大肠杆菌表达宿主的特点

合集下载

大肠杆菌克隆表达人类基因的注意事项

大肠杆菌克隆表达人类基因的注意事项

大肠杆菌克隆表达人类基因的注意事项大肠杆菌是常用的真核表达系统之一,具有优点如易于培养、遗传稳定和高表达水平等。

在进行大肠杆菌克隆表达人类基因的过程中,需要注意以下几个方面:1.选择合适的质粒载体:质粒载体是将目标基因插入宿主细胞中的工具。

选择具有致密复制位点和特定启动子的质粒,可以提高基因的稳定性和表达水平。

一般建议选择常用的表达载体,如pET系列、pGEX系列等。

2.制备合适的基因片段:将人类基因转入大肠杆菌前,需要利用PCR或其他方法从人类细胞中扩增得到基因片段。

合理设计引物,包含适当的启动子和终止子序列,避免产生GC丰富的片段,以免影响大肠杆菌的转化和表达效率。

3.优化启动子和终止子:为了提高目标基因的表达水平,可以选择合适的启动子和终止子来调控基因的转录和翻译。

常用的启动子包括T7、lac、trp等,终止子一般选择T7终止子。

4.确定正确的大肠杆菌菌株:大肠杆菌有多个常用的表达菌株,如BL21(DE3)、XL1-Blue、TOP10等。

根据实验要求选择合适的菌株,包括产蛋白质的溶解度、转化和表达效率、内毒素含量等因素。

5.优化诱导条件:为了获得最佳的基因表达效果,需要优化诱导条件。

常用的诱导剂有IPTG、Lactose等。

优化诱导时间、温度和诱导剂浓度等条件,可根据目标蛋白的特性进行调整。

6.加入相关辅助单元:在大肠杆菌中表达人类基因时,可能需要加入辅助单元,如信号肽序列、标签序列、分泌酶等。

信号肽序列可以帮助蛋白质定位和转运,标签序列如His-tag、GST-tag可以辅助蛋白质纯化和检测。

7.注意避免内毒素产生:大肠杆菌属于革兰氏阴性菌,其细胞壁含有内毒素。

内毒素可引起细胞毒性和炎症反应,影响目标蛋白的纯化和性质。

因此,在表达人类基因时,需要注意控制内毒素的产生,如选择低内毒素菌株、减少诱导剂的使用量等。

8.合理的蛋白质纯化策略:在成功表达目标蛋白后,需要进行蛋白质的纯化。

根据蛋白质的性质,选择合适的纯化方法,如亲和层析、离子交换层析、凝胶过滤层析等。

大肠杆菌表达体系的特点

大肠杆菌表达体系的特点

大肠杆菌表达体系的特点
大肠杆菌表达体系是一种常用的重组蛋白表达方法,具有以下特点:
1. 简单易用:大肠杆菌是一种常见的细菌,易于培养和操作。

其表达体系基于质粒介导的转化和表达,具有操作简单、成本低廉的优点。

2. 高表达水平:大肠杆菌表达体系能够实现高表达水平,通常可以达到10-50%的总蛋白含量。

这一特点使其成为生物制药和科学研究领域中最受欢迎的表达体系之一。

3. 多种表达宿主:大肠杆菌表达体系有多种表达宿主,包括
BL21(DE3)、Rosetta(DE3)、Origami(DE3)等。

这些表达宿主具有不同的特点,能够适应不同的表达需求。

4. 可定制化:大肠杆菌表达体系可以通过基因工程技术进行改造,实现蛋白质的定制化表达。

例如,可以通过融合表达标签、选择性培养、调控表达等方式来优化表达效果。

5. 可用于生物制药:大肠杆菌表达体系可以用于制备多种蛋白药物,如重组人胰岛素、干扰素、白介素等。

这些蛋白药物已经被广泛应用于临床治疗和研究领域。

总之,大肠杆菌表达体系是一种快速、高效、可定制化的表达系统,已经成为蛋白质表达和生物制药领域中最常用的表达系统之一。

- 1 -。

重组蛋白质的表达与纯化

重组蛋白质的表达与纯化

重组蛋白质的表达与纯化重组蛋白质是指通过基因工程技术将目标蛋白的基因导入到宿主细胞中,使其在宿主中表达并纯化得到的蛋白质。

这项技术应用广泛,被广泛用于生物制药、医学研究以及工业生产等领域。

下面将详细介绍重组蛋白质的表达与纯化过程。

一、重组蛋白质表达过程1. 选择表达宿主重组蛋白质表达宿主的选择十分重要。

常用的表达宿主包括大肠杆菌(E. coli)、酵母(yeast)、哺乳动物细胞等。

不同的表达宿主具有不同的特点和适用范围。

例如,大肠杆菌是最常用的表达宿主之一,具有高表达水平、易操作、成本低等特点。

2.构建表达载体表达载体是将目标基因导入宿主细胞的载体。

常用的表达载体有质粒、病毒载体等。

质粒是最常用的表达载体,它可轻松被细菌胞内扩增,并在细胞内产生大量目标蛋白。

3.转染和表达将构建好的表达载体导入到宿主细胞中,实现转染。

转染有多种方法,如电穿孔法、化学法、微粒子轰击法等。

转染后,宿主细胞会开始表达目标基因,合成目标蛋白。

4.优化表达条件为了提高重组蛋白质的产量和纯度,需要对表达条件进行优化。

常见的优化方法包括调节培养基成分、改变培养条件、优化诱导剂浓度等。

二、重组蛋白质的纯化过程1.细胞破碎与分离表达宿主中产生的重组蛋白质往往与其他细胞组分混合在一起,需要通过细胞破碎与分离来获取目标蛋白。

细胞破碎方法包括机械法、超声法、高压法等。

分离方法包括离心、电泳、柱层析等。

2.柱层析柱层析是常用的蛋白质纯化方法之一,它基于蛋白质在柱中不同吸附剂上的亲和力差异来实现分离纯化。

常用的柱层析方法有离子交换层析、亲和层析、凝胶过滤层析等。

3.其他纯化方法除了柱层析外,还有许多其他的纯化方法可供选择。

例如,凝胶电泳、过滤、冷冻干燥等。

这些方法通常用于进一步提纯和去除杂质,以获得纯度更高的重组蛋白质。

三、重组蛋白质应用与挑战重组蛋白质的应用广泛,涉及到生物制药、医学研究、农业等领域。

例如,通过重组蛋白质技术,可以生产用于治疗疾病的药物,如人胰岛素、白介素等。

大肠杆菌表达系统

大肠杆菌表达系统

大肠杆菌表达系统总结随着分子生物学和蛋白组学的迅猛发展,外源基因表达的遗传操作技术日趋成熟。

表达系统是外源基因表达的核心,常用表达系统一般为模式生物,包括真核表达系统和原核表达系统,其中真核系统包括了哺乳动物细胞表达系统、植物体表达系统、昆虫杆状病毒表达载体系统以及酵母表达系统,原核表达系统则主要为大肠杆菌表达系统。

大肠杆菌是目前应用最广泛的原核表达系统,也是最早进行研究的外源基因表达系统,其遗传学背景清晰、生长快、较易实现高密度培养、成本低、产量高,相较于其它表达系统具有难以比拟的优越性,是商业生产中应用最广泛的表达系统,取得了巨大的科研价值和经济效益。

大肠杆菌表达系统目前广泛应用于表达生产多种蛋白质/多肽类药物和生物化学产品,包括:重组人胰岛素、a2b型干扰素、兰尼单抗、紫色杆菌素和牡丹皮葡萄糖苷等。

据统计,1986-2018年由美国FDA和欧洲EMA批准上市的重组蛋白类药物中有26%来自于大肠杆菌。

与此同时,目前通过大肠杆菌表达的基因工程疫苗也进入市场或处于临床实验阶段,如戊型肝炎疫苗、人乳头瘤病毒疫苗、流感A型疫苗等。

常见的大肠杆菌表达系统有BL21系列、JM109系列、 W3110系列和K802系列等,其中大肠杆菌 BL21( DE3)菌株是目前应用于重组蛋白表达研究最广泛的菌株之一,BL21(DE3)是由大肠杆菌B系列与K-12系列的衍生菌株通过 P1 转导等遗传突变获得的。

该类菌株通常为宿主蛋白酶缺失型,以保证外源蛋白在表达过程中不被降解,维持表达的稳定性。

大肠杆菌表达系统在商业生产中具有巨大的优越性和价值,但建立高效匹配的表达系统是实现商业价值的关键,包括宿主菌、外源基因、载体的选择与匹配。

宿主菌的选择是第一步,对表达活性和表达量影响很大,理想的宿主菌株是蛋白酶缺陷型,避免蛋白酶过多引起的产物不稳定,常见的蛋白酶缺陷型菌株为BL21系列菌株。

其次是外源基因,外源基因决定了是否可获得目的产物,原核基因可在大肠杆菌中直接表达,而真核基因不能再大肠杆菌中直接表达。

大肠杆菌的特点与前景研究

大肠杆菌的特点与前景研究

大肠杆菌的特点与前景研究摘要:肠埃希氏菌(E. coli)通常称为大肠杆菌,是Escherich在1885年发现的,在相当长的一段时间内,一直被当作正常肠道菌群的组成部分,认为是非致病菌。

直到20世纪中叶,才认识到一些特血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼畜(禽),常引起严重腹泻和败血症,它是一种普通的原核生物。

大肠杆菌属于细菌。

关键词:大肠杆菌病原性应用前景大肠杆菌是人和动物肠道中最著名的一种细菌,主要寄生于大肠内,约占肠道菌中的1%。

是一种两端钝圆、能运动、无芽孢的革兰氏阴性短杆菌。

大肠杆菌能合成维生素B和K,正常栖居条件下不致病;若进入胆囊、膀胱等处可引起炎症。

在水和食品中检出,可认为是被粪便污染的指标。

大肠菌群数常作为饮水、食物或药物的卫生学标准。

大肠杆菌O157:H7血清型属肠出血性大肠杆菌,自1982年在美国首先发现以来,包括中国等许多国家都有报道,且日见增加。

日本近年来因食物污染该菌导致的数起大暴发,格外引人注目。

在美国和加拿大通常分离的肠道致病菌中,目前它已排在第二或第三位。

大肠杆菌O 157:H7引起肠出血性腹泻,约2%~7%的病人会发展成溶血性尿毒综合征,儿童与老人最容易出现后一种情况。

致病性大肠杆菌通过污染饮水、食品、娱乐水体引起疾病暴发流行,病情严重者,可危及生命。

大肠杆菌(Escherichia coli,E.coli)革兰氏阴性短杆菌,大小0.5×1~3微米。

周身鞭毛,能运动,无芽孢。

能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素B和K,以及有杀菌作用的大肠杆菌素。

正常栖居条件下不致病。

但若进入胆囊、膀胱等处可引起炎症。

在肠道中大量繁殖,几占粪便干重的1/3。

在环境卫生不良的情况下,常随粪便散布在周围环境中。

大肠杆菌表达纯化蛋白

大肠杆菌表达纯化蛋白

大肠杆菌表达纯化蛋白大肠杆菌是一种常见的细菌,被广泛用于表达和纯化蛋白的研究中。

本文将探讨大肠杆菌表达纯化蛋白的方法和应用。

一、大肠杆菌表达纯化蛋白的方法大肠杆菌表达纯化蛋白的方法主要包括以下几个步骤:1. 质粒构建:首先需要构建包含目标蛋白基因的质粒。

这通常包括选择一个适当的表达载体,将目标蛋白基因克隆到质粒中,并添加相应的启动子和信号序列,以实现高效的蛋白表达。

2. 转化大肠杆菌:将质粒导入大肠杆菌中,使其成为宿主细胞。

常用的转化方法包括化学转化、电转化和热激转化等。

3. 诱导表达:通过添加适当的诱导剂,如IPTG(异丙基β-D-硫代半乳糖苷),诱导大肠杆菌开始表达目标蛋白。

4. 细胞培养:大肠杆菌在适当的培养基中进行培养,以提供足够的营养物质和条件来支持蛋白的表达。

5. 细胞破碎:培养达到一定密度后,通过破碎细胞膜的方法将细胞内的目标蛋白释放出来。

常用的方法包括超声波破碎、高压破碎和化学破碎等。

6. 蛋白纯化:通过一系列的层析、过滤和浓缩等步骤,从细胞裂解液中纯化目标蛋白。

常用的纯化方法包括亲和层析、离子交换层析和凝胶过滤层析等。

大肠杆菌表达纯化蛋白的方法被广泛应用于生物医学研究、药物开发和工业生产等领域。

1. 生物医学研究:通过大肠杆菌表达纯化蛋白,可以获得大量高纯度的目标蛋白,用于研究其结构、功能和相互作用等。

这对于研究蛋白质的生物学特性、疾病机制以及药物研发具有重要意义。

2. 药物开发:大肠杆菌表达纯化蛋白广泛应用于药物的筛选和研发。

通过表达和纯化目标蛋白,可以用于药物靶标的筛选、药物的活性评价以及药物的结构优化等。

3. 工业生产:大肠杆菌表达纯化蛋白的方法也被应用于工业生产中。

通过大肠杆菌表达大量的目标蛋白,可以用于生产酶类、抗体和其他重要蛋白制剂。

三、大肠杆菌表达纯化蛋白的优势和挑战大肠杆菌作为常见的宿主细胞,表达纯化蛋白具有以下优势:1. 高表达水平:大肠杆菌能够高效表达目标蛋白,产量较高。

大肠杆菌的菌落形态特征(一)

大肠杆菌的菌落形态特征(一)

大肠杆菌的菌落形态特征(一)大肠杆菌的菌落形态特征大肠杆菌是人类体内常见的一种肠道细菌,有着特殊的菌落形态特征。

本文将就大肠杆菌的菌落形态特征展开阐述。

大肠杆菌的基本特点大肠杆菌属于革兰氏阴性菌,是一种不动杆菌。

它能在多种载体上存活生长,是一种厌氧菌。

它具有好氧和厌氧代谢通路,能够利用各种有机物作为能源和碳源。

大肠杆菌的菌落特征大肠杆菌的菌落通常呈灰白色或者淡黄色,表面光滑,边缘清晰,呈大圆形或不规则形,有较强的透明度和光泽。

在培养基表面,大肠杆菌的菌落通常较小,在厚度和高度上都不如肉眼观察可见的其他菌落。

大肠杆菌的菌落能够在培养皿上形成独立的圆形菌落,平均直径在1mm 至2mm之间,每个菌落内含有大约10-100万个菌体。

大肠杆菌的菌落在不同培养基上具有不同的特征,可分为3大类。

1.形态类大肠杆菌在三硝基作用培养基上的菌落形态典型,呈白色粗糙菌落。

在常规营养琼脂培养基上的表现较为均匀。

2.颜色类在嗜酸性琼脂培养基上,大肠杆菌的菌落通常为蓝绿色,周围有透明带。

这是由于其产生了不同于其他革兰氏阴性菌的产色物。

3.透明类在普通营养琼脂培养基上的大肠杆菌菌落,由于其表面菌体分泌缝隙气体,因此菌落表面呈现透明状,即所谓水样菌落。

总结大肠杆菌的菌落形态特征非常显著,菌落大小较小,表面光滑,边缘清晰,颜色通常为灰白色或淡黄色。

在培养基上,其菌落可分为形态类、颜色类和透明类。

下次在实验室里遇到大肠杆菌,相信你已经能更好地理解它的特点了。

大肠杆菌的应用价值虽然大肠杆菌在医学上通常被视作致病菌,但是由于其易于培养和操作,以及其基因组的完整性和稳定性,大肠杆菌也被广泛应用于基因工程和分子生物学领域。

大肠杆菌被作为实验室中常用的表达宿主,即利用其对哺乳动物嗜血杆菌素等重要蛋白的产生能力来制备对各种蛋白进行纯化、鉴定、创制新药等方面提供了很大的帮助。

此外,大肠杆菌在生物技术、食品和环境污染监测等方面也具有广泛应用。

结语大肠杆菌是一种生活在人体肠道内的细菌,也是一种十分特殊的菌种。

大肠杆菌蛋白表达

大肠杆菌蛋白表达

大肠杆菌蛋白表达
大肠杆菌蛋白表达是一种常用的蛋白质表达技术,通过将目标蛋白的编码基因插入大肠杆菌表达载体中,利用大肠杆菌的代谢途径和生理特性,在大肠杆菌中高效表达目标蛋白。

在大肠杆菌蛋白表达中,选择合适的表达载体和宿主菌株是关键。

一般选择具有高复制数和强表达能力的表达载体,如pET、pGEX等。

同时,宿主菌株应该具有高转化效率、良好的生长性能和表达稳定性。

在大肠杆菌蛋白表达过程中,还需要考虑到目标蛋白的结构和功能等因素。

如对于分泌型蛋白,需要加入信号肽序列实现分泌;对于复杂结构的蛋白,需要考虑到正确折叠和修饰等问题。

大肠杆菌蛋白表达技术的优点是简单易行、高效快速、表达水平可控,并且可用于大规模蛋白质生产。

因此,大肠杆菌蛋白表达技术在生物医学、生物工程和生物材料等领域得到了广泛应用。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:DH5a菌株
DH5a是一种常用于质粒克隆的菌株。

E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。

可用于蓝白斑筛选鉴别重组菌株。

基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1
2:BL21(DE3) 菌株
该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET 系列)的基因。

T7噬菌体RNA聚合酶位于λ 噬菌体DE3区,该区整合于BL21的染色体上。

该菌适合表达非毒性蛋白。

基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3)
3:BL21(DE3) pLysS菌株
该菌株含有质粒pLysS,因此具有氯霉素抗性。

PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。

该菌适合表达毒性蛋白和非毒性蛋白。

基因型:F-,ompT hsdS(rBB-mB-),gal,dcm(DE3,pLysS ,Camr 4:JM109菌株
该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株
基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15]
5:TOP10菌株
该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。

基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lac Ⅹ74,recA1 ,araΔ139Δ(ara-leu)7697,galU ,galK ,rps,(Strr) endA1,nupG 6:HB101菌株
该菌株遗传性能稳定,使用方便,适用于各种基因重组实验
基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1
7:M110或SCS110
大多数大肠杆菌菌株中含有Dam甲基化酶和Dcm甲基化酶,前者可以在GATC序列中腺嘌呤N-6位上引入甲基,后者在CCA/TGC序列的第一个胞嘧啶C-5位置上引入甲基。

常用的菌株都会产生dam,dcm,从而受到甲基化的影
响.
部分限制性内切酶对甲基化的DNA不能切割,如FbaI和MboI等,一般生物公司提供的内切酶说明中均有说明。

大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。

而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。

而要解除这种限制修饰作用通常有两种方法:
(1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响;
(2)利用甲基化酶缺失的受体细胞进行DNA的制备,如E.coli JM110和链霉菌等,前者Dam和Dcm甲基化酶已敲出,而后者细胞内本就没有甲基化酶,从这些细胞中抽提的DNA就能被上述酶切割。

8:E.coli JM110
要排除dam,dcm甲基化的影响,需要用特定的dam-,dcm-的菌株,如JM110
如果由JM110或SCS110等甲基化缺失的菌株产生的质粒,则不会被甲基化.
各种感受态细胞的区别用途特征
Xl1-Blue菌株
基因型:endA1 gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F‘[Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK- mK+)。

特点:具有卡那抗性、四环素抗性和氯霉素抗性。

用途:分子克隆和质粒提取。

BL21(DE3)菌株
基因型:F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])。

特点:该菌株用于以T7 RNA聚合酶为表达系统的高效外源基因的蛋白表达宿主。

T7噬菌体RNA聚合酶基因的表达受控于λ噬菌体DE3区的lacUV5启动子,该区整合于BL21的染色体上。

该菌适合于非毒性蛋白的表达。

用途:蛋白质表达。

BL21(DE3)ply菌株
基因型:F- ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) pLysS(cmR)。

特点:该菌株带有pLysS,具有氯霉素抗性。

此质粒还有表达T7溶菌酶的基因,T7溶菌酶能够降低目的基
因的背景表达水平,但不干扰IPTG诱导的表达。

适合于毒性蛋白和非毒性蛋白的表达。

用途:蛋白质表达
DH5α菌株
基因型:F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK-, λ–
特点:一种常用于质粒克隆的菌株。

其Φ80dlacZΔM15基因的表达产物与pUC 载体编码的β-半乳糖苷酶氨基端实现α互补,可用于蓝白斑筛选。

recA1和endA1的突变有利于克隆DNA的稳定和高纯度质粒DNA的提取。

用途:分子克隆、质粒提取和蛋白质表达。

JM109菌株
基因型:endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F‘ traD36 proAB+ lacIq lacZΔM15]hsdR17(rK-mK+)。

特点:部分抗性缺陷,适合重复基因表达, 可用于M13克隆序列测定和蓝白斑筛选。

用途:分子克隆、质粒提取和蛋白质表达。

DH10B菌株
基因型:
F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 endA1 recA1 deoR Δ(ara,leu)7697 araD139 galU galK nupG rpsL λ-
The most widely used E. coli strain for BAC cloning is DH10B 。

host for pUC and other α-complementation vectors; pBR322
useful for generating genomic libraries containing methylated cytosine or adenine residues,useful for plasmid rescue procedures。

ELECTROMAX DH10B T1 CELLS
说明:
DH10B细胞是高转化效率的E. coli,可以完美应用于大多数实验应用。

DH10B基因型具有以下特点:
? lacZΔM15 用于重组克隆的蓝/白斑筛选
? 消除了mcrA、mcrBC、mrr和hsdRMS限制系统,允许构建更多具有代表性的基因组文库(1,2)
? endA1突变,可以增加质粒产量和数量
? 高效率转化大小为150 kb的质粒,用于产生cDNA或基因组文库
DH10B?可以表达tonA的基因型,tonA能够提供对T1和T5噬菌体感染的抗性(DH10B? T1R)。

DH10B?的基因型:F · mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ · rpsL (StrR) nupG
DH10B? T1R的基因型:F · mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ · rpsL (StrR) nupG tonA
另:我一直用top10 做普通的转化用很稳。

相关文档
最新文档