Q ,连接EF ,1D O ,由平面1D AE ⊥平面AECB ,得到1D O ⊥平面AECB ,设点B 到平面1CD E 的距离为d ,由11D BCE B CED V V --=求解.【详解】(1)证明:如图所示:取1D E 的中点N ,连AN 、NF ,则12NF EC =,//NF EC ,∵122EC AB ==,当114AM AB ==时,12AM EC =,//AM EC ,是NF AM =且//NF AM ,所以AMFN 是平行四边形,则//AN MF .又MF ⊄平面1D AE ,AN ⊂平面1D AE ,所以//MF 平面1D AE ;(2)如图所示:取AE 的中点O ,BC 的中点Q ,连接EF ,1D O .易知1EF D C ⊥,OQ CB ⊥.因为11D A D E =,AO EO =,所以1D O AE ⊥,平面1D AE 平面AECB AE =,平面1D AE ⊥平面AECB ,1D O ⊂平面1AD E ,所以1D O ⊥平面AECB .设点B 到平面1CD E 的距离为d .在1Rt D OC △中,OC 1D O =,所以1D C ==.在1D EC △中,因为12EC D E ==,1D C =所以1EF ==.由11D BCE B CED V V --=,得1111113232CB CE D O CD EF d ⋅⋅⋅⋅=⋅⋅⋅⋅.即11112213232d ⋅⋅⋅=⋅⋅⋅解得d =20.(1)2212x y +=;(2)面积不存在;(3)证明见解析.【分析】(1)根据题意求出1b =,再由离心率为2和222c a b =-,求出a =1c =,即可得到椭圆方程.(2)把直线与椭圆进行联立,得到Δ0<,直线与椭圆无交点,故OMN 的面积不存在.(3)设直线l 的方程并和椭圆进行联立,由直线和椭圆有两个交点,232k >,再由1B ,T ,M 在同一条直线上,得111111313y kx n k m x x x +++===+;2B ,T ,N 在同一条直线上,222221111y kx n k m x x x -+-===+.化简得12n =,故交点T 的纵坐标为定值12.【详解】(1)因为122B B =,所以22b =,即1b =,因为离心率为2,所以2c a =,设c m =,则a =,0m >,又222c a b =-,即2222m m b =-,解得1m =或1-(舍去),所以a =1b =,1c =,所以椭圆的标准方程为2212x y +=(2)由22122x y y x ⎧+=⎪⎨⎪=+⎩得()222220x x ++-=23860x x ++=,284360∆=-⨯⨯<所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2y kx =+,设()11,M x y ,()22,N x y ,则22212y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2221860k x kx +++=,则()()22122122Δ846120821621k k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210∆=-+>k k ,则232k >,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313y kx n k m x x x +++===+,因为2B ,T ,N 在同一条直线上,则222221111y kx n k m x x x -+-===+,由于()21212283311213440621k x x n n k k k m m x x k ⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+,所以12n =,则交点T 恒在一条直线12y =上,故交点T 的纵坐标为定值12.21.(1)当0k ≤时,()f x 无极值点,当0k >时,()f x 有极大值点1k,无极小值点,(2)[1,)+∞【分析】(1)先求出函数的定义域,然后求出导函数,通过判断导函数的正负来判断函数的极点;(2)将不等式恒成立转化为1ln 2xx k e x+≥-+对0x >恒成立,构造函数1ln ()2xx m x e x+=-+,利用导数研究函数()m x 的性质,求解()m x 的最值,即可得到k 的取值范围【详解】解:(1)函数的定义域为(0,)+∞,由()ln f x x kx =-,得'11()kx f x k x x-=-=,当0k ≤时,'()0f x >,所以()f x 在(0,)+∞上单调递增,函数无极值点,当0k >时,由'()0f x =,得1x k=,当10x k <<时,'()0f x >,当1x k >时,'()0f x <,所以()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 有极大值点1k,无极小值点,综上,当0k ≤时,()f x 无极值点,当0k >时,()f x 有极大值点1k,无极小值点,(2)因为()()1g x f x -≥恒成立,即(2)(ln )1x x e x kx ---≥恒成立,所以1ln 2xx k e x+≥-+对0x >恒成立,令1ln ()2x x m x e x+=-+,则2'221(1ln )ln ()x x x x x x e x m x e x x ⋅-+--=-=,令2()ln x n x x x e =--,则'22l l ()(2)(2)0(0)x x x n x xe x e e x x x x x=--+=--+<>,所以()n x 在(0,)+∞上单调递减,因为12110,(1)0e n e n e e -⎛⎫=->=-< ⎪⎝⎭,所以由零点存在性定理可知,存在唯一的零点01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00n x =,即0200ln xx x e -=,两边取对数可得000ln(ln )2ln x x x -=+,即0000ln(ln )(ln )ln x x x x -+-=+,因为函数ln y x x =+在(0,)+∞上单调递增,所以00ln x x =-,所以当00x x <<时,()0n x >,当0x x >时,()0n x <,所以()m x 在()00,x 上单调递增,在()0,x +∞上单调递减,所以00000001ln 11()()221x x x m x m x e x x x +-≤=-+=-+=,所以0()1k m x ≥=,所以k 的取值范围为[1,)+∞【点睛】关键点点睛:此题考查导数的应用,考查利用导数解决不等式恒成立问题,解题的关键是()()1g x f x -≥恒成立,转化为1ln 2x x k e x +≥-+对0x >恒成立,然后构造函数1ln ()2x x m x e x+=-+,利用导数求出()m x 的最大值即可,考查数学转化思想和计算能力,属于较难题22.(1)极坐标方程为2cos ρθ=,[)0,2θ∈π,极径为85(2)2【分析】(1)先求出曲线1C 的直角坐标方程,再根据极坐标与直角坐标的互化公式可得曲线1C 的极坐标方程;联立曲线1C 与曲线2C 的极坐标方程,消去θ可得结果;(2)将曲线3C 的参数方程化为直角坐标方程,再化为极坐标方程,联立曲线3C 和曲线2C 的极坐标方程,消去θ得到,M N 两点的极径后相加即可得解.【详解】(1)曲线1C 的直角坐标方程为()2211x y -+=,即2220x y x +-=,将222x y ρ+=,cos x ρθ=代入并化简得1C 的极坐标方程为2cos ρθ=,[)0,2θ∈π.由2cos 1sin ρθρθ=⎧⎨=-⎩消去θ,并整理得2580ρρ-=,∴10ρ=或285ρ=.∴所求异于极点的交点的极径为85ρ=.(2)由cos 3sin 3x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩消去参数t 得曲线3C的普通方程为y =,∴曲线3C 的极坐标方程为()03πθρ=≥和()403πθρ=≥由31sin πθρθ⎧=⎪⎨⎪=-⎩和431sin πθρθ⎧=⎪⎨⎪=-⎩得曲线3C 与曲线2C两交点的极坐标为1,23M π⎛⎫- ⎪ ⎪⎝⎭,413N π⎛⎫ ⎝⎭,∴112MN OM ON ⎛⎛=+=+= ⎝⎭⎝⎭(O 为极点).23.(1)1m =;(2)证明见解析.【解析】(1)利用“零点讨论法”将绝对值函数表示为分段函数的形式,求分段函数的最值即可;(2)由(1)易构造出1231114x x x +++++=,利用柯西不等式即可得结果.【详解】(1)∵()29,41,4529,5x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩,∴4x <时,()1f x >,且5x >时,()1f x >,∴()min 1f x =,∴1m =;(2)由(1)知1231x x x ++=,∴1231114x x x +++++=,∵()()()2222223312121231231234111111111x x x x x x x x x x x x x x x ⎛⎫⎛⎫++⨯=+++++++≥⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭()21231x x x ++=,∴22231212311114x x x x x x ++≥+++,当且仅当12313x x x ===取等号.【点睛】关键点点睛:得出1231114x x x +++++=,构造柯西不等式的形式.。

四川省成都市石室中学2023届高三高考模拟测试数学(理科)试题

四川省成都市石室中学2023届高三高考模拟测试数学(理科)试题

四川省成都市石室中学2023届高三高考模拟测试数学
(理科)试题
学校:___________姓名:___________班级:___________考号:___________
.甲的成绩的极差小于乙的成绩的极差
.甲的成绩的方差小于乙的成绩的方差
.甲的成绩的平均数等于乙的成绩的平均数
.甲的成绩的中位数小于乙的成绩的中位数
.设zÎC,则在复平面内35
££所表示的区域的面积是()
z
.B.C.D.

13
B .
23
C .
43
二、填空题
13.“五一”假期期间,小明和小红两位同学计划去卷上的圆锥曲线大题.如图,小红在街道E 处,小明14.已知点C 的坐标为()2,0,点,A B 是圆0AC BC ×=uuu r uuu r
,设P 为线段AB 的中点,则15.已知函数()()2e R x f x ax a =-Î有两个极值点围为___________.
三、双空题
信基站核心部件,下表统计了该科技集团近几年来在A部件上的研发投入x(亿元)与收益y(亿元)的数据,结果如下:。

四川省成都市高三数学上学期摸底试卷 理(含解析)

四川省成都市高三数学上学期摸底试卷 理(含解析)

四川省成都市2015届高三上学期摸底数学试卷(理科)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知向量=(5,﹣3),=(﹣6,4),则+=()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)2.(5分)设全集U={1,2,3,4},集合S={l,3},T={4},则(∁U S)∪T等于()A.{2,4} B.{4} C.∅D.{1,3,4}3.(5分)已知命题p:∀x∈R,2x=5,则¬p为()A.∀x∉R,2x=5 B.∀x∈R,2x≠5C.∃x0∈R,2=5 D.∃x0∈R,2≠54.(5分)计算21og63+log64的结果是()A.log62 B.2 C.log63 D.35.(5分)已知实数x,y满足,则z=4x+y的最大值为()A.10 B.8 C.2 D.06.(5分)已知a,b是两条不同的直线,α是一个平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a⊥α,b⊥α,则a∥b D.若a⊥b,b⊥α,则a∥α7.(5分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差,茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是()A.这l0日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等8.(5分)已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z9.(5分)已知定义在R上的偶函数f(x)满足f(4﹣x)=f(x),且当x∈(﹣1,3]时,f (x)=则g(x)=f(x)﹣|1gx|的零点个数是()A.7 B.8 C.9 D.1010.(5分)如图,已知椭圆C l:+y2=1,双曲线C2:=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线相交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5 B.C.D.二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上.11.(5分)已知α∈(0,),cosα=,则sin(π﹣α)=.12.(5分)当x>1时,函数的最小值为.13.(5分)如图是一个几何体的本视图,则该几何体的表面积是.14.(5分)运行如图所示的程序框图,则输出的运算结果是.15.(5分)已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=l上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=3,S7=49,n∈N*.(I)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.17.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,已知向量=(a﹣b,c﹣a),=(a+b,c)且•=0.(Ⅰ)求角B的大小;(Ⅱ)求函数f(A)=sin(A+)的值域.18.(12分)某地区为了解2014-2015学年高二学生作业量和玩电脑游戏的情况,对该地区内所有2014-2015学年高二学生采用随机抽样的方法,得到一个容量为200的样本统计数据如表:认为作业多认为作业不多总数喜欢电脑游戏72名36名108名不喜欢电脑游戏32名60名92名(I)已知该地区共有2014-2015学年高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(Ⅱ)在A,B,C,D,E,F六名学生中,但有A,B两名学生认为作业多如果从速六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.19.(12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(I)求证:BC⊥平面VAC;(Ⅱ)若AC=1,求二面角M﹣VA﹣C的余弦值.20.(13分)在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点,PD⊥x轴于点D,记满足=(+)的动点M的轨迹为Γ.(Ⅰ)求轨迹Γ的方程;(Ⅱ)已知直线l:y=kx+m与轨迹F交于不同两点A,B,点G是线段AB中点,射线OG交轨迹F于点Q,且=λ,λ∈R.①证明:λ2m2=4k2+1;②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.21.(14分)巳知函数f(x)=x1nx,g(x)=ax2﹣bx,其中a,b∈R.(I)求函数f(x)的最小值;(Ⅱ)当a>0,且a为常数时,若函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,试用a表示出b的取值范围;(Ⅲ)当b=﹣a时,若f(x+1)≤g(x)对x∈[0,+∞)恒成立,求a的最小值.四川省成都市2015届高三上学期摸底数学试卷(理科)参考答案与试题解析一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知向量=(5,﹣3),=(﹣6,4),则+=()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的坐标运算即可得出.解答:解:=(5,﹣3)+(﹣6,4)=(﹣1,1).故选:D.点评:本题考查了向量的坐标运算,属于基础题.2.(5分)设全集U={1,2,3,4},集合S={l,3},T={4},则(∁U S)∪T等于()A.{2,4} B.{4} C.∅D.{1,3,4}考点:交、并、补集的混合运算.专题:集合.分析:利用集合的交、并、补集的混合运算求解.解答:解:∵全集U={1,2,3,4},集合S={l,3},T={4},∴(∁U S)∪T={2,4}∪{4}={2,4}.故选:A.点评:本题考查集合的交、并、补集的混合运算,是基础题,解题时要认真审题.3.(5分)已知命题p:∀x∈R,2x=5,则¬p为()A.∀x∉R,2x=5 B.∀x∈R,2x≠5C.∃x0∈R,2=5 D.∃x0∈R,2≠5考点:全称命题;命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题,即可得到结论.解答:解:∵命题是全称命题,∴根据全称命题的否定是特称命题得:¬p为∃x0∈R,2≠5,故选:D.点评:本题主要考查含有量词的命题的否定,要求熟练掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.4.(5分)计算21og63+log64的结果是()A.log62 B.2 C.log63 D.3考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数性质求解.解答:解:21og63+log64=log69+log64=log636=2.故选:B.点评:本题考查对数的性质的求法,是基础题,解题时要注意对数性质的合理运用.5.(5分)已知实数x,y满足,则z=4x+y的最大值为()A.10 B.8 C.2 D.0考点:简单线性规划.专题:不等式的解法及应用.分析:画出足约束条件的平面区域,再将平面区域的各角点坐标代入进行判断,即可求出4x+y的最大值.解答:解:已知实数x、y满足,在坐标系中画出可行域,如图中阴影三角形,三个顶点分别是A(0,0),B(0,2),C(2,0),由图可知,当x=2,y=0时,4x+y的最大值是8.故选:B.点评:本题考查线性规划问题,难度较小.目标函数有唯一最优解是最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.6.(5分)已知a,b是两条不同的直线,α是一个平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a⊥α,b⊥α,则a∥b D.若a⊥b,b⊥α,则a∥α考点:空间中直线与平面之间的位置关系.专题:探究型;空间位置关系与距离.分析:根据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定即可.解答:解:若a∥b、b⊂α,则a∥α或a⊂α,故A错误;若a∥α、b⊂α,则a∥b或a,b异面,故B错误;若a⊥α,b⊥α,则a∥b,满足线面垂直的性质定理,故正确若b⊥α,a⊥b,则a∥α或a⊂α,故D错误;故选:C点评:本题考查空间中直线与直线、直线与平面、平面与平面的位置关系,是基础题.解题时要认真审题,仔细解答,注意空间想象能力的培养.7.(5分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差,茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是()A.这l0日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等考点:众数、中位数、平均数;茎叶图.专题:概率与统计.分析:根据茎叶图中的数据分布,分别求出甲乙的极差,中位数,众数,平均数比较即可.解答:解:根据茎叶图中的数据可知,这l0日内甲、极差为55,中位数为74,平均数为73.4,这l0日内乙、极差为57,中位数为68,众数为68,平均数为68.1,通过以上的数据分析,可知C正确.故选;C.点评:本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定极差,中位数,众数,平均数大小,比较基础.8.(5分)已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z考点:正弦函数的图象;两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,根据题意求得周期,进而求得ω,函数的解析式可得,最后利用正弦函数的单调性求得函数的单调减区间.解答:解:f(x)=2(sinωx+cosωx)=2sin(ωx+),依题意知函数的周期为T==π,∴ω=2,∴f(x)=2sin(2x+),由2kπ+≤2x+≤2kπ+,得kπ+≤x≤kπ+,k∈Z,∴f(x)的单调递减区间是[kπ+,kπ+](k∈Z),故选A.点评:本题主要考查了两角和与差的正弦函数,三角函数图象与性质.求得函数的解析式是解决问题的基础.9.(5分)已知定义在R上的偶函数f(x)满足f(4﹣x)=f(x),且当x∈(﹣1,3]时,f (x)=则g(x)=f(x)﹣|1gx|的零点个数是()A.7 B.8 C.9 D.10考点:分段函数的应用;函数零点的判定定理.专题:函数的性质及应用.分析:先根据函数的周期性画出函数y=f(x)的图象,以及y=|1gx|的图象,结合图象当x >10时,y=lg10>1此时与函数y=f(x)无交点,即可判定函数函数g(x)=f(x)﹣|1gx|的零点个数解答:解:R上的偶函数f(x)满足f(4﹣x)=f(x),∴函数f(x)为周期为4的周期函数,根据周期性画出函数y=f(x)的图象,y=log6x的图象根据y=|lgx|在(1,+∞)上单调递增函数,当x=10时lg10=1,∴当x>10时y=lgx此时与函数y=f(x)无交点,结合图象可知有10个交点,则函数g(x)=f(x)﹣lgx的零点个数为10,故选D.点评:本题考查函数的零点,求解本题,关键是研究出函数f(x)性质,作出其图象,将函数g(x)=f(x)﹣|1gx|的零点个数的问题转化为两个函数交点个数问题是本题中的一个亮点,此一转化使得本题的求解变得较容易.10.(5分)如图,已知椭圆C l:+y2=1,双曲线C2:=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线相交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5 B.C.D.考点:双曲线的简单性质;椭圆的应用.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线C2:=1的一条渐近线方程为y=x,代入+y2=1,可得交点的横坐标,利用C1与该渐近线的两交点将线段AB三等分,可得b=2a,即可求出C2的离心率.解答:解:双曲线C2:=1的一条渐近线方程为y=x,代入+y2=1,可得x=±,∵C1与该渐近线的两交点将线段AB三等分,∴•2•=•2,整理可得b=2a,∴c==a,∴e==,故选:C.点评:本题考查椭圆、双曲线的性质,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上.11.(5分)已知α∈(0,),cosα=,则sin(π﹣α)=.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用诱导公式与同角三角函数间的关系即可求得答案.解答:解:∵cosα=,α∈(0,),∴sin(π﹣α)=sinα==.故答案为:.点评:本题考查运用诱导公式化简求值,考查同角三角函数间的关系的应用,属于基础题.12.(5分)当x>1时,函数的最小值为3.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式就看得出.解答:解:∵x>1,∴==3,当且仅当x=2时取等号.故答案为:3.点评:本题查克拉基本不等式的应用,属于基础题.13.(5分)如图是一个几何体的本视图,则该几何体的表面积是28+12.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图可知该几何体是一平放的直三棱柱,利用数据判断出底面为正三角形,再利用表面积公式计算.解答:解:由三视图可知该几何体为上部是一平放的直三棱柱.底面三角形为等腰三角形,底边长为2,腰长为2;棱柱长为6.S底面==4S侧面=cl=6×(4+2)=24+12所以表面积是28+12.故答案为:28+12.点评:本题考查三视图求几何体的体积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键14.(5分)运行如图所示的程序框图,则输出的运算结果是.考点:程序框图.专题:算法和程序框图.分析:模拟程序框图的运行过程,即可得出该程序的运行结果是什么.解答:解:模拟程序框图的运行过程,如下;S=0,i=1,S=0+=;i≥4?,否,i=2,S=+=;i≥4?,否,i=3,S=+=;i≥4?,否,i=4,S=+=;i≥4?,是,输出S=.故答案为:.点评:本题考查了程序框图的运行过程,解题时应模拟算法程序的运行过程,从而得出正确的结果,是基础题.15.(5分)已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=l上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.考点:几何概型.专题:概率与统计.分析:根据直线和圆锥曲线的位置关系求出集合A,B,然后根据几何概型的概率公式即可得到结论.解答:解:∵y=,∴x=y2,代入y=k(x+)得y=k(y2+),整理得ky2﹣y+=0,直线y=k(x+)与曲线y=恰有两个不同交点,等价为ky2﹣y+=0有两个不同的非负根,即△=1﹣k2>0,且>0,解得0<k<1,∴A={k|0<k<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:.点评:本题主要考查几何概型的概率计算,利用直线和圆锥曲线的位置关系求出集合A,B 是解决本题的关键.综合性较强,难度非常大.三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=3,S7=49,n∈N*.(I)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)根据等差数列,建立方程关系即可求数列{a n}的通项公式.(Ⅱ)求出数列{b n}的通项公式,利用等比数列的求和公式即可得到结论.解答:解:(Ⅰ)设等差数列的公差是d,∵a2=3,S7=49,∴,解得,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)b n===2n,则数列{b n}为等比数列,则数列{b n}的前n项和T n=.点评:本题主要考查数列的通项公式和数列求和,要求熟练掌握等差数列和等比数列的通项公式和求和公式,考查学生的运算能力.17.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,已知向量=(a﹣b,c﹣a),=(a+b,c)且•=0.(Ⅰ)求角B的大小;(Ⅱ)求函数f(A)=sin(A+)的值域.考点:余弦定理;平面向量数量积的运算.专题:解三角形.分析:(Ⅰ)由两向量的坐标及两向量的数量积为0,利用平面向量的数量积运算法则计算得到关系式,由余弦定理表示出cosB,将得出关系式代入求出cosB的值,即可确定出角B的大小;(Ⅱ)由B的度数,利用内角和定理求出A的范围,进而确定出这个角的范围,利用正弦函数的值域即可确定出f(A)的值域.解答:解:(Ⅰ)∵=(a﹣b,c﹣a),=(a+b,c),且•=0,∴(a﹣b)(a+b)﹣c(a﹣c)=0,即a2+c2=b2+ac,∴cosB==,∵B∈(0,π),∴B=;(Ⅱ)由(Ⅰ)得:A=π﹣﹣C∈(0,),∴A+∈(,),∴sin(A+)∈(,1],则f(A)=sin(A+)的值域为(,1].点评:此题考查了余弦定理,平面向量的数量积运算,以及正弦函数的值域,熟练掌握余弦定理是解本题的关键.18.(12分)某地区为了解2014-2015学年高二学生作业量和玩电脑游戏的情况,对该地区内所有2014-2015学年高二学生采用随机抽样的方法,得到一个容量为200的样本统计数据如表:认为作业多认为作业不多总数喜欢电脑游戏72名36名108名不喜欢电脑游戏32名60名92名(I)已知该地区共有2014-2015学年高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(Ⅱ)在A,B,C,D,E,F六名学生中,但有A,B两名学生认为作业多如果从速六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(I)根据样本数据统计表,可得200名学生中喜欢电脑游戏并认为作业不多的人有36名,求出其占总人数的概率,再乘以2014-2015学年高二学生的总数即可;(Ⅱ)求出至少有一名学生认为作业多的事件的个数,和从这六名学生中随机抽取两名的基本事件的个数,两者相除,即可求出至少有一名学生认为作业多的概率是多少.解答:解:(Ⅰ)42500×答:欢电脑游戏并认为作业不多的人有7650名.(Ⅱ)从这六名学生中随机抽取两名的基本事件的个数是至少有一名学生认为作业多的事件的个数是:15﹣=15﹣6=9(个)所有至少有一名学生认为作业多的概率是.答:至少有一名学生认为作业多的概率是.点评:本题主要考查了概率的运算,考查了学生的分析推理能力,解答此题的关键是要弄清楚两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.19.(12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(I)求证:BC⊥平面VAC;(Ⅱ)若AC=1,求二面角M﹣VA﹣C的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)由线面垂直得VC⊥BC,由直径性质得AC⊥BC,由此能证明BC⊥平面VAC.(Ⅱ)分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角M﹣VA﹣C的余弦值.解答:(Ⅰ)证明:∵VC⊥平面ABC,BC⊂平面ABC,∴VC⊥BC,∵点C为⊙O上一点,且AB为直径,∴AC⊥BC,又∵VC,AC⊂平面VAC,VC∩AC=C,∴BC⊥平面VAC.(Ⅱ)解:由(Ⅰ)得BC⊥VC,VC⊥AC,AC⊥BC,分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,则A(1,0,0),V(0,0,2),B(0,2,0),=(1,0,﹣2),,设平面VAC的法向量==(0,2,0),设平面VAM的法向量=(x,y,z),由,取y=,得∴,∴cos<>==,∴二面角M﹣VA﹣C的余弦值为.点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.20.(13分)在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点,PD⊥x轴于点D,记满足=(+)的动点M的轨迹为Γ.(Ⅰ)求轨迹Γ的方程;(Ⅱ)已知直线l:y=kx+m与轨迹F交于不同两点A,B,点G是线段AB中点,射线OG交轨迹F于点Q,且=λ,λ∈R.①证明:λ2m2=4k2+1;②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.考点:轨迹方程;函数解析式的求解及常用方法.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用代入法求椭圆方程;(Ⅱ)设A(x1,y1),B(x2,y2),由直线代入椭圆方程,消去y,得(1+4k2)x2+8kmx+4m2﹣4=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件能证明结论.②由已知条件得m≠0,|x1﹣x2|=,由此能求出△AOB的面积,再利用基本不等式求最大值.解答:解:(Ⅰ)设M(x,y),P(x0,y0),则D(x0,0),且x02+y02=4,①∵=(+),∴x0=x,y0=2y,②②代入①可得x2+4y2=4;(Ⅱ)①证明:设A(x1,y1),B(x2,y2),由直线代入椭圆方程,消去y,得(1+4k2)x2+8kmx+4m2﹣4=0,∴x1+x2=,x1x2=(1)∴y1+y2=k(x1+x2)+2m=,又由中点坐标公式,得G(,),将Q(,)代入椭圆方程,化简,得λ2m2=1+4k2,(2).②解:由(1),(2)得m≠0,λ>1且|x1﹣x2|=,(3)结合(2)、(3),得S△AOB=,λ∈(1,+∞),令=t∈(0,+∞),则S=≤≤1(当且仅当t=1即λ=时取等号),∴λ=时,S取得最大值1.点评:本题考查椭圆方程的求法,考查方程的证明,考查三角形面积的求法,解题时要认真审题,注意弦长公式的合理运用.21.(14分)巳知函数f(x)=x1nx,g(x)=ax2﹣bx,其中a,b∈R.(I)求函数f(x)的最小值;(Ⅱ)当a>0,且a为常数时,若函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,试用a表示出b的取值范围;(Ⅲ)当b=﹣a时,若f(x+1)≤g(x)对x∈[0,+∞)恒成立,求a的最小值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)利用导数研究函数的单调性极值与最值即可得出.(II)由函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,可得函数h(x)=在x∈[4,+∞)上单调递增.因此h′(x)=ax2﹣2bx+1≥0在[4,+∞)上恒成立.变形为=ax+在[4,+∞)上恒成立⇔2b≤,x∈[4,+∞).令u(x)=,x∈[4,+∞).对a分类讨论,利用导数研究其单调性即可得出.(III)当b=﹣a时,令G(x)=f(x+1)﹣g(x)=(x+1)ln(x+1)﹣﹣ax,x∈[0,+∞).由题意G(x)≤0对x∈[0,+∞)恒成立.G′(x)=ln(x+1)+1﹣ax﹣a,x∈[0,+∞).对a分类讨论利用研究其单调性极值与最值即可.解答:解:(I)f′(x)=lnx+1(x>0),令f′(x)=0,解得x=.∴函数f(x)在上单调递减;在单调递增.∴当x=时,f(x)取得最小值.且==﹣.(II)由函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>0成立,∴函数h(x)=在x∈[4,+∞)上单调递增.∴h′(x)=ax2﹣2bx+1≥0在[4,+∞)上恒成立.∴=ax+在[4,+∞)上恒成立⇔2b≤,x∈[4,+∞).令u(x)=,x∈[4,+∞).(a>0).则=.令u′(x)=0,解得.∴u(x)在上单调递减,在上单调递增.(i)当时,即时,u(x)在上单调递减,在上单调递增.∴u(x)min==,∴,即.(ii)当时,即,函数u(x)在[4,+∞)上单调递增,∴,即.综上可得:当时,即.当,.(III)当b=﹣a时,令G(x)=f(x+1)﹣g(x)=(x+1)ln(x+1)﹣﹣ax,x∈[0,+∞).由题意G(x)≤0对x∈[0,+∞)恒成立.G′(x)=ln(x+1)+1﹣ax﹣a,x∈[0,+∞).(i)当a≤0时,G′(x)>0,∴G(x)在x∈[0,+∞)上单调递增.∴G(x)>G(0)=0在x∈(0,+∞)成立,与题意矛盾,应舍去.(ii)当a>0时,令v(x)=G′(x),x∈[0,+∞).则,,①当a≥1时,v′(x)≤0在x∈[0,+∞)上成立.∴v(x)在x∈[0,+∞)单调递减.∴v(x)≤v(0)=1﹣a≤0,∴G′(x)在x∈[0,+∞)上成立.∴G(x)在x∈[0,+∞)上单调递减.∴G(x)≤G(0)=0在x∈[0,+∞)成立,符合题意.②当0<a<1时,=,x∈[0,+∞).∴v(x)在上单调递增,在单调递减.∵v(0)=1﹣a>0,∴v(x)>0在上成立,即G′(x)>0在上成立,∴G(x)在上单调递增,∴G(x)>G(0)=0在成立,与题意矛盾.综上可知:a的最小值为1.点评:本题考查了利用导数研究函数的单调性极值与最值,考查了构造函数研究函数的单调性问题,考查了转化思想方法,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于难题.。

四川成都市高三数学摸底试卷(理科)

四川成都市高三数学摸底试卷(理科)

四川成都市高三数学摸底试卷(理科)(时间:120分钟 总分:150分)一、选择题:本大题共12小题,每小题5分,共60分.每个题只有一个正确答案. (1)设集合{|2}M x x =<,集合{|01}N x x =<<,则下列关系中正确的是 (A)MN R = (B) {|01}M N x x =<< (C) N M ∈ (D)M N φ=(2)在等比数列{}n a 中,若24a =,532a =,则公比应为(A)2 (B) 2± (C)2- (D)12± (3)若函数()f x 的定义域是[0,4],则函数(2)()f x g x x=的定义域是 (A) [0,2] (B) (0,2) (C) (0,2] (D) [0,2) (4)如图,在正方体1111ABCD A B C D -中,若E 是AD 的中点,则异面直线1A B 与1C E 所成角的大小是(A)6π (B) 4π(5)已知函数sin (0)y x ωω=>数1sin()212y x π=+的图象,则需将函数y =(A)向右平移12π(B) 向左平移12π(C)向右平移6π(D) 向左平移6π(6)已知条件甲:函数()(0,1)xf x a a a =>≠在其定义域内是减函数,条件乙:12log 0a >,则条件甲是条件乙的(A)充分而不必要的条件 (B) 必要而不充分的条件 (C) 充要条件 (D) 既不充分也不必要的条件(7)已知圆的方程为22680x y x y +--=,设圆中过点(2,5)的最长弦与最短弦分别为AB 、CD ,则直线AB 与CD 的斜率之和为(A) 1- (B) 0 (C) 1 (D) 2-(8)已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是(A)若,m n αβ⊥⊥,αβ⊥,则m n ⊥ (B) 若,m n α⊥∥β,αβ⊥,则m n ⊥ (C)若m ∥α,n ∥β,α∥β,则m ∥n (D) 若m ∥α,n β⊥,αβ⊥,则m ∥n(9)设0x >,0y >,1x y +=的最大值是(A) 1 (B) (C)2(D) 2(10)9名志愿都中,1A 、2A 、3A 为教师,1B 、2B 、3B 、4B 为医生,1C 、2C 为学生.为组建一个服务小组,需从这9名志愿者中选出教师1名、医生2名、学生1名,则1A 被选中且1B 、2B 最多有1名被选中的概率为(A)518 (B) 13 (C) 718 (D) 29(11)设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是1F 、2F ,过点2F 的直线交双曲线右支于不同的两点M 、N .若△1MNF 为正三角形,则该双曲线的离心率为(B) (D)3(12)已知集合{1,0,1,2,3,1}A =-,{1,2,3,4,5,9}B =,映射:f A B →的对应法则为2:22f x y x x →=-+.设集合{|M m B m =∈在集合A 中存在原象},集合{|N n B n =∈在集合A 中不存在原象},若从集合M 、N 中各取一个元素组成一个对数log a b ,则组成的不同对数log a b 值的总个数为(A)60 (B)36 (C)13 (D) 9二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若423401234(1)x a a x a x a x a x -=++++,则0a = .(14)若向量(1,)a k =,(2,6)b =-,k R ∈,且a ∥b ,则a +b = .(15)设实数x 、y满足约束条件,(16)给定下列命题:①半径为2,圆心角的弧度数为12的扇形的面积为12; ②若α、β为锐角,tan()3αβ+=-,1tan 2β=,则324παβ+=;③若A 、B 是△ABC 的两个内角,且sin sin A B <,则BC AC <;④若a 、b 、c 分别是△ABC 的三个内角A 、B 、C 所对边的长,2220a b c +-<且,则△ABC 一定是钝角三角形.其中真命题的序号是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知函数21()cos sin ,2f x x x x x R =-+∈,, (Ⅰ)求函数()f x 的最小正周期、最大值及取得最大值时自变量x 的集合;(Ⅱ)设()()6g x f x π=+,试判断函数()g x 的奇偶性.(18)(本小题满分12分)y ≤xx y +≤1,则的最大值是 。

四川省绵阳2023-2024学年高三上学期10月月考(一诊模拟)理科数学试题含解析

四川省绵阳2023-2024学年高三上学期10月月考(一诊模拟)理科数学试题含解析

绵阳南山高2021级高三(上)一诊模拟考试理科数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}220A x x x =-<,{}1B x x =>,则()UA B = ð()A.{}12x x << B.{}12x x ≤< C.{}01x x << D.{}01x x <≤【答案】D 【解析】【分析】先解一元二次不等式,化简集合A,再利用数轴进行集合的补集和交集运算可得.【详解】解一元二次不等式化简集合A,得{|02}A x x =<<,由{|1}B x x =>得{|1}U C B x x =≤,所以(){|01}U A C B x x ⋂=<≤.故选D.【点睛】本题考查了一元二次不等式的解法,集合的交集和补集运算,用数轴运算补集和交集时,注意空心点和实心点的问题,属基础题.2.若复数5i43iz =-,则z =()A.34i 55+ B.34i 55-+ C.34i 55-- D.34i 55-【答案】C 【解析】【分析】由复数的四则运算结合共轭复数的概念求解.【详解】由()5i 43i 5i 34i43i 2555z +===-+-,得34i 55z =--.故选:C3.设n S 是等差数列{}n a 的前n 项和,若25815a a a ++=,则9S =()A.15B.30C.45D.60【答案】C 【解析】【分析】根据等差数列的性质求出5a ,再根据等差数列前n 项和公式即可得解.【详解】由题意得2585315a a a a ++==,所以55a =,所以()199599452a a S a +===.故选:C.4.已知命题p :x ∃∈R ,使得2210ax x ++<成立为真命题,则实数a 的取值范围是()A.(],0-∞ B.(),1-∞ C.[)0,1 D.(]0,1【答案】B 【解析】【分析】由一次函数和二次函数的图象和性质,知当0a ≤时,命题为真命题,当0a >时,需0∆>,最后综合讨论结果,可得答案.【详解】命题p 为真命题等价于不等式2210ax x ++<有解.当0a =时,不等式变形为210x +<,则12x <-,符合题意;当0a >时,Δ440a =->,解得01a <<;当a<0时,总存在x ∃∈R ,使得2210ax x ++<;综上可得实数a 的取值范围为(),1-∞.故选:B5.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.3144AB AC -B.1344AB AC -C.3144+AB AC D.1344+AB AC 【答案】A 【解析】【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+ ,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6.执行如图所示的程序框图,若输出的a 的值为17,则输入的最小整数t 的值为()A.9B.12C.14D.16【答案】A 【解析】【分析】根据流程框图代数进行计算即可,当进行第四次循环时发现输出的a 值恰好满足题意,然后停止循环求出t 的值.【详解】第一次循环,2213a =⨯-=,3a t =>不成立;第二次循环,2315a =⨯-=,5a t =>不成立;第三次循环,2519a =⨯-=.9a t =>不成立;第四次循环,29117a =⨯-=,17a t =>,成立,所以917t <≤,输入的最小整数t 的值为9.故选:A7.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为15A 时,放电时间为30h ;当放电电流为50A 时,放电时间为7.5h ,则该萻电池的Peukert 常数λ约为()(参考数据:lg20.301≈,lg30.477≈)A.1.12 B.1.13C.1.14D.1.15【答案】D 【解析】【分析】根据题意可得1530507.5C λλ=⨯=⨯,再结合对数式与指数式的互化及换底公式即可求解.【详解】由题意知1530507.5C λλ=⨯=⨯,所以50304157.5λ⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg 2lg23λ=,所以2lg220.3011.151lg310.477λ⨯=≈≈--.故选:D .8.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A.15B.C.3D.3【答案】A 【解析】【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,215cos 1sin 4αα∴=-=,sin 15tan cos 15ααα∴==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.9.函数π()412sin 2x xf x x -⎛⎫=-⋅⋅+ ⎪⎝⎭的大致图象为()A.B. C.D.【答案】D 【解析】【分析】对函数化简后,利用排除法,先判断函数的奇偶性,再取特殊值判断即可【详解】因为()|22|cos x x f x x -=-⋅,()22cos()()xx f x x f x --=-⋅-=,所以()f x 为偶函数,所以函数图象关于y 轴对称,所以排除A ,C 选项;又1(2)4cos 204f =-<,所以排除B 选项,故选:D .10.设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.513,36⎫⎡⎪⎢⎣⎭B.519,36⎡⎫⎪⎢⎣⎭C.138,63⎛⎤ ⎥⎝⎦D.1319,66⎛⎤ ⎥⎝⎦【答案】C【解析】【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .11.已知函数()1ex x f x +=.若过点()1,P m -可以作曲线()y f x =三条切线,则m 的取值范围是()A.40,e ⎛⎫ ⎪⎝⎭B.80,e ⎛⎫ ⎪⎝⎭C.14,e e ⎛⎫- ⎪⎝⎭D.18,e e ⎛⎫ ⎪⎝⎭【答案】A 【解析】【分析】切点为0001,e x x x +⎛⎫ ⎪⎝⎭,利用导数的几何意义求切线的斜率,设切线为:()000001e ex x x x y x x +--=-,可得()021ex x m +=,设()()21exx g x +=,求()g x ',利用导数求()g x 的单调性和极值,切线的条数即为直线y m =与()g x 图象交点的个数,结合图象即可得出答案.【详解】设切点为0001,e x x x +⎛⎫ ⎪⎝⎭,由()1e x x f x +=可得()()2e e 1e ex x xx x x f x -⋅+-==',所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线的斜率为()00e x x kf x -'==,所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线为:()000001e ex x x x y x x +--=-,因为切线过点()1,P m -,所以()0000011e ex x x x m x +--=--,即()021ex x m +=,即这个方程有三个不等根即可,切线的条数即为直线y m =与()g x 图象交点的个数,设()()21e xx g x +=,则()()()2222211e e xxx x x x g x +-++'-+==由()0g x '>可得11x -<<,由()0g x '<可得:1x <-或1x >,所以()()21exx g x +=在(),1-∞-和()1,+∞上单调递减,在()1,1-上单调递增,当x 趋近于正无穷,()g x 趋近于0,当x 趋近于负无穷,()g x 趋近于正无穷,()g x 的图象如下图,且()41eg =,要使y m =与()()21e xx g x +=的图象有三个交点,则40em <<.则m 的取值范围是:40,e ⎛⎫ ⎪⎝⎭.故选:A.12.已知函数()323,0,31,0x x f x x x x ->⎧=⎨-+≤⎩,函数()()()g x f f x m =-恰有5个零点,则m 的取值范围是()A.()3,1- B.()0,1 C.[)1,1- D.()1,3【答案】C【分析】由题意可先做出函数()f x 的大致图象,利用数形结合和分类讨论,即可确定m 的取值范围.【详解】当0x ≤时,()233f x x ¢=-.由()0f x ¢>,得1x <-,由()0f x '<,得10-<≤x ,则()f x 在(]1,0-上单调递减,在(),1-∞-上单调递增,故()f x 的大致图象如图所示.设()t f x =,则()m f t =,由图可知当3m >时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意.当3m =时,()m f t =的解是11t =-,23t =.1f x t =()有2个不同的实根,2f x t =()有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当13m ≤<时,()m f t =有3个不同的实根3t ,4t ,5t ,且()321t ∈--,,(]41,0t ∈-,[)52,3t ∈.3f x t =()有2个不同的实根,4f x t =()有2个不同的实根,5f x t =()有3个不同的实根,则()t f x =有7个不同的实根,不符合题意.当11m -≤<时,()m f t =有2个不同的实根6t ,7t ,且()631t ∈--,,[)71,2t ∈.6f x t =()有2个不同的实根,7f x t =()有3个不同的实根,则()t f x =有5个不同的实根,符合题意.当3<1m -<-时,()m f t =有2个不同的实根8t ,9t ,且()831t ∈--,,()901t ∈,,8f x t =()有2个不同的实根,9f x t =(),有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当3m ≤-时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意,综上,m 的取值范围是[)1,1-.【点睛】方法点睛:对于函数零点问题,若能够画图时可作出函数图像,利用数形结合与分类讨论思想,即可求解.本题中,由图看出,m 的讨论应有3m =,13m ≤<,11m -≤<,3<1m -<-,3m ≤-这几种情况,也是解题关键.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.【答案】103-.【解析】【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高200BC =m ,则山高MN =______m .【答案】300【解析】【分析】先求,AC AMC ∠,由正弦定理得sin sin MCA AMCAM AC∠∠=,最后由sin MN AM MAN =⋅∠可求.【详解】由题意,sin BCAC CAB==∠m ,18045AM C M AC M CA ∠=︒-∠-∠=︒,由正弦定理得2sin sin 22MCA AMC AM AM AC AM ∠∠=⇒=⇒=m ,所以sin 3002MNAM MAN =⋅∠==m.故答案为:30015.已知等比数列{}n a 的前3项和为25168,42a a -=,则6a =___________.【答案】3【解析】【分析】设等比数列{}n a 的公比为q ,根据已知条件利用等比数列的定义计算可得12q =,196a =,即可求得6a 的值.【详解】解:设等比数列{}n a 的公比为q ,0q ≠,由题意1q ≠,因为前3项和为168,故()3112311681a q a a a q-++==-,又()43251111a a a q a q a q q-=-=-,所以12q =,196a =,则561196332a a q ==⨯=.故答案为:3.16.已知函数()y f x =是R 的奇函数,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当12,,1[]0x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,有下列命题①(1)(2)(3)(2019)0f f f f ++++= ②直线5x =-是函数()y f x =图象的一条对称轴③函数()y f x =在[7,7]-上有5个零点④函数()y f x =在[7,5]--上为减函数则结论正确的有____________.【答案】①②④【解析】【分析】根据题意,利用特殊值法求得()20f =,进而分析得到1x =时函数()f x 的一条对称轴,,函数()f x 时周期为4的周期函数,且函数()f x 在[1,1]-上单调递增,据此结合选项,逐项判定,即可求解.【详解】由题意,函数()y f x =是R 的奇函数,则()00f =,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当2x =,有()()0220f f ==,即()20f =,则有(2)()f x f x -=,即1x =时函数()f x 的一条对称轴,又由()f x 为奇函数,则(2)()f x f x -=--,即()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以函数()f x 时周期为4的周期函数,当12,,1[]0x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,可函数()f x 在[1,1]-上单调递增,对于①中,由()()2f x f x +=-,则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2019)504[(1)(2)(3)(4)]f f f f f f f f ++++=+++ ()(1)(2)(3)20f f f f +++==,所以①正确;对于②中,由1x =时函数()f x 的一条对称轴,且函数()f x 时周期为4的周期函数,则直线5x =-是函数()y f x =图象的一条对称轴,所以②正确;对于③中,函数()y f x =在[7,7]-上有7个零点,分别为6,4,2,0,2,4,6---,所以C 错误;对于④中,函数()y f x =在[1,1]-上为增函数且周期为4,可得()y f x =在[5,3]--上为增函数,又由5x =-是函数()y f x =图象的一条对称轴,则函数()y f x =在[7,5]--上为减函数,所以④正确.故答案为:①②④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.【答案】(1)()323f x x π⎛⎫=+ ⎪⎝⎭(2)332⎡-⎢⎣【解析】【分析】(1)根据正弦型函数的图像求三角函数的解析式,根据最大值求出A ,由最小正周期求出ω,并确定ϕ.(2)根据平移后得到新的正弦型函数解析式,由函数解析式求出函数值域.【小问1详解】解:根据函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象可得3A =1252632ππππω=-=⋅,所以2ω=.再根据五点法作图可得23πϕπ⋅+=,所以3πϕ=,()323f x x π⎛⎫=+ ⎪⎝⎭.【小问2详解】将函数()f x 的图象向右平移3π个单位后,可得323sin 2333y x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()343g x x π⎛⎫=- ⎪⎝⎭的图象.由0,3x π⎡⎤∈⎢⎥⎣⎦,可得4,33x πππ⎡⎤-∈-⎢⎥⎣⎦又 函数()g x 在50,24π⎡⎤⎢⎥⎣⎦上单调递增,在5,243ππ⎡⎤⎢⎥⎣⎦单调递减∴3(0)2g =-,524g π⎛⎫= ⎪⎝⎭03g π⎛⎫= ⎪⎝⎭∴3()4,32g x x π⎛⎫⎡=-∈- ⎪⎢⎝⎭⎣∴函数()g x 在0,3π⎡⎤⎢⎥⎣⎦的值域32⎡-⎢⎣.18.已知数列{}n a 的前n 项和为n S ,313log 1log n n b b +-=,且()1122n n n a a a n +-=+≥.339S b ==,414b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若11n n n c a b ++=⋅,求数列{}n c 的前n 项和n T .【答案】(1)13n n b -=,21n a n =-(2)13n n T n +=⋅【解析】【分析】(1)根据对数运算得13n nb b +=,利用等比数列定义求通项公式,利用等差中项判断数列{}n a 为等差数列,建立方程求出公差,从而可得{}n a 的通项;(2)利用错位相减法计算即可.【小问1详解】∵313log 1log n n b b +-=,∴313log log (3)n n b b +=,则13n nb b +=,所以{}n b 为等比数列,又39b =,得11b =,所以13n n b -=,由112n n n a a a +-=+知{}n a 是等差数列,且41427b a ==,39S =,∴111327339a d a d +=⎧⎨+=⎩,得11a =,2d =.∴21n a n =-.【小问2详解】因为21n a n =-,13n n b -=,所以()11213nn n n c a b n ++=⋅=+,所以()()1231335373213213n n n T n n -=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅则()()23413335373213213n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅上面两式作差得()223123232323213n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-+⋅()()111913922132313n n n n n -++⎛⎫- ⎪=+-+⋅=-⋅ ⎪-⎝⎭,∴13n n T n +=⋅19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【答案】(1)证明见解析;(2)7cos 12ABC ∠=.【解析】【分析】(1)根据正弦定理的边角关系有ac BD b=,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin ,22b c R ABC C R==∠,因为sin sin BD ABC a C ∠=,所以22b c BD a R R ⋅=⋅,即BD b ac ⋅=.又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23b a b b a C +-=⋅.②由①②得2222223(3b a bc a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32c a =,当22,33c c a b ac ===时,333c c a b c +=+<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△,即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠,故有ADB ABC ∠=∠,从而ABD C ∠=∠.由2b ac =,即b c a b =,即CA BA CB BD=,即ACB ABD ∽,故AD AB AB AC =,即23b c c b =,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +-==∠.[方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB 中,由正弦定理得sin sin AD BD ABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b =,化简得2sin sin 3C A =.在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =.在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===.故7cos 12ABC ∠=.[方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a a DE EC BE ===.在BED 中,2222(()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c b a c b a c ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=,即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =uuu r uuu r .以向量,BA BC 为基底,有2133BD BC BA =+ .所以222441999BD BC BA BC BA =+⋅+ ,即222441cos 999b ac c ABC a ∠=++,又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③由余弦定理得2222cos b a c ac ABC =+-∠,所以222cos ac a c ac ABC =+-∠④联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC ⋅=,2222(2)(1)9x y x y ++-+=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||||6,32a BC c BA b =====,由余弦定理得2227cos 212a cb ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.20.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)先求导,再分类讨论0a ≤与0a >两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为21ln 02a a -->的恒成立问题,构造函数()()21ln 02g a a a a =-->,利用导数证得()0g a >即可.方法二:构造函数()e 1x h x x =--,证得e 1x x ≥+,从而得到2()ln 1f x x a a x ≥+++-,进而将问题转化为21ln 02a a -->的恒成立问题,由此得证.【小问1详解】因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:由(1)得,()()()ln min 2ln ln ln e1a f a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:令()e 1x h x x =--,则()e 1x h x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e e ln 1x x x a f x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.21.已知函数()()ln 1e x f x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.【答案】(1)2y x=(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -≤≤,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+≥,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=,令(),1,e x x h x x =>-则1(),1,e x x h x x -'=>-所以()x x h x e =在()1,1-上单调递增,在()1,+∞上单调递减,所以()1()1e h x h ≤=,又e e 10a -->,e 1e 10e e a a f a -⎛⎫-≥-+⋅= ⎪⎝⎭,所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减,当()1,0x ∈-,()()1e h x h >-=-,又e 1e 10a -<-<,()e e 1e e 0a f a a -<-=而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.选修4—4:坐标系与参考方程22.在直角坐标系xOy 中,曲线M 的方程为24y x x =-+,曲线N 的方程为9xy =,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求曲线M ,N 的极坐标方程;(2)若射线00π:(0,02l θθρθ=≥<<与曲线M 交于点A (异于极点),与曲线N 交于点B ,且||||12OA OB ⋅=,求0θ.【答案】(1)π4cos 02ρθθ⎛⎫=≤≤⎪⎝⎭;2sin 218ρθ=(2)π4【解析】【分析】(1)根据极坐标与直角坐标的互化公式,即可求解曲线M 和N 的极坐标方程;(2)将0θθ=代入曲线M 和N的方程,求得||OB ρ==0||4cos OA ρθ==,结合题意求得0tan 1θ=,即可求解.【小问1详解】解:由y =224(0)y x x y =-+≥,即224(04,0)x y x x y +=≤≤≥,又由cos sin x y ρθρθ=⎧⎨=⎩,可得2π4cos (0)2ρρθθ=≤≤,所以曲线M 的极坐标方程为π4cos 02ρθθ⎛⎫=≤≤⎪⎝⎭.由9xy =,可得2cos sin 9ρθθ=,即2sin 218ρθ=,即曲线N 的极坐标方程为2sin 218ρθ=.【小问2详解】解:将0θθ=代入2sin 218ρθ=,可得||OB ρ==将0θθ=代入4cos ρθ=,可得0||4cos OA ρθ==,则||||OA OB ⋅=,因为||||12OA OB ⋅=,所以0tan 1θ=,又因为0π02θ<<,所以0π4θ=.选修4—5:不等式选讲23.已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a++≥.【答案】(1)7,33⎛⎫- ⎪⎝⎭(2)证明见详解【解析】【分析】(1)分段讨论去绝对值即可求解;(2)利用绝对值不等式可求得2m =,再利用基本不等式即可证明.【小问1详解】由题意可得:()31,11213,1131,1x x f x x x x x x x -≥⎧⎪=++-=--<<⎨⎪-+≤-⎩,当1x ≥时,则()318f x x =-<,解得23x ≤<;当11x -<<时,则()38f x x =-<,解得11x -<<;当1x ≤-时,则()318f x x =-+<,解得713x -<≤-;综上所述:不等式()8f x <的解集为7,33⎛⎫-⎪⎝⎭.【小问2详解】∵()()1112g x f x x x x =++---≥=,当且仅当[]1,1x ∈-时等号成立,∴函数()g x 的最小值为2m =,则2a b c ++=,又∵22a b a b +≥=,当且仅当2a b b =,即a b =时等号成立;22b c b c +≥=,当且仅当2b c c =,即b c =时等号成立;22c a c a +≥=,当且仅当2c a a =,即a c =时等号成立;上式相加可得:222222a b c b c a a b c b c a ⎛⎫⎛⎫⎛⎫+++++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当a b c ==时等号成立,∴2222a b c a b c b c a ++≥++=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省高三上学期摸底数学试卷(理科)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2019高三上·浙江月考) 已知集合,,则()
A .
B .
C .
D .
2. (2分)(2020·北京) 在复平面内,复数z对应的点的坐标是,则().
A .
B .
C .
D .
3. (2分) (2015高二下·赣州期中) 已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;命题q:若<0,则,夹角为钝角,在命题①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q 中,真命题是()
A . ①③
B . ①④
C . ②③
D . ②④
4. (2分)若下边的程序框图输出的S是126,则条件①可为()
A .
B .
C .
D .
5. (2分) (2017高一下·宜春期末) 数列{an}满足an+an+1= (n∈N*),a2=2,Sn是数列{an}的前n项和,则S21为()
A . 5
B .
C .
D .
6. (2分) (2018高三上·深圳月考) 如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为()
A .
B .
C .
D .
7. (2分) (2017高二下·高青开学考) 已知 =(cosα,1,sinα), =(sinα,1,cosα),则向量 + 与﹣的夹角是()
A . 90°
B . 60°
C . 30°
D . 0°
8. (2分) (2016高二上·抚州期中) 如图面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD投掷1000个点,落在矩形ABCD的非阴影部分中的点数为400个,试估计阴影部分的面积为()
A . 2.2
B . 2.4
C . 2.6
D . 2.8
9. (2分) (2017高二下·长春期末) 如图,从甲地到乙地有2条路,从乙地到丁地有3条路;从甲地到丙地有4条路,从丙地到丁地有2条路,则从甲地到丁地不同的路有()
A . 11条
B . 14条
C . 16条
D . 48条
10. (2分)定义运算,若函数在上单调递减,则实数的取值范围是()
A .
B .
C .
D .
11. (2分)已知圆(x﹣a)2+(y﹣b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为()
A .
B .
C . (x﹣1)2+y2=1
D . x2+(y﹣1)2=1
12. (2分) (2017高二下·宁波期末) 已知曲线f(x)=lnx在点(2,f(2))处的切线与直线ax+y+1=0垂直,则实数a的值为()
A .
B . ﹣2
C . 2
D .
二、填空题 (共4题;共4分)
13. (1分) (2016高二下·武汉期中) |x+2|dx=________.
14. (1分)(2017·商丘模拟) 设a= (cosx﹣sinx)dx,则二项式(a ﹣)6的展开式中含x2项的系数为________.
15. (1分) (2015高二上·大方期末) 已知A、B是球O球面上的两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为________.
16. (1分)(2020·葫芦岛模拟) 已知数列满足,为数列的前n项和,则满足不等式的n的最大值为________.
三、解答题 (共5题;共35分)
17. (10分) (2019高二上·湖北期中) 在中,内角,,所对的边分别是,, .已知, .
(1)求的值;
(2)若的面积为3,求的值.
18. (5分)(2019·长春模拟) 近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,长郡中学高三兴趣研究小组利用暑假空闲期间做了一项对人们雾霾天外出时是否戴口罩的调查,共调查了120人,其中女性70人,男性50人,并根据统计数据画出等高条形图如图所示:
(Ⅰ)利用图形判断性别与雾霾天外出戴口罩是否有关系;
(Ⅱ)根据统计数据建立一个列联表;
(Ⅲ)能否在犯错误的概率不超过0.05的前提下认为性别与雾霾天外出戴口罩有关系.
附:
19. (5分) (2019高一下·杭锦后旗期中) 如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2 ,求三棱锥C一A1DE的体积.
20. (5分) (2019高二上·随县月考) 已知点,,在圆E上,过点的直线l与圆E相切.
Ⅰ 求圆E的方程;
Ⅱ 求直线l的方程.
21. (10分) (2020高二下·六安月考) 已知函数.
(1)求曲线在点处的切线方程;
(2)证明:当时,.
四、选做题:请在22、23、24三题中任选一题作答 (共3题;共20分)
22. (5分)如图在△ABC中,∠C=90°,BE是∠CBD的平分线,DE⊥BE交AB于点D,圆O是△BDE外接圆.
(Ⅰ)求证:AC是圆O的切线;
(Ⅱ)如果AD=6,AE=6,求BC的长.
23. (5分)已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.
24. (10分) (2016高三上·沈阳期中) 已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三个不同的解,求实数a的取值范围.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共5题;共35分)
17-1、
17-2、
18-1、
19-1、
20-1、
21-1、
21-2、
四、选做题:请在22、23、24三题中任选一题作答 (共3题;共20分)
第11 页共13 页
22-1、
第12 页共13 页
23-1、
24-1、
24-2、
第13 页共13 页。

相关文档
最新文档