2008年全国中学生数学能力竞赛决赛试题高一年级组

合集下载

08年全国高中数学联赛试题及答案

08年全国高中数学联赛试题及答案

2008年全国高中数学联赛受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。

中国数学会普及工作委员会和重庆市数学会负责命题工作。

2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。

全卷包括6道选择题、6道填空题和3道大题,满分150分。

答卷时间为100分钟。

全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。

全卷包括3道大题,其中一道平面几何题,试卷满分150分。

答卷时问为120分钟。

一 试一、选择题(每小题6分,共36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )。

(A )0 (B )1 (C )2 (D )32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )。

(A )[1,2)- (B )[1,2]- (C )[0,3] (D )[0,3)3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( )。

(A )24181 (B )26681 (C )27481(D ) 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。

(A )764 cm 3或586 cm 3 (B ) 764 cm 3(C )586 cm 3或564 cm 3 (D ) 586 cm 3 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。

2008年北京市中学生数学竞赛高一年级初赛试题

2008年北京市中学生数学竞赛高一年级初赛试题

(2008年4月13日8︰30~10︰30)亲爱的中学生朋友:欢迎你参加本次竞赛活动﹗中国的未来需要众多的人才,人才的培养需要从青少年时代奠基,打好数学基础有助于从事各行业的发展。

北京数学会组织中学生数学竞赛等数学科普活动旨在自愿的前提下丰富数学爱好者的课余生活,激发学习兴趣,普及科学精神,提高能力水平。

祝你插上数学的翅膀,在科学探索的空间展翅翱翔。

注意事项1.本次考试共有14个小题﹙6个选择,8个填空题﹚,把答案填写在下面标有题号的空格内。

2.不允许使用计算器。

3.监考员宣布考试结束时,请你私下本页,填好所要求填写的项目,交给监考员。

以下由考生填写姓名__________________性别______考号_____________校名______________________________年级___________以下由评分者填写本次考试该生所得分数是__________一 、选择题﹙满分36分,每小题只有一个正确答案,请将正确答案的英文字母代号填入第一页指定地方,答对得6分,答错或不答均记0分﹚ 1.设函数()f x 对0x ≠的一切实数均有()200823f x f x x ⎛⎫⎪⎝⎭+=,则()2f 等于﹙A ﹚2006. ﹙B ﹚2008. ﹙C ﹚2010. ﹙D ﹚2012. 2. 0000cos31,tan46,sin81,sin113的大小关系是 ﹙A ﹚0000cos31tan46sin81sin113<<<.﹙B ﹚0000sin81cos31sin113tan46<<<. ﹙C ﹚0000cos31sin113sin81tan46<<<. ﹙D ﹚0000tan46sin81cos31sin113<<<.3.已知0abc <,则在下列四个选项中,表示2y ax bx c =++的图像只可能是4.对非0实数a ,存在实数θ使得212cos a a θ+=成立,则6cos πθ⎛⎫ ⎪⎝⎭+的值是﹙A﹚2. ﹙B ﹚12. ﹙C﹚2-﹙D ﹚12-.5.已知,αβ分别满足100411004,10g βααβ=⋅=⋅,则αβ⋅等于﹙A﹚ ﹙B ﹚1004. ﹙C﹚ ﹙D ﹚2008.6. 23456cos0cos cos cos cos cos cos 777777ππππππ++++++等于﹙A ﹚4. ﹙B ﹚3. ﹙C ﹚2. ﹙D ﹚1.二 、填空题﹙满分64分,每小题8分,请将答案填入第一页指定地方﹚ 1.求523111125323111ogog og ⋅⋅的值. 2.如果sin cos αα+3tan πα⎛⎫⎪⎝⎭+的值.3.在右图的圆中,弦,AB CD 垂直相交于E ,若线段,AE EB 和ED 的长分别是2厘米,6厘米和3厘米,试求这个圆的面积.4.以[]x 表示不超过x 的最大整数,试确定sin1sin2sin3sin4sin5++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的值.5.已知直角三角形ABC 斜边AB计算AB AC BC BA CA CB ++⋅⋅⋅.6.已知集合{}{}22,68070x x x x x ax A B -+<-+===.若AB ≠∅,确定实数a 的取值范围.7.分别以锐角三角形ABC 的边,,AB BC CA 为直径画圆,如图所示. 已知在三角形外的阴影曲边三角形面积为w 平方厘米,在三角形内的阴影曲边三角形面积为u 平方厘米,试确定三 角形ABC 的面积.8.已知正整数n 与k 使得252500n k =+成立.试确定不小于lg lg k n的最小整数的值.2008年北京市中学生数学竞赛高一年级初赛试题参考答案选择题填空题。

广东省东莞市2008年高中数学竞赛决赛试题新人教A版

广东省东莞市2008年高中数学竞赛决赛试题新人教A版

中数学竞赛决赛试题一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题表的相应位置.)1.若集合},,{c b a M =中的元素是ABC ∆的三边长,则ABC ∆一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.设k =︒100cos ,则︒80tan =( )A .k k 21-B .k k 21--C .k k 21-±D .21kk -±3.如图,一个空间几何体的正视图,左视图,俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长都为1,那么这个几何体的体积为( )A .61 B .31 C .21D .14. 若A 、B 两点分别在圆044840481662222=--++=-+-+y x y x y x y x 和上运动,则||AB 的最大值为( )A .13B .19C .32D .38 5.设21,x x 是函数()2008xf x =定义域内的两个变量,且21x x <,若)(2121x x a +=,那么,下列不等式恒成立的是( ) A .|)()(||)()(|21a f x f x f a f ->- B .)()()(221a f x f x f >C .|)()(||)()(|21a f x f x f a f -=-D . |)()(||)()(|21a f x f x f a f -<-6.已知函数*)(5n cos)(N n n f ∈=π,则=++++++)43()32()21()10()2008()2()1(f f f f f f f ( ) A .1B .0C . -1D .4二、填空题(本大题共6小题,每小题6分,共36分.请把答案填在答题卡相应题的横线上.)正视图 左视图 俯视图7.右图的发生器对于任意函数()x f ,D x ∈可制造出一 系列的数据,其工作原理如下:①若输入数据D x ∉0, 则发生器结束工作;②若输入数据D x ∈0时,则发生 器输出1x ,其中()01x f x =,并将1x 反馈回输入端.现 定义()12+=x x f ,)50,0(=D .若输入10=x ,那么, 当发生器结束工作时,输出数据的总个数为 .8.若点(1,1)到直线2sin cos =+ααy x 的距离为d ,则d 的最大值是 . 9. 从[0,1]之间选出两个数,这两个数的平方和小于0.25的概率是_______. 10.函数212y x x =++([]1,+∈n n x ,其中n 为正整数)的值域中共有2008个整数,则正整数=n .11. 把1,2,3,…,100这100个自然数任意分成10组,每组10个数,将每组中最大的数取出来,所得10个数的和记为S .若S 的最大值为M ,最小值为N ,则=+N M . 12.设集合[]{}22=-=x x x A ,{}2<=x x B ,其中符号[]x 表示不大于x 的最大整数,则=B A .三、解答题(本大题共6小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 13.(本小题满分12分)已知向量)tan 1,tan 1(x x -+=,))4sin(),4(sin(ππ+-=x x .(1)求证:BAC ∠为直角; (2)若]4,4[ππ-∈x ,求ABC ∆的边BC 的长度的取值范围.14.(本小题满分12分)已知函数1)2()(2++-=x a ax x f .若a 为整数,且函数()f x 在(2,1)--内恰有一个零点,求a 的值. 15.(本小题满分12分)设A 、B 是函数x y 2log =图象上两点, 其横坐标分别为a 和4+a , 直线2:+=a x l 与函数x y 2log =的图象交于点C , 与直线AB 交于点D . (1)求点D 的坐标;(2)当ABC ∆的面积大于1时, 求实数a 的取值范围.16.(本小题满分14分)如图,在正方体1111D C B A ABCD -中,E 、F 分别 为棱AD 、AB 的中点. (1)求证:EF ∥平面11D CB ; (2)求证:平面11C CAA ⊥平面11D CB ;(3)如果1=AB ,一个动点从点F 出发在正方体的表面上依次经过棱1BB 、11C B 、11D C 、D D 1、DA 上的点,最终又回到点F ,指出整个路线长度的最小值并说明理由.17.(本小题满分14分)已知以点)0,)(2,(≠∈t R t tt C 为圆心的圆与x 轴交于A O 、两点,与y 轴交于O 、B 两点,其中O 为坐标原点.(1)求证:OAB ∆的面积为定值;(2)设直线42+-=x y 与圆C 交于点N M 、,若||||ON OM =,求圆C 的方程.A 118.(本小题满分14分)对于函数()f x ,若()f x x =,则称x 为()f x 的“不动点”,若()()f f x x =,则称x 为()f x 的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为A 和B ,即(){}|A x f x x ==,()(){}|B x f f x x ==.(1)求证:A B ⊆;(2)若()()21,f x ax a R x R =-∈∈,且A B =≠∅,求实数a 的取值范围;(3)若()f x 是R 上的单调递增函数,0x 是函数的稳定点,问0x 是函数的不动点吗?若是,请证明你的结论;若不是,请说明的理由.高中数学竞赛决赛 参 考 答 案一、选择题D B A C D C 二、填空题7.5 8.22+ 9.16π10.1003 11.1505 12.}3,1{- 三、解答题13.(1)证明:因为)4sin()tan 1()4sin()tan 1(ππ+-+-+=⋅x x x x AC AB=cos sin cos sin (sin cos )(sin cos )]cos cos x x x x x x x x x x+--++ =0, …………4分所以AC AB ⊥,即︒=∠90BAC . …………5分所以ABC ∆是直角三角形. …………6分 (2)解:1)4(sin )4(sin ||22=-++=ππx x , 因为ABC ∆是直角三角形,且AC AB ⊥,所以x 2222tan 23||||||+=+= …………9分 又因为]4,4[ππ-∈x ,1tan 02≤≤x ,所以5||3≤≤. 所以,BC 长度的取值范围是[]5,3. …………12分14.解:(1)0=a 时,令012)(=+-=x x f 得21=x ,所以()f x 在(2,1)--内没有零点; …………2分(2)0≠a 时,由2()(2)1,f x ax a x =-++044)2(22>+=-+=∆a a a 恒成立, 知1)2()(2++-=x a ax x f 必有两个零点. …………5分 若0)2(=-f ,解得Z a ∉-=65;若0)1(=-f ,解得Z a ∉-=23, 所以0)1()2(≠--f f . …………7分 又因为函数()f x 在(2,1)--内恰有一个零点,所以(2)(1)0f f --<即(65)(23)0a a ++<. …………10分 解得 35,26a -<<- 由,1a Z a ∈∴=-综上所述,所求整数a 的值为1-. …………12分15.解:(1)易知D 为线段AB 的中点, 因)log ,(2aa A ,)log ,4()4(2++a a B ,所以由中点公式得)log ,2()4(2++a a a D . …………2分(2)连接AB,AB 与直线2:+=a x l 交于点D,D 点的纵坐标为))4(log (log 2122++=a a y D . …………4分所以BCD ACD ABC S S S ∆∆∆+=)22(||21+⋅=CD ||2CD =⎥⎦⎤⎢⎣⎡++-+=))4(log (log 21)2(log 2222a a a= log 2)4()2(2++a a a …………8分由S △ABC = log 2)4()2(2++a a a >1, 得2220-<<a , …………10分因此, 实数a 的取值范围是2220-<<a . …………12分16.(1)证明:连结BD .在正方体1AC 中,对角线11//BD B D .又 E 、F 为棱AD 、AB 的中点,//EF BD ∴.11//EF B D ∴. …………2分又B 1D 1⊂≠ 平面11CB D ,EF ⊄平面11CB D ,∴ EF ∥平面CB 1D 1. …………4分(2)证明:在正方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂≠ 平面A 1B 1C 1D 1,∴ AA 1⊥B 1D 1.又在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴ B 1D 1⊥平面CAA 1C 1. …………6分 又B 1D 1⊂≠ 平面CB 1D 1,∴平面CAA 1C 1⊥平面CB 1D 1. …………8分(3)最小值为. …………10分如图,将正方体六个面展开成平面图形, …………12分从图中F 到F,两点之间线段最短,而且依次经过棱BB 1、B 1C 1、C 1D 1、D 1D 、DA 上的中点,所求的最小值为. …………14分17.解:(1)O C 过原点圆 ,2224t t OC +=∴. 设圆C 的方程是 22224)2()(tt t y t x +=-+-FF令0=x ,得ty y 4,021==;令0=y ,得t x x 2,021==. …………2分 4|2||4|2121=⨯⨯=⨯=∴∆t tOB OA S OAB ,即:OAB ∆的面积为定值. ……4分 (2)|,||||,|||CN CM ON OM == OC ∴垂直平分线段MN . 21,2=∴-=oc MN k k ,∴直线OC 的方程是x y 21=.…………6分 t t 212=∴,解得:22-==t t 或. …………8分 当2=t 时,圆心C 的坐标为)1,2(,5=OC ,此时C 到直线42+-=x y 的距离551<=d ,圆C 与直线42+-=x y 相交于两点. …………10分 当2-=t 时,圆心C 的坐标为)1,2(--,5=OC ,此时C 到直线42+-=x y 的距离559>=d圆C 与直线42+-=x y 不相交,2-=∴t 不符合题意舍去. …………13分∴圆C 的方程为5)1()2(22=-+-y x . …………14分18.解:(1)若A =∅,则A B ⊆显然成立;若A ≠∅,设t A ∈,则()()()(),f t t f f t f t t===,t B∴∈,故A B ⊆. …………4分(2)2,1A ax x ≠∅∴-=有实根,14a ∴≥-.又A B ⊆,所以()2211a ax x --=,即3422210a x a x x a --+-=的左边有因式21ax x --, 从而有()()222110ax x a x ax a --+-+=. …………6分A B =,2210a x ax a ∴+-+=要么没有实根,要么实根是方程210ax x --=的根.若2210a x ax a +-+=没有实根,则34a <;若2210a x ax a +-+=有实根且实根是方程210ax x --=的根,则由方程210ax x --=,得22a x ax a =+,代入2210a x ax a +-+=,有210ax +=.由此解得12x a =-,再代入得111042a a +-=,由此34a =,故a 的取值范围是13,44⎡⎤-⎢⎥⎣⎦. …………10分 (3)由题意:0x 是函数的稳定点则()()00f f x x =,设()00f x x >,()f x 是R 上的单调增函数,则()()()00f f x f x >,所以()00x f x >,矛盾.若()00x f x >,()f x 是R 上的单调增函数,则()()()00f x f f x >,所以()00f x x >,矛盾,故()00f x x =,所以0x 是函数的不动点. …………14分。

2008年全国高中数学联赛试题及答案.pdf

2008年全国高中数学联赛试题及答案.pdf
2x
的最小值为 2.故选 C.
2. 因为 x2 ax 4 0 有两个实根
x1

a 2

4 a2 4
, x2

a 2
4 a2 ,故 B A 等价于 4
x1

2 且
x2

4
,即
a 2

4 a2 2 且 a
4
2
4 a2 4 ,解之得 0 a 3 .故选 D。 4
(A)0
(B)1
(C)2
(D)3
2.设 A [2, 4) , B {x x2 ax 4 0} ,若 B A ,则实数 a 的取值范围为( )。
(A)[1, 2)
(B)[1, 2]
(C) [0, 3]
(D) [0, 3)
3.甲、乙两人进行乒乓球比赛,约定每局胜者得 1 分,负者得 0 分,比赛进行到有一人比
对方多 2 分或打满 6 局时停止.设甲在每局中获胜的概率为 2 ,乙在每局中获胜的概率 3
为 1 ,且各局胜负相互独立,则比赛停止时已打局数 的期望 E 为 ( )。 3
(A) 241 81
(B) 266 81
(C) 274 81
(D) 670 243
4.若三个棱长均为整数(单位:cm)的正方体的表面积之和为 564 cm2,则这三个正方体
n
项和
Sn
满足:
Sn

an

n 1 n(n 1)

n
是定义在 R 上的函数,若 f (0) 2008 ,且对任意 x R ,满足
f (x 2) f (x) 3 2x , f (x 6) f (x) 63 2x ,则 f (2008) =

2008年全国初中数学联合竞赛试题参考答案

2008年全国初中数学联合竞赛试题参考答案

2008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) )(A 5. )(B 7. )(C 9. )(D 11.【答】B .解 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以,a b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B . 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为 ( ) )(A 185. )(B 4. )(C 215. )(D 245. 【答】D . 解 因为AD ,BE ,CF 为三角形ABC 的三条高,易知,,,B C E F 四点共圆,于是△AEF ∽△ABC ,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt △ABE 中,424sin 655BE AB BAC =∠=⨯=. 故选D . 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( ))(A 15. )(B 310. )(C 25. )(D 12. 【答】C . 解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个. 所以所组成的数是3的倍数的概率是82205=. 故选C .4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则 ( ))(A BM CN >. )(B BM CN =.)(C BM CN <. )(D BM 和CN 的大小关系不确定.【答】B .解 ∵12ABC ∠=︒,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=︒-︒=︒. 又180********BCM ACB ∠=︒-∠=︒-︒=︒,∴180844848BMC ∠=︒-︒-︒=︒,∴BM BC =. 又11(180)(180132)2422ACN ACB ∠=︒-∠=︒-︒=︒, ∴18018012()BNC ABC BCN ACB ACN ∠=︒-∠-∠=︒-︒-∠+∠168(13224)=︒-︒+︒12ABC =︒=∠,∴CN CB =. 因此,BM BC CN ==.故选B .5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( ))(A 39()8. )(B 49()8. )(C 59()8. )(D 98. 【答】 B .解 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为98(110%)(120%)()()1010k n k k n k a a --⋅-⋅-=⋅⋅,其中k 为自然数,且0k n ≤≤. 要使r 的值最小,五种商品的价格应该分别为:98()()1010i n i a -⋅⋅,1198()()1010i n i a +--⋅⋅, 2298()()1010i n i a +--⋅⋅,3398()()1010i n i a +--⋅⋅,4498()()1010i n i a +--⋅⋅,其中i 为不超过n 的自然数. 所以r 的最小值为44498()()91010()988()()1010i n i i n ia a +---⋅⋅=⋅⋅. 故选B . 6. 已知实数,x y满足(2008x y =,则223233x y x y -+-2007-的值为 ( ))(A 2008-. )(B 2008. )(C 1-. )(D 1.【答】D .解 ∵(2008x y =,∴x y -==y x -==由以上两式可得x y =. 所以2(2008x =,解得22008x =,所以22222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设12a -=,则5432322a a a a a a a+---+=-2-.解 ∵221a a ===-,∴21a a +=, ∴543232323222()2()2a a a a a a a a a a a a a a a a+---++--++=-⋅- 33332221211(1)(11)2(1)1a a a a a a a a a a a--+--===-=-++=-+=-⋅----.2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且AM =135MAN ∠=︒,则四边形AMCN 的面积为52解 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB ==,2MO ===, ∴MB MO OB =-=又135ABM NDA ∠=∠=︒, 13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=︒-︒-∠45=︒-MAB AMB ∠=∠,所以△ADN ∽△MBA ,故AD DNMB BA =,从而12AD DN BA MB =⋅==. 根据对称性可知,四边形AMCN 的面积115222222MAN S S MN AO ==⨯⨯⨯=⨯⨯=△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=12解 根据题意,,m n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =. ∵1m n +≤,∴1m n m n +≤+≤,1m n m n -≤+≤. ∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m n b +≤=≤. 22244()()()11b mn m n m n m n ==+--≥+-≥-,故14b ≥-,等号当且仅当12m n =-=时取得; 22244()()1()1b mn m n m n m n ==+--≤--≤,故14b ≤,等号当且仅当12m n ==时取得. 所以14p =,14q =-,于是12p q +=. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 1 .解 21到23,结果都只各占1个数位,共占133⨯=个数位; 24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分) 已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式 (1)(1)()0a x x ax bx b x bx ------≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 整理不等式(1)并将221a b +=代入,得 2(1)(21)0a b x a x a ++-++≥ (2)在不等式(2)中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以224a -=或224a +=. 又因为0a ≥,所以a =a =, 于是方程组(3)的解为4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,44a b ⎧=⎪⎪⎨⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为a b ==a b ==二.(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解 (1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=︒-∠=︒-∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aS l y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC=,即2r a l y =,故2al r y =.所以22223222()4422a l a aS S a S r y y y y ==⋅=⋅≥,即2r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r 三.(本题满分25分)设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ (1)求a ,b 的值.解 (1)式即2634511()509509a b a b ++=,设634511,509509a b a b m n ++==,则 509650943511m a n a b --== (2) 故351160n m a -+=,又2n m =,所以2351160m m a -+= (3)由(1)式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程(3)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去. 综合可知251a =.此时方程(3)的解为3m =或5023m =(舍去). 把251a =,3m =代入(2)式,得5093625173b ⨯-⨯==. 第二试 (B )一.(本题满分20分)已知221a b +=,对于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式 220ay xy bx -+≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 由1,0x y xy +=≥可知01,01x y ≤≤≤≤.在(1)式中,令0,1x y ==,得0a ≥;令1,0x y ==,得0b ≥.将1y x =-代入(1)式,得22(1)(1)0a x x x bx ---+≥,即2(1)(21)0a b x a x a ++-++≥ (2)易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以2a =2a =0a ≥,所以a =或4a =. 于是方程组(3)的解为,4a b ⎧=⎪⎪⎨⎪=⎪⎩或4a b ⎧=⎪⎪⎨⎪=⎪⎩所以满足条件的,a b 的值有两组,分别为44a b ==44a b == 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩ (1)(2) 求()a b c +的值.解 (1)式即266341022511()509509a b c a b c +-+-=, 设66341022511,509509a b c a b c m n +-+-==,则 5096509423511m a n a b c ---== (3) 故351160n m a -+=,又2n m =,所以 2351160m m a -+= (4)由(1)式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程(4)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解.④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解. ⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程(4)的解为3m =或5023m =(舍去). 把251a =,3m =代入(3)式,得50936251273b c ⨯-⨯-==,即27c b =-. 代入(2)式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。

2008年全国高中数学联合竞赛一试试题解析

2008年全国高中数学联合竞赛一试试题解析

2008年全国高中数学联合竞赛一试试题一、选择题(本题满分36分,每小题6分)1.函数f (x )=5−4x +x 22−x在(−∞,2)上的最小值是()A.0 B.1 C.2 D.3解答f (x )=2−x +12−x⩾2,等号成立时x =1.所以选C .2.设A =[−2,4),B ={x |x 2−ax −4⩽0},若B ⊆A ,则实数a 的取值范围为()A.[−1,2)B.[−1,2]C.[0,3]D.[0,3)解答设f (x )=x 2−ax −4,依题意f (x )=0的两根x 1,x 2∈[−2,4).由于∆=a 2+16>0,于是 f (−2)=2a ⩾0,f (4)=12−4a >0,a 2∈[−2,4)⇒a ∈[0,3).所以选D .3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A.24181 B.26681 C.27481 D.670243解答由于比赛不满6局时胜者比对方多2分,则比赛局数只能是2,4,6.其中2局分胜负的情况为甲或乙胜2局;4局分胜负的情况为甲或乙胜3局负1局,且负的1局在前2局.于是需要比赛6局的情况是在前4局中,甲或乙在1,2局和3,4局中均为1胜1负.相应分布列为局数ξ246概率P (23)2+(13)2C 12·13(23)3+C 12·23(13)34(13)2(23)2于是Eξ=2×59+4×2081+6×1681=26681.所以选B .4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564cm 2,则这三个正方体的体积之和为()A.764cm 3或586cm 3B.764cm 3C.586cm 3或564cm 3D.586cm 3解答设三个正方体的棱长分别为a,b,c ,则6(a 2+b 2+c 2)=564⇒a 2+b 2+c 2=94.由于(3k ±1)2≡1(mod 3),于是a,b,c 中必有2个数为3的倍数,不妨设为a,b .检验得32+62=45⇒c =7;32+92=90⇒c =2.从而a 3+b 3+c 3=586或764.所以选A .5.方程组 x +y +z =0,xyz +z =0,xy +yz +xz +y =0的有理数解(x,y,z )的个数为()A.1B.2C.3D.4解答xyz +z =z (xy +1)=0⇒z =0或xy =−1.当z =0时, x +y =0,xy +y =y (x +1)=0⇒ x =0,y =0或 x =−1,y =1.当xy =−1时, (x +y )2=y −1,xy =−1⇒(y −1y )2=y −1⇒y 2+1y 2=y +1⇒y 4−y 3−y 2+1=(y −1)(y 3−y −1)=0.由于y 3−y −1=0没有有理根,则y =1⇒x =−1.于是有理解(x,y,z )的个数为2,所以选B .6.设△ABC 的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin A cot C +cos A sin B cot C +cos B的取值范围是()A.(0,+∞) B.(0,√5+12)C.(√5−12,√5+12) D.(√5−12,+∞)解答设等比数列a,b,c 的公比为q ,则b =aq,c =aq 2.于是 a +b >c,b +c >a ⇒ q 2−q −1<0,q 2+q −1>0⇒√5−12<q <√5+12.sin A cot C +cos A sin B cot C +cos B =sin A cos C +cos A sin C sin B cos C +cos B sin C =sin (A +C )sin (B +C )=sin B sin A =b a =q ∈(√5−12,√5+12).所以选C .二、填空题(本题满分54分,每小题9分)7.设f (x )=ax +b ,其中a,b 为实数,f 1(x )=f (x ),f n +1(x )=f (f n (x )),n =1,2,···,若f 7(x )=128x +381,则a +b =.解答f 2(x )=a (ax +b )+b =a 2x +ab +b =a 2x +b (1−a 2)1−a ,f 3(x )=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b =a 3x +b (1−a 3)1−a ,···,f 7(x )=a 7x +b (1−a 7)1−a =128x +381⇒a =2,b =3.所以a +b =5.8.设f (x )=cos 2x −2a (1+cos x )的最小值为−12,则a =.解答设t =cos x ∈[−1,1],则f (x )=2t 2−1−2a (1+t )=2t 2−2at −2a −1=2(t −a 2)2−a 22−2a −1.于是 a 2∈[−1,1],−a 22−2a −1=−12或 a 2>1,1−4a =−12或 a 2<−1,1=−12.解得a =−2±√3(−2−√3舍去).所以a =−2+√3.9.将24个志愿者名额分配给3所学校,则每校至少有一个名额且各校名额互不相同的分配方法共有种.解答将24个志愿者名额分配给3所学校,每校至少有一个名额的分配方法有C 223=253种;3所学校名额相同的分配方法有1种;有且仅有2所学校名额相同的分配方法(即满足2x +z =24且x =z 的正整数解)有10×3=30种.所以3所学校名额互不相同的分配方法共有253−1−30=222种.10.设数列{a n }的前n 项和S n 满足:S n +a n =n −1n (n +1),n =1,2,···,则通项a n =.解答S n +a n =2S n −S n −1=n −1n (n +1)=2n +1−1n ⇒2(S n −1n +1)=S n −1−1n ⇒数列{S n −1n +1}是公比为12的等比数列,且S 1−12=−12,于是S n −1n +1=−(12)n ⇒S n =1n +1−(12)n (n ∈N ∗).所以a n =S n −S n −1=1n +1−(12)n −1n +(12)n −1=(12)n −1n (n +1).11.设f (x )是定义在R 上的函数,若f (0)=2008,且对任意x ∈R ,满足f (x +2)−f (x )⩽3·2x ,f (x +6)−f (x )⩾63·2x ,则f (2008)=.解答f (2008)=f (0)+[f (2)−f (0)]+[f (4)−f (2)]+···+[f (2008)−f (2006)]⩽2008+3(20+22+···+22006)=2008+41004−1=22008+2007;f (2004)=f (0)+[f (6)−f (0)]+[f (12)−f (6)]+···+[f (2004)−f (1998)]⩾2008+63(20+26+···+21998)=2008+64334−1=22004+2007,又 f (x +6)−f (x )⩾63·2x ,f (x )−f (x +2)⩾−3·2x⇒f (x +6)−f (x +2)⩾60·2x ⇒f (2008)−f (2004)⩾60·22002⇒f (2008)⩾f (2004)+60·22002=64·22002+2007=22008+2007.所以f (2008)=22008+2007.12.一个半径为1的小球在一个内壁棱长为4√6的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.解答如图,小球O 是正四面体P −DEF 的内切球.设AC 的中点为G ,作OM ⊥P G 于M .则有r =1⇒P O =3⇒P M =2√2=13P G ,同理AN =2√2=13AF ⇒MN =2√6.于是小球在正四面体一个面内能接触到的区域是以MN 为边长的正三角形及内部,其面积为正四面体一个面面积的14.所以该小球永远不可能接触到的容器内壁的面积为正四面体表面积的34,即S =34×4×√34×(4√6)2=72√3.三、解答题(本题满分60分,每小题20分)13.已知函数f (x )=|sin x |的图像与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,求证:cos αsin α+sin 3α=1+α24α.解答如图,直线y =kx (k >0)与f (x )=|sin x |的图像相切于点A (α,−sin α)(π<α<3π2),由于(−sin x )′=−cos x,于是有−sin αα=−cos α⇒α=tan α.所以cos αsin α+sin 3α=cos α2sin 2αcos α=12sin 2α=1+tan 2α4tan α=1+α24α.14.解不等式log 2(x 12+3x 10+5x 8+3x 6+1)<1+log 2(x 4+1).解答解析一:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+5x 8+3x 6−2x 4−1<0⇒(x 4+x 2−1)(x 8+2x 6+4x 4+x 2+1)<0⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).解析二:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+3x 8+x 6+2(x 8+x 6)<2x 4+1⇒x 6+3x 4+3x 2+1+2(x 2+1)<2x 2+1x 6⇒(x 2+1)3+2(x 2+1)<(1x 2)3+2x 2⇒x 2+1<1x 2⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).15.如图,P 是抛物线y 2=2x 上的动点,点B 、C 在y 轴上,圆(x −1)2+y 2=1内切于△P BC ,求△P BC 面积的最小值.解答如图,设P (2t 2,2t ),M (1,0),过P 的直线y −2t =k (x −2t 2)与圆M 相切,则有|k (1−2t 2)+2t |√1+k2=1⇒4t 2(t 2−1)k 2−4t (2t 2−1)k +4t 2−1=0设直线P B,P C 的斜率为k 1,k 2,于是y B =2t −2t 2k 1,y C =2t −2t 2k 2,S △P BC =12·2t 2|y B−y C |=2t 4|k 1−k 2|=2t 4·√16t 2(2t 2−1)2−16t 2(t 2−1)(4t 2−1)4t 2(t 2−1)=2t 2·|t |√(2t 2−1)2−(t 2−1)(4t 2−1)t 2−1=2t 4t 2−1=2(t 4−1+1t 2−1)=2(t 2+1+1t 2−1)=2(t 2−1+1t 2−1+2)⩾2(2+2)=8,等号成立时t 2=2⇒t =±√2.所以△P BC 面积的最小值是8.。

2008年全国高中数学联合竞赛一试试题及解答

2008年全国高中数学联合竞赛一试试题及解答

2008年全国高中数学联合竞赛一试试题(A 卷)一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( ) A. 24181 B. 26681 C. 27481D. 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( ) A. 1 B. 2 C. 3 D. 46.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( )A. (0,)+∞B.C.D. )+∞二、填空题(本题满分54分,每小题9分)题15图7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =L ,若7()128381f x x =+,则a b += .8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a = .9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =L ,则通项n a = .11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f = .12.一个半径为1的小球在一个内壁棱长为46的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 ..三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+.14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.2008年全国高中数学联合竞赛一试参考答案及评分标准(A卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3) [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a ,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B )A.24181 B. 26681 C. 27481 D. 670243 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==, 4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但。

2008全国高中数学联赛一试试题

2008全国高中数学联赛一试试题

2008年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3) [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a -且42a , 解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A. 24181 B. 26681 C. 27481 D. 670243[解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==,4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩,若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩ 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A. (0,)+∞B.C.D. )+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++ s i n ()s i n ()s i ns i n ()s i n ()s i nA CB B b q BC A A a ππ+-=====+-. 因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得q q q <<⎨⎪><⎪⎩从而1122q <<,因此所求的取值范围是. 二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n = ,若7()128381f x x =+,则a b += 5 .[解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-,故2112122a a ---=-,解得2a =-2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===.又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n = ,则通项n a =112(1)n n n -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a n n .11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知答12图1(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++ 10031413(0)41f +-=⋅+- 200822007=+. [解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则2211PP PO OP =-=. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1PEF ,如答12图2.记正四面体答13图答12图2的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有11cos PM PP MPP =⋅==,故小三角形的边长12P E P AP M r=-=. 小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB P EF S S ∆∆-22())a a =--2=-. 又1r =,a =1PAB P EF S S ∆∆-==.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为 三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,2211(022x x ---->. …15分所以2x >,即x <x >故原不等式解集为(,)-∞+∞ . …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+. …5分即6422232262133122(1)2(1)x x x x x x x x+<+++++=+++, )1(2)1()1(2)1(232232+++<+x x xx , …10分 令3()2g t t t =+,则不等式为221()(1)g g x x<+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于题15图2211x x<+, …15分 即222()10x x +->,解得2x >(2x <舍去),故原不等式解集为(,)-∞+∞ . …20分 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y by b x x --=, 化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则22200020448()(2)x y x b c x +--=-. 因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++--48≥+=.当20(2)4x -=时,上式取等号,此时004,x y ==±因此PBC S ∆的最小值为8. …20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%"&$ !- $" !$#! ’""/ H 0 I ’- J ’! K !" L ". M%NOPQRSTUGVWXYZ[K\%NO]^_ ‘’abcdefghijklmnopqnors*tueabcd’vw’xyzw {xy|}~xy%vw’xy*% vw’*%#$i s’2%vw’|vwxy’]7 *#$v w’w{xy= $ ! ! ! 1$"%}~xy= $ 1$"K%vw’= ’#2’ 1345"%}~ ! ! ! ’xy= $ 6 , !" 1$"K%vw’= ’ 1345"* ! !"EFvw’ " |}~xy ! ’A ! ’"}~xy= ¡K%vw’¢£¤ !/ 1345:
89
8:
8
Hale Waihona Puke "; # $ %
!"#$%& ! !"#$%&’()*+,-./0123456789: ;$%<=>?@$%8 AB?@CDE !FGHI)?@JKLM$ %8N!G?@OPQRSTU2VWX
!" =>??@ABCDEFGH’IJKL’MNO8PQRSTDU’VWXY’Z’[\ ]^_D‘ab’cdefg!??Ihij8klmno/$:Hpqrstuv’As8 wxyz{|}~S-i!t oMNOS’!/V /o ($$$ BMNOo ¡*n ! ¢ Y£T2¤ " ¢ Z¥ ’¦§ ! ) *+,! ¨8©ª«¬MNO*M . B8*n­A®8¯°± " " - % ’
=> 78K L "#$ MN L "#$
" 0 *(00
$ $ *(&
( / *(/
) & *(0
* / *(1
+ # *(#
DOP 0 Q78RSJ!$#(#)#+T",#$#(T#!#"##T$(#*#+T%$#)#*#+UVMNWX #(/ 9:YRSB L %&’()((
2
#
3
."/01$’( " ijklRmnopq!r‘stuop+vw;Rx ywz{V|Iop}o~p2sMNR45
+
*
,
, -+./0 !""# !"#$%&’%()*+ 12!34
8 9:;<=!(" < >:?@=!!" <AB #34567 ijk’lmk=no(
/0’(12 f g /* O!h= 0 O$
!"#$%&’( L *+,-./01234567/89:;+,<=>? @!ABCDEFG/HI>67JK(
!" #$% &’()* #%"!&#!%!"!!! +,-. !% /012 #!%! +34 $ 5% 6789: ! 4%/0;<=>?@ABCDEFGH67%I>?@A+-. "
! # %
"
!! #!
"!
! $
%!
!"#$%&’( " !"#$%&’()*+,-./0123456!789 (:;<=>?+,@ABCDEF,G!HIJKLMNOPBQRSTU
" #" #JKL " ’ (M+$NO4 #%!M%PQ " ’ $( % !M+$NRSO4
"
)"*+,-’( " VWXYZR[)\Y]^R_‘abcNdFefC abcNRg)hU
$" TUVWXY3+ZR[\]^_‘R[&aL%bc+\]_‘bc+&aL%dc+\
%
#
%
"#$%&’()* ! +,-./$01*"23456 ! 7 ; ! < 9 : ; 9 : ; : ; &
&% +,-. " !" ’ ’ ! +,-%&#& . #$!$ !" ’ ’ !/# (&#& . #$#% ""$ ! %
)*+,-.’( L *LM/NG/OPQ,!;RSTUV<=WX>YZ! [\]45>^_:;+,‘aTQ,23bEcdeE7$
’% 012345678 #% 9:;<=>?@#ABCD / E=>FGHIJ
/
.
0
!" ./0 12345()*67345+,*689% : )" ;<=>?@"A)=BC/D0 E/DFGH 5()*6IJ ’ K! BCDEF3 ! GH$05+ ,*6IJ # K!0LMNOPQBC/D0RSTU P>QA)6=.VWXH ! 5()*6Y5+,*6ZS[ $ K!0\] ! K !^ "5+,*6=_‘a %& +,.*^ #5+,*68S[ !-& K!bcdJ5()*6efghWX=ija -
1
-
%
1
!"#$%& ! " !" #$
%&’( #" (" !"#! ! )*+,&-./0&123456278/9&0:(" ! /9&0" #$%& ! ! "" $ 0123! "% ! #’% ;<="( ! ! "" ! " & #% $ ’ )*+,-. (’)*/%& ! ! "" #" $ %
!!"’! !!$( ! & & $% ! ! !" "###$#%#&$#" !" "#$#&$## !" ’#$#%$#%
!% ) & % &( !
( (
&$ !% & % %( ) & % ’ ()& % &( ) & % ’ () * )& % $*’*( ) & % ’ (! $ $*’* & )’ % & (
!"#$%& !"#$%&’()*+,-./01213456%7* 89’:;<=6>?<=*@A<=’
I &&% y>H" ! # 0 ""# 1 ## 0" # # 0 " " 1 #J# 0 $ %’ 0
7y£: -
#!% = ¡¢ K % # #J 1 #
&’% 8¤¥¦§f0¨©ª¦«:¬C=­®¯°­!±BC & 0 # $ %’=/D²³´ ’ Q °­0µBC & 0 # $ %’: ’ ¶°­BC!V·BCf:¸¶°­BC=ija !& ( %#^ "& 0 234#%^ #& 0 ! %
,
7
,
!"#$ !" $" !"#! #$%&’($)*+($)*,-./0123 !#+($)*,-.40123%&, -.+’#$56789%&,-.+:;<=>?%&($)*,-.+@A%&BC’ #$)*DEFG+HI@$56J89G%&($)*,-.$KL($)*,-.M NOPQR STUR
%& # +,’ )" (" ’" &" %" $" #" !" !
()*
+,*
! # $ % %-&& ’ !" # *$
#$% klmnopq)rstuvw0xy3zrs{|}~H !. #"" 0 tu^ ". #"" 0 &"" 0 / tu^ #. &"" 0ef &"" " tu0 &"" = ( t ukM>zrs0{| !’) 7 %#$ 03zrd=l0{ |~a !
! /9&>" #$ &4"% + ’" & , $ - )*+567089&:;(4)"% & ) ! ’ ) %$" & , $ " <9&: *= > > & ? (@.A’ & ( (B.C’/9& ’ 0DEFG*
/
.
0
!"#$ !" $" !"#! #$ #$! % #$" & ’#$ ! ! ( ’""%& #)$ ! ’ ! ’(* " )*+,’-./0123 !" ! #$! + #$" & ’#$ ! ! , ’""%" !" &! ! , ’""’% ! !’ , -!" % ."’ & "% ! ! # " " ! & ."% " ! & ! " ! # .%" #)$ ! ’ ! & " " #)$ ! ’ ! & .* " " " " 45-6789:1;<=78%>?@ #)$ ! ’ ! + #)$. ! ’(A1;<=BC%>D78’ " " -./0EFG*
相关文档
最新文档