全国中学生数学能力竞赛(初一初赛)
2017年数学竞赛初中初赛答案

伊
1 006 1 007
伊…伊
2 004 2 005
伊
2 005 2 006
……………………………… 2 分
= 2 伊(1 + 2 + 3 + … + 2 005 + 2 006)
4分
= 2 006 伊 2 007
5分
= 4 026 042.
6分
14.(员)设爸爸追上乐乐用了 x 分钟援由题意列方程,得
5分
所以甲说的“801 班得第四”是对的;则丙说“803 班得第三”的对的;乙说“802 班得冠军”是对的.所以 804 班
是亚军.
9分
四、一鼓作气(本大题共 2 道小题,17 题 12 分,18 题 12 分,总计 24 分)
17. 当 a > 1 时,a >
1 a
;
1分
当 a = 1 时,a =
1 a
;当 a = 0 时,1a
不存在,没法比较;当 0 < a
< 1 或 a < -1 时,a <
1 a
.
12 分
18.(1)设年降水量为 x 万 m3,每人年平均用水量为 y m3.
1分
嗓 由题意,得
12 12
000 000
+ +
20x 15x
= 16 伊 20y, =(16 + 4)伊 15y.
9分
所以 a + b + c + d = 45,俞
11 分
将俞代入虞,愚,舆,余得
a = 3,b = 9,c = 12,d = 21,
13 分
所以 d - a = 21 - 3 = 18.
全国初中数学竞赛(海南赛区)初赛试题(含答案)

(1)设种植园应向海口供应的黄帝蕉有x千克,则向海口供应的香牙蕉有2x千克,根据题意列方程得:
2x+x=15000,解得:x=5000,则2x=10000
所以种植园供应文昌市的香牙蕉应为12000-10000=2000千克,植园供应文昌市的黄帝蕉应为5000-2000=3000千克.
(2)设应安排m千克香牙蕉在海口市销售,则在海口市销售的黄帝蕉为(15000-m)千克;在文昌市销售的香牙蕉与黄帝蕉分别为(12000-m)千克、(m-7000)千克,则这批香蕉的销售收入y与m的函数关系式为:y=4.8m+5(15000-m)+3.6(12000-m)+4.2(m-7000)
17、如图7,把线段AM绕点A画弧,可见N、C两点的距离存在两种情况:①点N在边BC上,②点N在边CB的延长线上;可以证明△ADM≌△ABN≌△ABN’,所以有BN=BN’=DM=3,所以N、C两点的距离是:1或7.
18、提示:可证AE=DE,BE=DE,由此得到DE的长是5.
三、解答题(本大题满分30分,每小题15分)
即点P在第一象限与第三象限
ⅰ)当点P在第一象限时(如点P1),
方法一(如图9A):
过点C作CH⊥MN于点H,则△CHQ是直角三角形,
由(2)的证明可知△BCD是等腰直角三角形,且BC=OB=CD=1 ∴CH= ,
若四边形OPQC为菱形,则有CQ=OC= ,
∴CH= OC∴∠CQH=30° ∴∠P1OC= 30°
15、在△ABC中,AB=5,AC=9,则BC边上的中线AD的长的取值范围是__________.
16、如图6,在平面直角坐标系中,直线AB由直线y=3x沿x轴向左平移3个单位长度所得,则直线AB与坐标轴所围成的三角形的面积为__________.
2018年全国初中数学竞赛(初一组)初赛试题参考答案

第1页(共1页)一、1.A 2.C 3.B 4.D 5.B 6.D二、7.-18.30°9.3或-110.221三、11.(1)19×11=12׿èöø19-111;………………………………………………………………………………5分(2)1()2n -1()2n +1;12׿èöø12n -1-12n +1;…………………………………………………………………………………………………………10分(3)a 1+a 2+a 3+…+a 100=12׿èöø1-13+12׿èöø13-15+12׿èöø15-17+12׿èöø17-19+⋯+12׿èöø1199-1201=12׿èöø1-13+13-15+15-17+17-19+⋯+1199-1201……………………………………………15分=12׿èöø1-1201=12×200201=100201.…………………………………………………………………………………………………20分四、12.(1)130°.…………………………………………………………………………………………………5分(2)∠APC =∠α+∠β.理由:过点P 作PE ∥AB ,交AC 于点E .……………………………………………………………10分因为AB ∥CD ,所以AB ∥PE ∥CD .所以∠α=∠APE ,∠β=∠CPE .所以∠APC =∠APE +∠CPE =∠α+∠β.…………………………………………………………15分(3)当点P 在BD 延长线上时,∠APC =∠α-∠β;……………………………………………………20分当点P 在DB 延长线上时,∠APC =∠β-∠α.……………………………………………………25分五、13.(1)根据题意,得t =æèöø120-12050×550+5×2+12050≈6.3()h .答:三人都到达B 地所需时间约为6.3h.………………………………………………………………5分(2)有,设甲从A 地出发将乙载到点D 行驶x 千米,放下乙后骑摩托车返回,此时丙已经从A 地出发步行至点E ,继续前行后与甲在点F 处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达.…………………………………………………………………………………………………………10分根据题意,得2∙x -x 50∙550+5+120-x 50=120-x 5.…………………………………………………………15分解得x ≈101.5.…………………………………………………………………………………………20分则所用总时间为t =101.550+120-101.55≈5.7()h .答:有,方案如下:甲从A 地出发载乙,同时丙步行前往B 地,甲载乙行驶101.5千米后放下乙,乙步行前往B 地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B 地,恰好与步行的乙同时到达,所需时间为5.7h.………………………………………………………………………25分。
最新整理初中数学试题试卷第二届“学用杯”全国数学知识应用竞赛初一年级初赛试题B卷.doc

第二届“学用杯”全国数学知识应用竞赛初一年级初赛试题(B卷)一、填空题:(每小题5分,共40分)1.实施西部大开发战略是党中央面向21世纪的重大决策,西部地区占我国国土面积的23,我国国土面积为960万平方千米,用科学记数法表示我国西部地区的面积为平方千米.2.小莲提一篮玉米到集贸市场去兑换大米,每2公斤玉米兑换1公斤大米,用秤一称连篮子带玉米恰好20公斤.于是商贩连篮带大米给小莲共称10公斤,设篮重a公斤,则在这过程中吃亏,数额是 .3.某超市原来将一批香蕉按100%的利润定价出售,由于定价过高,无人购买,不得不按38%的利润重新定价,这样售出了其中的40%,此时,因害怕剩余香蕉腐烂变质,不得不再次降价,售出了剩余的全部香蕉,结果获得的总利润是原来利润的30.2%,则第二次降价后的价格是原定价的百分之 .4.地球被厚厚的大气层包围着,大气的内部有压强,大气产生的压强叫做大气压强,大气压强的值随着高度的不同而变化,在海拔2000米以内,大约每升高12米,大气压的值减小1毫米水银柱所产生的压强.小华在山脚下测得大气压的值为760毫米水银柱所产生的压强,到达山顶后测得大气压强为706毫米水银柱所产生的压强,则小华到达山顶的位置比山脚下高米.5.一块手表每小时慢3分钟,若在清晨4点30分与北京时间对准,则在当天上午手表指示时间为10点50分时,北京时间应该是点分.6.从1999年11月1日起,全国储蓄存款征收利息税,税率为利息的20%,由各银行储蓄点代扣代收.某人在 1月存入定期一年的人民币若干元,年利率为2.25%,一年到期后缴纳利息税72元,则他存入的人民币为元.7.出租车司机小李某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午营运情况依次为(单位:千米):+15,-3,+14,-11,+10,-12,+4,-15,+16,-18.(1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是千米;(2)若汽车耗油量为a升/千米,那这天下午汽车共耗油升.8.在一次春游中,A、B、C三人将在海边拾到的石粒互相赠送,先由A给B、C,所给的石粒颗数等于B、C原来各有的石粒颗数,依同法再由B给A、C现有颗数,后由C给A、B 现有的颗数,互送后每人恰好各有32颗,则原来A、B、C三人各有石粒颗、颗、_________颗.二、选择题:(每小题5分,共50分)9.甲、乙两人投资合办一个企业,并协议按投资额的多少分配利润,已知甲与乙投资额的比例为3:4,首年利润为38500元,则甲、乙两个获利润分别为()(A)16500元、22000元; (B)115500元、154000元(C)22000元、16500元; (D)19250元、19250元10.我国政府为保护农民利益,对某种农产品实行保护价格敞开收购,该农产品在1998年因市场因素降价30%后,到保护价格为a,相比1998年的价格涨幅达60%,则该农产品在1998年降价前的价格为()(A)100110a(B)100112a(C)10060a(D)10016011.某班有4个课外小组,第一组有7人,第二组有10人,第三组有16人,第四组有18人.一天下午,学校有两个讲座,有三个小组的同学去听,留下一个小组打扫卫生,如果听数学讲座的学生人数是听英语讲座学生人数的4倍,那么,留下的一个小组是()(A)第一组(B)第二组(C)第三组(D)第四组12.一轮船从重庆到上海要6天,而从上海到重庆要8天,那么有一木排从重庆顺流漂到上海要()(A)24天(B)38天(C)48天(D)49天13.体育课上,王老师要同学们按1至2,1至3,1至7报数各一遍.结束后,他问排在最后的小青同学:“在这次报数中,你每次报的是几?”小青说:“我每次报的都是 1.”王老师说:“我知道了,你们班有一位同学没有上课.”则该班有同学()(A)23名(B)24名(C)43名(D)44名14.有一座3层的楼房失火了,一个消防队员搭了梯子爬到3楼楼顶上去救人,当他爬到梯子正中一级时,二楼的窗口喷出火来,他往下退了2级,等火过去了,他又爬上了6级,这时发现楼顶有一块木头的将要掉下来,他又后退了3级,躲开了这块木头,然后又往上爬了6级,这时他距离楼顶还有4级,则梯子共有()(A)19级(B)21级(C)23级(D)25级15.某次空军飞行演习中,飞机场停有10架飞机,第一架起飞后,每隔4分钟有一架飞机起飞,在第一架飞机起飞2分钟后,有一架飞机降落,以后每隔6分钟有一架飞机降落,降落的飞机在原有的10架飞机起飞之后也依次4分钟起飞一架,那么,从第一架飞机起飞到飞机场上没有飞机需经过()(A)106分钟(B)107分钟(C)108分钟(D)109分钟16.从家里骑摩托车去火车站,如果每小时走30千米,那么比开车时间早到15分钟,如果每小时走18千米,那么比开车时间迟到15分钟,现在打算比开车时间早10分钟到达火车站,那么摩托车的速度应该是()(A)25千米/时(B)26千米/时(C)27千米/时(D)28千米/时17.在古代生活中,有时也会用到不少数学知识,比如有下面这样一道题:甲赶群羊逐草茂,乙拽肥羊一只随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁参透?(注:小半为四分之一的意思.)请同学们想想甲有羊()(A)43只(B)44只(C)35只(D)36只18.在九张卡片上分别写上数字1,2,3,…,9,现将卡片顺序打乱,让空白面朝上,再写出1,2,3,…,9,然后将每张卡片上的两个数字作差,则九个差的积()(A)一定是奇数(B)一定是偶数(C)可能是奇数也可能是偶数(D)一定是负数三、解答题:(每小题20分,共40分)19.一楼房内有6家住户,分别姓赵、钱、孙、李、周、吴,这幢楼住户共订有A、B、C、D、E、F六种报纸,已知每家至少订有1种报纸,且赵、钱、孙、李、周分别订了其中2、2、4、3、5种报纸,而A、B、C、D、E五种报纸在这幢楼里分别有1、4、2、2、2家订户,若吴姓住户订有x种报纸,报纸F在这幢楼里有y家订户,试写出一个含有x、y的等式,并求出x、y的值.20.如图1,是几个村庄的平面图,一条公路(粗线)穿过这个区域,七个村庄A 1,A 2,…,A 7,分布在公路两侧,各由一些小路(细线)与公路相连,现在要在公路上建一个汽车站,使各村庄到汽车站的距离之和最小,(1)车站设在何处?为什么?(2)若在A 8处还有一个村庄,且沿图上虚线修一条小路,那么车站建在什么地方好?四、开放题:(本大题20分)21.在一次手工实验课上,需要将一张有一圆洞的长方形软纸片(如图2)折成面积相等的两部分,简述你的做法,并说明理由.图2 B C D E F A 1 A 2A 3 A 4 A 5 A 6 A 7 A 8 图1。
全国数学知识应用竞赛七年级初赛(校拟)试题(A)卷附答案

全国数学知识应用竞赛七年级初赛(校拟)试题(A )卷 (本卷满分150分,考试时间120分钟)题号一 二 三 四 总分 得分温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧,愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷。
一、填空题(每小题5分,共30分)1.七年级(1)班的生物小组在同一枝条上收集到三枚叶片做植物标本,测得叶片①的最大宽度是8厘米,最大长度是16厘米;叶片②的最大宽度是7厘米,最大长度是14厘米;叶片③的最大宽度是6.5厘米,最大长度是13厘米.叶片①、 ②分别记为(8+,16-)、 (7+,14-),仿照上述记法,则叶片③应记为 .2.美国是世界上最大的纸张生产和消费国.美国人买礼品讲究纸包装,购物喜欢用纸袋,餐桌喜欢用纸台布,吃饭、喝水更是离不开纸巾、纸杯.另外,报刊、广告、商品目录在美国多如牛毛,许多免费刊物人们随看随丢.政府部门办公用纸的用量更是令人咋舌,平均每小时工作用纸1 000万张.以美国国防部为例,一年约用纸210万箱,每箱5 000张,则美国国防部一年约用纸 张(用科学记数法表示).3.某校七年级有三个班,(1)班有40人,(2)班有36人,(3)班有44人,现三个班都按相同的比例派同学参加第七届“学用杯”数学知识应用竞赛,已知全年级共有30人未参加,则该校七年级(1)班参加竞赛的有 人.4.保险公司赔偿损失的计算公式为:保险赔偿=参保财产价值×损失程度,损失程度=保险财产受损价值保险财产受损当时市场完好价值×100%.若某人参加保险的财产价值为100 000元,受损时,按当时市场价计算总值为80 000元,受损后残值为20 000元,则该投保人能获得 元保险赔偿.5.假设图1为特快火车软座车厢的座位图,若小明坐在第6车、第八列、第三排,则他的车票号码为第6车第 号.6.小明家最近买了一套二手楼房,小明的爸爸准备将厨房、卫生间原来的地砖换成一种既防滑,又不易结污的新型正方形地砖(如图2,阴影部分表示地砖上的略凸起的部分,有防滑效果).利用4块这样的地砖,你能拼出 种不同的正方形图案.二、选择题(每小题5分,共30分)7.有一个外观为圆柱形的物体,它的内部构造从外部看不到.当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图3所示的(1)、(2)两组形状不同的截面,则这个物体的内部构造是( ).A .空心圆柱B .空心圆锥C .空心球D .空心半球8.有一条围粮的席子,长5米,宽2.5米,把它围成一个筒状的粮食囤.围法有两种: 第一种围法:围成周长2.5米,高5米的粮囤;第二种围法:围成周长5米,高2.5米的粮囤.下列说法正确的是( ).A .第一种围法的容积大,盛粮多B .第二种围法的容积大,盛粮多C .因是同一条席子围成的粮囤,所以两种围法围成的粮囤盛的粮一样多D .无法判断哪种围法围成的粮囤盛的粮多9.把一根绳子对折成线段AB ,如图4,从P 处把绳子剪断,已知12AP PB ,若剪断后的各段绳子中最长的一段为40厘米,则绳子的原长为( ).A .30厘米B .60厘米C .120厘米D .60厘米或120厘米10.某省积极响应“村村通公路”政策号召,截至2007年6月底,全县已有23的农村修建了公路.现准备将一条新修成的公路(如图5)一旁等距离地竖立电线杆,要求在两端及转弯的地方都分别竖立一根电线杆,则至少要竖立电线杆( ).A .20根B .19根C .18根D .17根11.我国著名的数学家华罗庚教授,在他生前写的文章中这样说:“……如果我们宇宙航船到了一个星球上,那儿也有如我们人类一样高级的生物存在.我们用什么东西作为我们之间的媒介呢?带幅画去吧,那边风景特殊,不了解.带一段录音去吧,也不能沟通.我看最好带两个图形去,一个‘数’,一个‘数形关系’(勾股定理)……”他在这里谈的到“数”指的是我国古代的“河图”,它是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图6给出了“河图”的部分点图,请你推算出P 处所对应的点图是( ).12.有一拉面师傅首先把一个面团搓成1.6米长的圆柱形面棍,对折,再拉长到1.6米;再对折,再拉长到1.6米;……这样对折10次,再拉长到1.6米,就做成了拉面.此时,若将手中的面条伸展开,把面条看作粗细均匀的圆柱形,它的粗细(直径)是原来面棍粗细(直径)的 ( ).A .116B .132C .164D .1128三、解答题(每小题15分,共60分)13.小惠和小红在学校操场的旗杆前玩“石头、剪刀、布”的游戏,规则如下:在每一个回合中,若某一方赢了对方,便可向右走2米,而输的一方则向右走-3米,和的话就原地不动,最先向右走18米的便是胜方.假设游戏开始时,两人均在旗杆处.(1)若小惠在前四个回合中都输了,则她会站在什么位置?(2)若小红在前三个回合中赢了两次输了一次,则她会站在什么位置?(3)假设经过五个回合后,小红仍然站在旗杆处,且没有猜和(即五个回合中没有出现和的情况).问小惠此时会站在什么位置?14.某儿童商场暑期进行大促销活动,并在购物大厅的一角设置了一个名为“智力快乐站”的参与游戏,每位在儿童商场购物的家长都可以带孩子参加这个游戏,每位家长与孩子一起抽取问题并进行解答,若能答对的话,会有精美礼品赠送.其中一位家长和孩子抽到的题目是:如图8,是由图7的六种图形拼成的,请你在图8中标出一种拼法.15.某市积极响应政府提出的“加快旧城改造,建设新型绿色城市”的号召,将位于居民区较集中的一处破旧厂房进行规划,建成了一个供附近居民休闲散步的公园.在公园的中心建了一个正方形的音乐喷泉(图9).现计划将喷泉四周用花隔开.如有16盆花,要放在喷泉四周,要使每一条边上所放盆花同样多,该怎么放呢?有几种放法?每边放几盆花?试画图说明.16.为了备战北京奥运会,国家田径队的运动员在专门设置的新型三环形跑道上,夜以继日抓紧训练.每条环形跑道的长度都是200米并相交于同一个点A(如图10所示).有一天,李刚与其他两名队员从三条跑道的共同交点A同时出发,各取一条跑道练习长跑.(按图中箭头所示方向开始跑).甲每小时跑5千米,乙每小时跑7千米,李刚每小时跑9千米.请问他们三人第五次在A点相遇时,跑了多长时间?17.古时候有个做油炸馓子的小贩,一日正挑着货担行走,与一村民相撞,将所有的馓子都撞落在地,那村民答应赔他50枚馓子的钱,小贩偏说他的馓子有300枚,两人争执不下.这时,有一位刘大人正好路过此地,问明情况后,刘大人让人拿来一枚馓子,称了它的重量,然后让人从地上扫起所有馓子的碎末,再称出总质量来,把这两个数字一折算,便得小贩的馓子的确实数目了,谁是谁非一目了然.读完上面的故事,请你想一想:(1)现有一大捆粗细均匀的电线,要确定其长度总值,怎样做比较简捷可行....?(使用的工具不限)(2)针对上面问题的讨论,你有哪些感想?七年级初赛试题(A)卷参考答案一、填空题(每小题5分,共30分)1.( 6.513),+-2.101.0510⨯3.304.75 0005.326.8二、选择题(每小题5分,共30分)7.C 8.B 9.D 10.C 11.D 12.B三、解答题(每小题15分,共60分)13.(1)小惠站在旗杆左12米处;……………………(5分)(2)小红站在旗杆右1米处;…………………………(10分)(3)小惠站在旗杆左5米处.…………………………(15分)14.提示:找出一种拼法即可.评分注意:只要给出其中的一种正确拼法即可得分.15.4种放法,………………………………………………(3分)如下图:(1)每边放5盆花 (2)每边放6盆花(3)每边放7盆花 (4)每边放8盆花评分注意:①答对“4种放法”得3分,再每画对一种放法得“3分”;②若“4种放法”没答对,无论放法画的正确与否,均不能得分.16.甲跑一圈用2001500025= (小时), 乙跑一圈用2001700035= (小时), 李刚跑一圈用2001900045= (小时),故他们三人第一次相遇用了15小时(此时他们三人分别跑了5、7、9圈),所以他们第五次在A点相遇时恰好跑了1小时.评分注意:要求有详细的解题步骤才能得满分,只给出最后结果不能得分.四、开放题(本题30分)17.(1)设这捆电线总长度为L,称出这捆电线的总质量为M,拿剪刀剪下一段,量出其长度为l,称出其质量为a,则这捆电线的长度为lMLa .……………………………(15分)(2)提示:不惟一,如:遇到不易解决的问题要学会转化.………………………(15分)。
第四届全国数学竞赛初赛数学七年级试题

第四届全国中学生数理化学科能力展示活动七年级数学解题技能展示试题(A 卷)总分考生须知:1.本试卷共15小题,满分120分.2.考试时间为120分钟.3.请在密封线内填写所在地区㊁学校㊁姓名和考号.4.成绩查询:2011年12月30日起,考生可通过活动官方网站 理科学科能力评价网 (w w w.x k s l h .c o m )查询自己的分数及获奖情况.本题得分评卷人一㊁选择题(每题6分,共36分,每题只有1个选项是正确的)1.根据国际货币基金组织数据,2010年中国经济总量约占全球经济总量的9%.而据世界银行最新预测,2011年全球经济总量将增长3%,中国经济增长对全球经济增长的贡献度(即中国经济增长量占全球经济增长量的比例)将达到30%.据此推算,2011中国经济总量比2010年增加了( ).A 8%;B 9%;C 10%;D 11%2.某校7年级1班开展向贫困山区捐书活动.第1组同学平均捐书16本,第2组同学平均捐书10本,第3组同学平均捐书13本,共计捐书530本,那么3个组共有学生( )人.A 40; B 41; C 46; D 553.如右图所示,数轴上有点A ,B ,C ,D ,其对应的数分别是a ,b ,c ,d ,已知a b =20,c d =0,则d -c 的值可以为( ).A 1;B 2; C12; D 534.分院帽让小阿不思从3组数(1,4,5),(2,6,8),(3,7,9,11)中各挑选出一个数,并将3个数相加,如果结果为偶数,那么他将分到斯莱特林.小阿不思将分到斯莱特林的可能性是( ).A1; B 1; C 2; D 35.已知a,b,c,d,e为常数,且a>b>c>d>e,要使代数式|x-a|+|x-b|+|x-c|+ |x-d|+|x-e|取最小值,那么x的值为().A c;B b;C d;D e6.A a n d B a r e t h e t w o s m a l l e s t p o s i t i v e i n t e g e r s,w h i c h t h e s u mo f2012a n d A i s a s q u a r ea n d t h e d i f f e r e n c e o f2012a n d B i s a c ub e.T h e s u mo f A a n d B i s().A 298; B198; C170; D 297本题得分评卷人二㊁填空题(每题8分,共48分)7.已知|x-1|+4x=0,则(9x2+3x-1)2012=.8.已知y=2x+1,那么x,7x,y,-5y这4个数的平均值为.9.分母为2012的所有的最简真分数之和为.10.假设动物世界中狐狸只讲假话,绵羊只讲真话,4只动物A㊁B㊁C㊁D中有狐狸,也有绵羊. A说: D和我不是同一种动物.B说: C是绵羊.C说: B是绵羊.D说: 我们4位中,至少有2只绵羊.据此可以推断4只动物有只狐狸.11.一个棱长为5的正方体木块,在每一个面上的中心画上一个边长为3的正方形(正方形的边与正方体在该面上的棱平行),并沿正方形将正方体的各面挖通,那么木块剩余的体积为.12.120除30+31+32+ +32012的余数为.本题得分评卷人三㊁解答题(每题12分,共36分)13.某校为初一新生开设两门体育选修课:武术和篮球.每位学生要么选修篮球,要么选修武术,要么两者都选.按照往年经验,选修篮球的人数占总人数的85%~90%,选修武术的人数占总人数的30%~40%.今年该校新生共有200人,请按照以上数据估算今年新生同时选修武术和篮球的人数范围.14.如右图,әA B C被通过3个顶点和一个内点的3条直线分割为6个大小不同的三角形,其中4个的面积已经标出,求әA B C的面积.A 14466B10315.如右图,在4ˑ4的正方形网格中已经填写了4个数:0,66,103,144.已知每行每列的数都是正数,每行㊁每列均组成等差数列.试求A 和B 的值.。
初中竞赛数学第六届“学用杯”全国数学知识应用竞赛七年级初赛(B)卷试题

第六届“学用杯”全国数学知识应用竞赛七年级初赛(B)卷试题一、填空题(每小题6分,共48分)1.我国现代数学家________攻克了世界著名难题“歌德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+1)只是一步之遥的辉煌.我国现代数学家你还知道的有________.(至少写出两位)2.某运输部门规定:办理托运,当一件物品的重量不超过16千克时,需付基础费30元和保险费3元;为限制过重物品的托运,当一件物品的重量超过16千克时,除了付基础费和保险费外,超过部分每千克还需付3元超重费.在托运的50千克物品可拆分(按整数千克拆分)的情况下,使托运费用最省的拆分方案是________.3.今年由于强降雨天气的持续,造成我国南方部分省区发生水灾,有关部门给灾区送去了救援物资.假如这次水灾中,大约有20万人的生活受到影响,灾情将持续一个月.请推断:大约需要组织________顶帐篷,________吨粮食.4.在一次长跑比赛中,小伟获得了一枚正方形的奖章,其面积数同其周长数正好一样,而小伟获得的名次又刚好等于奖章的面积数,他参赛的号码正好是奖章周长数字左右互换位置,他的名次和号码分别是________.5.亮亮有一个表妹和一个表弟,在他上小学某年级时,他的年龄比表妹和表弟的年龄的平均值大2岁.现在亮亮上七年级了,已成长为一个13岁的少年,而表妹现在的年龄是12岁,那表弟现在的年龄是________岁.6.假定你是一个大航空公司的飞行员,你首次接受从纽约到北京的跨太平洋飞行任务.你很想知道这两个城市之间的最短飞行距离,但你只有一个普通的地球仪和一根线(足够长),赤道绕地球一圈为40 257千米,只用这两个条件,若想算出最短的飞行距离,方法是________.7.收获季节,果实累累,苹果园里大丰收.园主想要称一下5筐苹果的重量,可家里只有一台磅秤,并且一些秤砣被调皮的孩子给玩丢了,没法称得50~100千克之间的重量,而五筐苹果每筐重量大约都在50~65千克之间.园主动了动脑筋,解决了这个难题.他把五筐苹果两两结合成不同的10组,一共称了10次,得到10个数据由小到大依次为:110千克,112千克,113千克,114千克,115千克,116千克,117千克,118千克,120千克,121千克.则最轻的那一筐的重量为________千克.8.一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白(葱的茎)0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现少卖了一半钱,此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.________________________________.生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还会少卖一半的钱.________________________________.假设一根葱的葱叶和葱白重量不同,且葱叶的重量小于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇少卖的钱少于一半.________________________________.二、选择题(每小题6分,共24分)9.如图1所示,是一间民房,房上是一根烟囱,房子的旁边是一个仓库,房子的后面是一条河.明明同学站在河中行驶的游轮上从旁边经过(图中箭头表示游轮行驶方向),看到如图2所示的5幅图,依据游轮行驶的路线,映入明明眼帘的先后顺序是( ).A.③①②④⑤ B.⑤①②④③ C.①②④⑤③ D.⑤④②①③10.甲、乙两个绿化小组负责在一条东西走向的公路两边种树,由于两边所种树的数目相同,商定各种一边.开始时,甲小组先来到公路的北边种树,当他们种完30棵树时,乙小组来了,乙小组对甲小组说“你们负责南边,到北边来干吗?”甲小组无奈,只好到南边去种树,乙小组不久就种完了北边的树,看到甲小组还没有种完,于是就到南边去帮助他们,当乙小组在南边种完60棵树时,南边的树也种完了,请你说出乙小组比甲小组多种的棵数是( )A.30 B.60 C.90 D.12011.如图3有甲乙两个工厂各自需要15吨钢材,而丙丁两个仓库正好分别有12吨、18吨这种钢材,若使甲乙两个工厂都正好得到各自所需要的钢材而又能使运输费用最省(假设钢材的运输费用每吨每公里相同),以下说法不正确的是( )A.运费的多少决定于每吨钢材所运的路程,所以只需计算所有钢材被运的路程,并使总路程尽可能的少;B.从丁仓库运15吨钢材到甲工厂,运3吨钢材到乙工厂,从丙仓库运12吨钢材到乙工厂;C.设未知数列出所有钢材被运的路程的表达式,然后求最值;D.丁仓库距离乙工厂比较近,所以应从丁仓库运15吨钢材到乙工厂,运3吨钢材到甲工厂,从丙仓库运12吨钢材到甲工厂。
全国初中数学竞赛海南赛区初赛试题及参考答案

20XX 年全国初中数学竞赛(海南赛区)初 赛 试 卷(本试卷共6页,满分120分,考试时间:3月20日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1. 若a 为实数,则化简2a 的结果是A . -aB . aC . ±aD . |a | 2.如果1)1(2++-x m x 是完全平方式,则m 的值为A .-1B .1C .1或-1D . 1或-3 3. 如图1,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点.若想求出MN 的长度,那么只需条件A .AB =12 B .BC =4 C .AM =5D . CN =24.在平面直角坐标系y o x 内,已知A (3,-3),点P 是y 轴上一点,则使△AOP 为等腰三角形的点P 共有A .2个B .3个C .4个D . 5个图1N MCB l5.已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是A .负数B .正数C .非负数D .非正数 6.一次函数)1(-=x k y 的图像经过点M (-1,-2),则其图像与y 轴的交点是 A .(0,-1) B .(1,0) C .(0,0) D .(0,1) 7.如图2,在线段AE 同侧作两个等边三角形△ABC 和△CDE (∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点,则△CPM 是A .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形8.某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该队伍有20名同学,统计表如下表.由于不小心弄脏了表格,有两个数据看不到.鞋码 38 394041 42 人数532下列说法中正确的是A .这组数据的中位数是40,众数是39B .这组数据的中位数与众数一定相等C .这组数据的平均数P 满足39<P <40D .以上说法都不对 9.如图3,A 、B 是函数xky =图像上两点, 点C 、D 、E 、F 分别在坐标轴上,且与点A 、B 、O 构成正方形和长方形. 若正方形OCAD 的面积为6, 则长方形OEBF 的面积是A . 3B . 6C . 9D . 1210. 某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称A .4次B .5次C .6次D . 7次图3图2 ABCDPM二、填空题(本大题共7小题,每小题5分,满分35分)11.如果不等式组⎩⎨⎧<->-001a x x 无解,则a 的取值范围是____________.12.已知1=-b a ,122-=-b a ,则=-20082008b a_________.13.如图4,在菱形ABCD 中,AE ⊥BC ,E 为垂足, 若cosB 54=,EC =2,P 是AB 边上的一个动点,则线段PE 的长度的最小值是__________.14.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪子、布、锤子”的方式确定.那么在一个回合中三个人都出“布”的概率是_________.15.已知a 、b 为实数,且1=b a ,1≠a ,设11+++=b b a a M ,1111+++=b a N ,则N M -的值等于________.16. 如图5,在△ABC 中,AB =AC =5,BC =2,以AB 为直径的⊙O 分别交AC 、BC 两边于点D 、E ,则△CDE 的面积为_________.17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图6所示,要摆成这样的图形,至少需用______块小正方体18. 若直线b y =(b 为实数)与函数342+-=x x y 的图象至少有三个公共点,则实数b 的取值范围是_________.图5 AB CD EO ·图4ABCDE P ·图6主视图左视图三、解答题(本大题满分30分,每小题15分)19. 某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,则小丽应该付款多少元?20. 如图7,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分∠BAF 交BC 边于点E .(1)求证: AF =DF +BE .(2)设DF =x (0≤x ≤1),△ADF 与△ABE 的面积和S 是否存在最大值?若存在,求出此时x 的值及S . 若不存在,请说明理由.图7ABC DE F20XX 年全国初中数学竞赛(海南赛区)初赛试卷参考答案一、1. D 2. D 3. A 4. C 5. D 6. A 7. C 8. C 9. B 10. B 二、11. a ≤1 12. -1 13. 4.8 14. 271 15. 0 16. -1 17. 5218. 0<b ≤1 解答提示:1.∵ 当a <0时,2a =|a |=-a . 故选D .2.21±=+m ,解得1=m 或3-=m . 故选D .3.()AB BC AC BC AC NC MC MN 21212121=-=-=-=,∴只要已知AB 即可.故选A .4. 分别以点A 、O 、P 三点为等腰三角形的顶点三种情况考虑.5. 关于x 的方程01)2(=-+x b a 无解,则02=+b a . ∴有0==b a 或者a 、b 异号,故选D .6. ∵一次函数)1(-=x k y 的图像经过点M (-1,-2),则有()211-=--k ,解得1=k .所以函数解析式为1-=x y .令0=x 代入得1-=y .故其图像与y 轴的交点是(0,-1).故选A .7.易得△ACD ≌△BCE .所以△BCE 可以看成是△ACD 绕着点C 顺时针旋转60°而得到的.又M 为线段AD 中点,P 为线段BE 中点,故CP 就是CM 绕着点C 顺时针旋转60°而得.所以CP =CM 且,∠PCM =60°,故△CPM 是等边三角形,选C .8.(1)由中位数及众数的意义以及表格可知当这组数据的中位数是40时,众数必然是40,所以A 错误.(2)当39码与40码的人数都是5时,中位数与众数不等,所以B 错误.(3)假设剩余10人全部穿39码鞋,可得平均数为39.35;假设剩余10人全部穿40码鞋,可得平均数为39.85.可以判断C 正确.(或者设穿39码鞋的有x 人,且由0≤x ≤10也可得解) 故选C .9. ∵ 62121OC OD 21OCAD ==⋅=⋅=k y x S A A 正方形,∴ 62121OF OE 21B B OCAD ==⋅=⋅=k y x S 长方形 ,故选B . 10.拿出任意三袋,假设它们的重量分别为x 千克、y 千克、z 千克,两两一称,记录下相应的重量,若分别等于a 千克、b 千克、c 千克,则有方程组⎪⎩⎪⎨⎧=+=+=+c x z b z y ay x 容易求出x 、y 、z ;另外两袋分别与已知重量的其中一袋一起称,即可求出其重量.所以需要称5次,故选B .11.解不等式组⎩⎨⎧<->-001a x x 得⎩⎨⎧<>ax x 1,因为原不等式组无解,所以必有a ≤1.12.∵ ()()122-=-+=-b a b a b a ,又1=-b a ,则1-=+b a∴ ⎩⎨⎧=--=+11b a b a ,解得⎩⎨⎧-==1b a . 故()1102008200820082008-=--=-b a .13. 设菱形ABCD 的边长为x ,则AB =BC =x ,又EC =2,所以BE =x -2,因为AE ⊥BC 于E ,所以在Rt △ABE 中, cosB x x 2-=,又cosB 54=,于是542=-x x ,解得x =10,即AB =10.所以易求BE =8,AE =6,当EP ⊥AB 时,PE 取得最小值. 故由三角形面积公式有:21AB ·PE =21BE ·AE ,求得PE 的最小值为4.8 .14.用树状图列出一个回合中三个人所出手势的各种结果.上面只画出树状图的一部分(列出9种结果),把图中小丁的“剪”改为“布”重复上述画法,可再列出9种结果,最后改为“锤”同样也列出9种结果,所以共有27种结果,故求得P (布,布,布)=27115.∵1=b a ,1≠a ,∴ =+++=+++=+++=)1()1(11a b b b a a b a b b b a a a b b a a M N b a =+++1111. ∴ N M -=0.16. 如图,连结AE 、BD ,作DF ⊥EC 于点F . ∵ AB 是⊙O 的直径 ,∴ ∠ADB =∠AEB =90°又∵ AB =AC ,∴CE =21BC =1,∴ AE =222=-CE AC∵ BD AC AE BC ⋅=⋅2121,∴ BD =554,∴ 在△ABD 中,AD =553,∴ CD =552 又∵△CDF ∽△CAE ,∴AEDFCA CD =,可求得DF =54. ∴ △CDE 的面积为剪 剪 剪 布 锤布 剪 布 锤 锤 剪 布 锤 小丁 小明 小倩 A BCD E F O · A B CDE P5221=⋅DF CE . 解法2:如图,连结AE 、BD ,DE .∵ AB 是⊙O 的直径 ,∴ ∠ADB =∠AEB =90°又∵ AB =AC ,∴ BE =CE =1,∴ AE =222=-CE AC .∵ BD AC AE BC ⋅=⋅2121,∴ BD =554,∴ 在△ABD 中,AD =553,∴ CD =552. ∴ S △CDE =21S △BDC =⨯2152552554212121=⨯⨯⨯=⨯⨯CD BD . 17.小正方体个数最少情况如图所示(图中数字表示该位置小正方体的个数)所以最少为5块.18. y =x 2-4x +3=(x -2)22-4x +3|的图象如图②所示,而当=b 结合①②,易知b 的取值范围为0三、19.因为100×0.9=90<94.5<100,300×0.9=270<282.8设小美第二次购物的原价为x 元,则(x -300)×0.8+300×情况1: 小美第一次购物没有优惠,第二次购物原价超过300元 则小丽应付(316+94.5-300)×0.8+300×0.9=358.4(元)情况2: 小美第一次购物原价超过100元,第二次购物原价超过300元; 则第一次购物原价为:94.5÷0.9=105(元)所以小丽应付(316+105-300)×0.8+300×0.9=362.8(元).20.(1)证明: 如图,延长CB 至点G ,使得BG =DF ,连结AG . 因为ABCD 是正方形,所以在Rt △ADF 和Rt △ABG 中,AD =AB ,∠ADF =∠ABG =90°,DF =BG . ∴ Rt △ADF ≌Rt △ABG (SAS ),∴AF =AG ,∠DAF =∠BAG . 又 ∵ AE 是∠BAF 的平分线∴∠EAF =∠BAE , ∴ ∠DAF +∠EAF =∠BAG +∠BAE 即∠EAD =∠GAE .∵ AD ∥BC ,∴∠GEA =∠EAD ,∴∠GEA =∠GAE ,∴ AG =GE . 即AG =BG +BE .∴ AF =DF +BE ,得证.(2)AB BE AD DF S S S ABE ADF ⋅+⋅=+=∆∆2121俯视图 2 12 图① 1ABC DE O ·∵ AD =AB =1, ∴ )(21BE DF S +=由(1)知,AF =DF +BE , 所以AF S 21=.在Rt △ADF 中,AD =1,DF =x , ∴12+=x AF ,∴1212+=x S . 由上式可知,当x 2达到最大值时,S 最大.而0≤x ≤1,所以,当x =1时,S 最大值为2211212=+x .ABCDEF G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年全国中学生数学能力竞赛(初赛)试题
1. 北京市某天早晨的气温是3-℃,中午气温上升了12℃,到夜间气温下降了15℃,这时北京的气温是_________℃
2. 根据《全国人口普查条例》和《国务院关于开展第六次全国人口普查的通知》,我国以2010年11月1日零时标准点进行了第六次全国人口普查.全国总人口数约为1
3.7亿人,用科学记数法表示为_________________人.
3. 符号“f ”表示一种运算.它对一些数的运算结果如下:
(1)()10f =,()21f =,()32f =,()43f =, (2)122f ⎛⎫= ⎪
⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭
, 利用以上规律计算()120112012f f ⎛⎫-= ⎪⎝⎭
________________ 4. 若515m x y --与14n x y +是同类项,则m n +=________________
5. 在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到30对应的指头是_________(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指)
6. 如果
1a b c a b c ++=,则abc abc 的值为_________ 7. 如图,有一个长条型链子,其外由边长为1cm 的正六边形排列而成.其中每个黑色六边形与6个白色六边形相连.若链子上有35个黑色六边形,次链子有_________个白色六边形
8. 根据图中数的规律,在最后一个图形中填空,图中“?”处应为_________
9. 中央电视台《开心辞典》栏目经常有这样的问题:请从图9-1的①~④中选择适当的图形填入图9-2中的“?”处,正确的选择是( )
A.①
B.②
C.③
D.④
10. 棱长是1cm的小立方体组成如图所示的几何体,那么这几个几何体的表面积是( )
A.2
36cm
33cm D. 2 27cm B. 2
30cm C. 2
11. 某工厂生产的产品分成n 个档次,生产第一个档次(即最低档次)的产品,每件利润10元,每提高一个档次,每件利润增加2元,则当生产的产品为第n 个档次时,每件利润为
( )
A.()102n ++元
B. ()102n +元
C. ()[1021]n +-元
D. ()102n +元
12. 观察以下数组:()1,()3,5,()7,9,11,()13,15,17,19,问2011在第 ( )组
A.44
B.45
C.46
D.无法确定
13. 对于任意有理数a 、b 定义运算:()()22a b a b a b -=+-,
例如()()225252527321-=+⨯-=⨯=
试着计算()()2222222222246981001359799+++++-+++++的值
14. 计算:
1111120023003400460068008
+-+-(提示:试着逆用分配律解解看)
15. 对于任何特定的圆圈里的数等于它直接连接的圆圈里的各数的总和,看下面的例
分别在圆圈中填入1~5五个数,不能重复.根据方框中所给数的情况填数
16. 已知54114020
x y z
++=,试求347
++的值x y z
x y z
++=,712174024
(提示:试用整体思想的方法解解看)
17. 远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头几盏灯.
(提示:尖头的灯数最少,红灯是从上往下依次成倍增加)
18. 如图,在第1个图形中,互不重叠的三角形共有4个,在第2个图形中,互不重叠的三角形共有7个,在第3个图形中,互不重叠的三角形共有10个,照此规律,则在第10个图形中,互不重叠的三角形有多少个?在第n个图形中,互不重叠的三角形有多少个?
19. 从2开始的连续偶数相加如下
=⨯
212
+==⨯
24623
++==⨯
2461234
+++==⨯
24682045
(1) 若设加数的个数为n,和为S,能否用公式计算出S与n的关系(用含有n的代数式表示S,n为正整数)
(2) 计算24682012
+++++的值
20. 将正整数按如图所示的规律排列,并把排在左起第m列、上起第n行的数记为
a(m、n为正整数)
mn
(1) 试用m表示
a,用n表示1n a
m
1
(2) 当10
a的值
m=,12
n=时,求
mn。