【配套K12】[学习]2019高考数学二轮复习 专题六 算法、复数、推理与证明、概率与统计 第三讲

合集下载

2019高考数学二轮复习 专题六 算法、复数、推理与证明、概率与统计 第四讲 排列、组合、二项式定理教案 理

2019高考数学二轮复习 专题六 算法、复数、推理与证明、概率与统计 第四讲 排列、组合、二项式定理教案 理

第四讲排列、组合、二项式定理排列、组合应用授课提示:对应学生用书第69页[悟通——方法结论]两个计数原理解题的方法在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类计数原理.求解排列、组合问题常用的解题方法 (1)元素相邻的排列问题——“捆绑法”; (2)元素不相邻的排列问题——“插空法”; (3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法; (5)分组分配问题①平均分组问题分组数计算时要注意除以组数的阶乘. ②不平均分组问题实质上是组合问题.[全练——快速解答]1.(2017·高考全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种答案:D2.第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,为了保护各国国家元首的安全,某部门将5个安保小组全部安排到指定的三个区域内工作,且每个区域至少有一个安保小组,则这样的安排方法共有( )A .96种B .100种C .124种D .150种 解析:因为每个区域至少有一个安保小组,所以可以把5个安保小组分成三组共有两种方法,一种是按照1,1,3来分,另一种是按照2,2,1来分.当按照1,1,3来分时,不同的分法共有N 1=C 15C 14C 33A 22A 33=60(种);当按照2,2,1来分时,不同的分法共有N 2=C 25C 23C 11A 22A 33=90(种).根据分类加法计数原理,可得这样的安排方法共有N =N 1+N 2=150(种),故选D. 答案:D3.3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( ) A .2 B .9 C .72D .36解析:可分两步:第一步,把3名女生作为一个整体,看成一个元素,3名男生作为一个整体,看成一个元素,两个元素排成一排有A 22种排法;第二步,对男生、女生“内部”分别进行排列,女生“内部”的排法有A 33种,男生“内部”的排法有A 33种.故符合题意的排法种数为A 22×A 33×A 33=72,故选C. 答案:C4.马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有( )A .60B .20种C .10种D .8种解析:根据题意,可分两步:第一步,先安排四盏不亮的路灯,有1种情况;第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C 35=10(种)情况.故不同的开灯方案共有10×1=10(种),故选C. 答案:C5.某大学的6名大二学生打算参加学校组织的“临界动漫协会”“大学生心理卫生协会”“学生跆拳道协会”“蓝天环保社团”“《马头琴》诗歌协会”5个社团,若每名学生必须参加且只能参加1个社团,并且每个社团至多2人参加,则这6人中至多有1人参加“学生跆拳道协会”的不同参加方法种数为 ( )A .1 440B .3 600C .5 040D .6 840解析:可分两类:第一类,若有1人参加“学生跆拳道协会”,则从6人中选1人参加该社团,其余5人去剩下4个社团,人数安排有两种情况,即1,1,1,2和1,2,2,故1人参加“学生跆拳道协会”的不同参加方法种数为C 16×(C 15C 14C 13A 33A 44+C 25C 23A 22A 34)=3 600;第二类,若无人参加“学生跆拳道协会”,则6人参加剩下4个社团,人数安排有两种情况,即1,1,2,2和2,2,2,故无人参加“学生跆拳道协会”的不同参加方法种数为C 26C 24C 12A 22A 22A 44+C 26C 24C 22A 33·A 34=1 440.故满足条件的方法种数为3 600+1 440=5 040,故选C.答案:C掌握分组、分配问题的求解策略(1)分组问题属于“组合”问题,按组合问题求解,常见的分组问题有三种: ①完全均匀分组,每组的元素个数均相等;②部分均匀分组,应注意不要重复,若有n 组均匀,最后必须除以n !; ③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,可以按要求逐个分配,也可以分组后再分配.(3)解决分组分配问题的基本指导思想是先分组,后分配.二项式定理授课提示:对应学生用书第70页[悟通——方法结论]1.通项与二项式系数 T k +1=C k n an -k b k(k =0,1,2,…,n ),其中C k n 叫作二项式系数.2.各二项式系数之和 (1)C 0n +C 1n +C 2n +…+C n n =2n; (2)C 1n +C 3n +…=C 0n +C 2n +…=2n -1.3.二项式系数的最大项由n 的奇偶性决定 当n 为奇数时,中间两项的二项式系数最大; 当n 为偶数时,中间一项的二项式系数最大.(1)(2017·高考全国卷Ⅰ)在⎝⎛⎭⎪⎫1+1x2(1+x )6的展开式中x 2的系数为( )A .15B .20C .30D .35解析:(1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎪⎫1+1x2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.答案:C(2)(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.答案:C(3)若(3x -1)2 018=a 0+a 1x +a 2x 2+…+a 2 018x2 018(x ∈R ),则13+a 232a 1+a 333a 1+…+a 2 01832 018a 1=________.解析:令x =0,可得a 0=1.由通项公式可得a 1=C 2 0172 018·31·(-1)2 017=-6 054.令x =13,得a 13+a 232+a 333+…+a 2 01832 018=-1,则13+a 232a 1+a 333a 1+…+a 2 01832 018a 1=1a 1⎝ ⎛⎭⎪⎫a 13+a 232+a 333+…+a 2 01832 018=-1a 1=16 054. 答案:16 0541.公式法求特定项的类型及思路 通项公式T r +1=C r n an -r b r的主要作用是求展开式中的特定项,常见的类型有:(1)求第k 项,此时r +1=k ,直接代入通项公式求解; (2)求含x m的项,只需令x 的幂指数为m 建立方程求解;(3)求常数项,即项中不含x ,可令x 的幂指数为0建立方程求解;(4)求有理项,先令x 的幂指数为整数建立方程,再讨论r 的取值.若通项中含有根式,一般先把根式化为分数指数幂,以减少计算错误.2.赋值法研究二项展开式的系数和问题的策略“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n,(ax 2+bx +c )m(a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n(a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.[练通——即学即用]1.(2018·唐山模拟)(x 2-1x)6的展开式中的常数项为( )A .15B .-15C .20D .-20解析:依题意,T r +1=C r6(x 2)6-r(-1x)r =C r 6(-1)r x 12-3r ,令12-3r =0,则r =4,所以(x2-1x)6的展开式中的常数项为C 46(-1)4=15,选择A.答案:A2.(2018·长郡中学模拟)若二项式(x 2+a x)7的展开式的各项系数之和为-1,则含x2项的系数为( )A .560B .-560C .280D .-280解析:取x =1,得二项式(x 2+a x)7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式(x 2-2x )7的展开式的通项T r +1=C r 7·(x 2)7-r·(-2x)r =C r 7·(-2)r ·x14-3r.令14-3r =2,得r =4.因此,二项式(x 2-2x)7的展开式中含x 2项的系数为C 47·(-2)4=560,选A.答案:A授课提示:对应学生用书第154页一、选择题1.(2018·宝鸡模拟)我市正在建设最具幸福感城市,原计划沿渭河修建7个河滩主题公园.为提升城市品位、升级公园功能,打算减少2个河滩主题公园,两端河滩主题公园不在调整计划之列,相邻的两个河滩主题公园不能同时被调整,则调整方案的种数为( )A .12B .8C .6D .4解析:由题意知除两端的2个河滩主题公园之外,从中间5个河滩主题公园中调整2个,保留3个,可以从这3个河滩主题公园的4个空中任选2个来调整,共有C 24=6种方法.答案:C2.(2018·凉山二检)(x 2-3)⎝ ⎛⎭⎪⎫1x2+15的展开式的常数项是( )A .-2B .2C .-3D .3解析:∵(x 2-3)⎝ ⎛⎭⎪⎫1x2+15=(x 2-3)(C 05x -10+C 15x -8+C 25x -6+C 35x -4+C 45x -2+C 55),∴展开式的常数项是x 2·C 45x -2-3C 55=2.答案:B3.(2018·漳州模拟)已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .1D .20解析:令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.答案:D4.(2018·内江模拟)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144B .72C .36D .48解析:分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A33=36种.答案:C5.现有5本相同的《数学家的眼光》和3本相同的《数学的神韵》,要将它们排在同一层书架上,并且3本相同的《数学的神韵》不能放在一起,则不同的放法种数为( )A .20B .120C .2 400D .14 400解析:根据题意,可分两步:第一步,先放5本相同的《数学家的眼光》,有1种情况;第二步,5本相同的《数学家的眼光》排好后,有6个空位,在6个空位中任选3个,把3本相同的《数学的神韵》插入,有C 36=20(种)情况.故不同的放法有20种,故选A. 答案:A6.(2018·西安模拟)已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A .39B .310C .311D .312解析:对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312,故选D.答案:D7.现有5种不同颜色的染料,要对如图所示的四个不同区域进行着色,要求有公共边的两个区域不能使用同一种颜色,则不同的着色方法的种数是( )A .120B .140C .240D .260解析:由题意,先涂A 处,有5种涂法,再涂B 处有4种涂法,第三步涂C ,若C 与A 所涂颜色相同,则C 有1种涂法,D 有4种涂法,若C 与A 所涂颜色不同,则C 有3种涂法,D 有3种涂法,由此得不同的着色方法有5×4×(1×4+3×3)=260(种),故选D.答案:D8.(2018·昆明一模)旅游体验师小李受某旅游网站的邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若甲景区不能最先旅游,乙景区和丁景区不能最后旅游,则小李旅游的方法数为( )A .24B .18C .16D .10解析:第一类,甲在最后一个体验,则有A 33种方法;第二类,甲不在最后一个体验,则有A 12A 22种方法,所以小李旅游的方法共有A 33+A 12A 22=10种.答案:D9.(2018·西安二模)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种解析:1号盒子可以放1个或2个球,2号盒子可以放2个或3个球,所以不同的放球方法有C 14C 33+C 24C 22=10(种).答案:A10.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程x 2a 2+y 2b2=1中的a 和b ,则能组成落在矩形区域B ={(x ,y )||x |<11,且|y |<9}内的椭圆个数为( )A .43B .72C .863D .90解析:在1,2,3,…,8中任取两个数作为a 和b ,共有A28=56个椭圆;在9,10中取一个作为a ,在1,2,3,…,8中取一个作为b ,共有A 12A 18=16个椭圆,由分类加法计数原理,知满足条件的椭圆的个数为56+16=72.答案:B11.将⎝⎛⎭⎪⎪⎫x +124x n 的展开式按x 的降幂排列,若前三项的系数成等差数列,则n 为( ) A .6 B .7 C .8D .9解析:二项式的展开式为T r +1=C rn(x )n -r⎝ ⎛⎭⎪⎪⎫124x r =C r n ⎝ ⎛⎭⎪⎫12r x n 2-34r ,由前三项系数成等差数列得C 0n +C 2n ⎝ ⎛⎭⎪⎫122=2C 1n ⎝ ⎛⎭⎪⎫121,即n 2-9n +8=0,解得n =8或n =1(舍去),故n =8.答案:C12.(2018·保定质量监测)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )A .232B .252C .472D .484解析:由题意,不考虑特殊情况,共有C 316种取法,其中同一种颜色的卡片取3张,有4C 34种取法,3张卡片中红色卡片取2张有C 24·C 112种取法,故所求的取法共有C 316-4C 34-C 24·C 112=560-16-72=472种,选C.答案:C 二、填空题13.(2018·成都模拟)(x +2y )5的展开式中含x 3y 2项的系数为________. 解析:(x +2y )5的展开式的通项T r +1=C r 5x 5-r(2y )r ,所以含x 3y 2项的系数即r =2时的系数,即C 25×22=40.答案:4014.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =________.解析:(x +a )(1+2x )5的展开式中x 3的系数为C 25·22+a ·C 35·23=20,∴40+80a =20,解得a =-14.答案:-1415.4位男生和3位女生站成一排拍照,若男生甲不站两端,3位女生中有且只有2位女生相邻,则不同的排法种数为________.(用数字作答)解析:先排4位男生,有A 44种不同的排法,有5个空位,再从3位女生中任取2人“捆绑”在一起记作M (M 共有C 23A 22种不同排法),剩下1位女生记作N ,让M ,N 插入5个空位中的2个空位,有A25种排法,此时共有A44C23A22A25种不同的排法.又男生甲不站两端,其中甲站两端时有A12A33C23A22A24种不同的排法,所以共有A44C23A22A25-A12A33C23A22A24=2 016(种)不同的排法.答案:2 01616.把编号为1,2,3,4的四封电子邮件发送到编号为1,2,3,4的四个电子邮箱,且每个电子邮箱都会收到一封电子邮件,则至多有一封邮件的编号与邮箱的编号相同的发送方法种数为________.(用数字作答)解析:由题意知,编号为1,2,3,4的四封电子邮件发送到编号为1,2,3,4的四个电子邮箱,发送方法有A44种,有两封邮件的编号与邮箱的编号相同或邮件的编号与邮箱的编号全相同的发送方法有(C24+C44)种.所以至多有一封邮件的编号与邮箱的编号相同的发送方法种数为A44-(C24+C44)=24-7=17.答案:17。

【配套K12】[学习](全国通用版)2019版高考数学大一轮复习 第十二章 推理与证明、算法、复数

【配套K12】[学习](全国通用版)2019版高考数学大一轮复习 第十二章 推理与证明、算法、复数

第1节 合情推理与演绎推理最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知 识 梳 理1.合情推理2.演绎推理(1) 定义:由概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,通常叫做演绎推理.简言之,演绎推理是由一般到特殊的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 解析 (1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确. 答案 (1)× (2)√ (3)× (4)×2.数列2,5,11,20,x ,47,…中的x 等于( ) A.28 B.32 C.33D.27解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32. 答案 B3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确. 答案 C4.(2018·咸阳模拟)观察下列式子:1×2<2,1×2+2×3<92,1×2+2×3+3×4<8,1×2+2×3+3×4+4×5<252,…,根据以上规律,第n (n ∈N +)个不等式是______________________.解析 根据所给不等式可得第n 个不等式是1×2+2×3+…+n ·(n +1)<(n +1)22.答案1×2+2×3+…+n ·(n +1)<(n +1)225.(教材习题改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则b 1b 2b 3…b n =________. 答案 b 1b 2b 3…b 17-n (n <17,n ∈N +)考点一 归纳推理【例1】 (1)(2018·烟台一模)所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、完美数),如6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248,…,此外,它们都可以表示为2的一些连续正整数次幂之和,如6=21+22,28=22+23+24,…,按此规律,8 128可表示为__________. (2)(2018·济宁模拟)已知a i >0(i =1,2,3,…,n ),观察下列不等式:a 1+a 22≥a 1a 2;a 1+a 2+a 33≥3a 1a 2a 3;a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4;……照此规律,当n ∈N +,n ≥2时,a 1+a 2+…+a nn≥________.解析 (1)由题意,如果2n-1是质数,则2n -1(2n -1)是完全数,例如:6=21+22=21(22-1),28=22+23+24=22(23-1),…;若2n -1(2n-1)=8 128,解得n =7,所以8 128可表示为26(27-1)=26+27+…+212.(2)根据题意有a 1+a 2+…a n n≥na 1a 2…a n (n ∈N +,n ≥2). 答案 (1)26+27+…+212(2)na 1a 2…a n 规律方法 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【训练1】 (1)(2018·郑州一模)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{a n },那么a 10的值为( ) A.45B.55C.65D.66(2)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n ,3)=12n 2+12n ,正方形数 N (n ,4)=n 2, 五边形数 N (n ,5)=32n 2-12n ,六边形数 N (n ,6)=2n 2-n ……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 解析 (1)第1个图中,小石子有1个, 第2个图中,小石子有3=1+2个, 第3个图中,小石子有6=1+2+3个, 第4个图中,小石子有10=1+2+3+4个, ……故第10个图中,小石子有1+2+3+…+10=10×112=55个,即a 10=55.(2)三角形数 N (n ,3)=12n 2+12n =n 2+n2,正方形数 N (n ,4)=n 2=2n 2-0·n2,五边形数 N (n ,5)=32n 2-12n =3n 2-n2,六边形数 N (n ,6)=2n 2-n =4n 2-2n2,k 边形数 N (n ,k )=(k -2)n 2-(k -4)n2,所以N (10,24)=22×102-20×102=2 200-2002=1 000.答案 (1)B (2)1 000 考点二 类比推理【例2】 (1)(一题多解)若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n =n c n 1+c n 2+…+c n nnD.d n =nc 1·c 2·…·c n(2)(2018·湖北八校联考)祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)(如图),课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于________.解析 (1)法一 从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·c n .法二 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d2n+a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q1+2+…+(n -1)=c n 1·qn (n -1)2,∴d n =n c 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D. (2)椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V =2(V 圆柱-V 圆锥)=2⎝ ⎛⎭⎪⎫π×b 2×a -13π×b 2a =43πb 2a .答案 (1)D (2)43πb 2a规律方法 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】 (1)(2017·安徽江南十校联考)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…=( ) A.-5-12B.5-12C.1+52D.1-52(2)如图(1)所示,点O 是△ABC 内任意一点,连接AO ,BO ,CO ,并延长交对边于A 1,B 1,C 1,则OA 1AA 1+OB 1BB 1+OC 1CC 1=1,类比猜想:点O 是空间四面体VBCD 内的任意一点,如图(2)所示,连接VO ,BO ,CO ,DO 并延长分别交面BCD ,VCD ,VBD ,VBC 于点V 1,B 1,C 1,D 1,则有________________.解析 (1)令1+11+11+…=x (x >0),即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52,故选C.(2)利用类比推理,猜想应有OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1. 用“体积法”证明如下:OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=V O -BCD V V -BCD +V O -VCD V B -VCD +V O -VBD V C -VBD +V O -VBC V D -VBC =V V -BCDV V -BCD=1. 答案 (1)C (2)OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1 考点三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N +).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】 (2017·全国Ⅱ卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩、丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.答案 D基础巩固题组(建议用时:30分钟)一、选择题1.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A.22项B.23项C.24项D.25项解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.答案 C2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.答案 C3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于( ) A.28B.76C.123D.199解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123. 答案 C5.老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下: 甲说:“我们四人都没考好”; 乙说:“我们四人中有人考的好”; 丙说:“乙和丁至少有一人没考好”; 丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对的两人是( ) A.甲,丙B.乙,丁C.丙,丁D.乙,丙解析 甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确. 答案 D6.(2018·郑州调研)平面内凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,以此类推,凸13边形对角线的条数为( ) A.42B.65C.143D.169解析 可以通过列表归纳分析得到.∴凸13边形有2+3+4+…+11=13×102=65条对角线.答案 B7.(2018·青岛模拟)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12B.5-12C.5-1D.5+1解析 设“黄金双曲线”方程为x 2a 2-y 2b2=1,则B (0,b ),F (-c ,0),A (a ,0). 在“黄金双曲线”中,因为FB →⊥AB →, 所以FB →·AB →=0.又FB →=(c ,b ),AB →=(-a ,b ). 所以b 2=ac . 又b 2=c 2-a 2, 所以c 2-a 2=ac .在等号两边同除以a 2,得e =5+12. 答案 A8.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( ) A.6B.7C.8D.9解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N +)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N +)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6+6(n -1)2×(n -1)=3n 2-3n +1,由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0, 所以n =8,故共有8层. 答案 C 二、填空题9.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●…,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|…,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.答案 14 10.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________. 解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24. 答案 13+23+…+n 3=n 2(n +1)2411.(2018·重庆模拟)在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n = a m +n ,类比上述性质,写出在等比数列{a n }中类似的性质:____________________________________________________________________.解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .”答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n12.已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x(a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同两点,则类似地有________成立.解析 对于函数y =a x(a >1)的图象上任意不同两点A , B ,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立;对于函数y =sin x (x ∈(0,π))的图象上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22成立. 答案 sin x 1+sin x 22<sin x 1+x 22能力提升题组(建议用时:15分钟)13.(2018·包头调研)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项之积为T n ,并且满足条件:a 1>1,a 2 016a 2 017>1,a 2 016-1a 2 017-1<0,下列结论中正确的是( ) A.q <0B.a 2 016a 2 018-1>0C.T 2 016是数列{T n }中的最大项D.S 2 016>S 2 017解析 由a 1>1,a 2 016a 2 017>1得q >0,由a 2 016-1a 2 017-1<0,a 1>1得a 2 016>1,a 2 017<1,0<q <1,故数列{a n }的前2 016项都大于1,从第2 017项起都小于1,因此T 2 016是数列{T n }中的最大项. 答案 C14.(2018·郑州模拟)如图所示,一回形图,其回形通道的宽和OB1的长均为1,且各回形线之间或相互平行、或相互垂直.设回形线与射线OA 交于A 1,A 2,A 3,…,从点O 到点A 1的回形线为第1圈(长为7),从点A 1到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…,依此类推,第8圈的长为________.解析 第1圈的长为2(1+2)+1=7,第2圈的长为2(3+4)+1=15,第3圈的长为2(5+6)+1=23,则第n 圈的长为2[(2n -1)+2n ]+1=8n -1,当n =8时,第8圈的长度为8×8-1=63.答案 6315.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb 2=1. 因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1. 答案 x 0x a 2-y 0y b 2=1 16.(2017·北京卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧x >y ,y >z ,2z >x ,且x ,y ,z 均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.答案 ①6 ②12。

2019高考数学二轮复习 专题六 算法、复数、推理与证明、概率与统计 第一讲 算法、复数、推理与证明能力训练

2019高考数学二轮复习 专题六 算法、复数、推理与证明、概率与统计 第一讲 算法、复数、推理与证明能力训练

第一讲 算法、复数、推理与证明一、选择题1.(2018·福州四校联考)如果复数z =2-1+i ,则( )A .z 的共轭复数为1+iB .z 的实部为1C .|z |=2D .z 的实部为-1解析:∵z =2-1+i =-1--1+-1-=-2-2i2=-1-i ,∴z 的实部为-1,故选D.答案:D2.(2018·辽宁五校联考)执行如图所示的程序框图,如果输入的x =-10,则输出的y =( )A .0B .1C .8D .27解析:开始x =-10,满足条件x ≤0,x =-7;满足条件x ≤0,x =-4,满足条件x ≤0,x =-1;满足条件x ≤0,x =2,不满足条件x ≤0,不满足条件y =23=8.故输出的y =8.故选C.答案:C3.i 是虚数单位,则复数i(2 018-i)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:复数i(2 018-i)=1+2 018i ,在复平面内对应的点为(1,2 018),故选A. 答案:A4.(2018·广州模拟)若复数z 满足(1+2i)z =1-i ,则|z |=( ) A.25 B.35 C.105D.10解析:法一:由(1+2i)z =1-i ,可得z =1-i1+2i =--+-=1-2i -i -25=-15-35i ,所以|z |=1+95=105,选C.法二:由(1+2i)z =1-i 可得|(1+2i)z |=|1-i|,即|1+2i||z |z |=2,故|z |=105,选C. 答案:C5.(2018·南宁模拟)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人解析:由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.所以选C.答案:C6.(2018·沈阳模拟)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 的值为( )A .-3B .-3或9C .3或-9D .-9或-3解析:当输出的y =0时,若x ≤0,则y =(12)x-8=0,解得x =-3,若x >0,则y =2-log 3x =0,解得x =9,两个值都符合题意,故选B.答案:B7.(2018·长春模拟)已知某算法的程序框图如图所示,则该算法的功能是( )A .求首项为1,公差为2的等差数列的前2 017项和B .求首项为1,公差为2的等差数列的前2 018项和C .求首项为1,公差为4的等差数列的前1 009项和D .求首项为1,公差为4的等差数列的前1 010项和解析:由程序框图可得S =1+5+9+…+4 033,故该算法的功能是求首项为1,公差为4的等差数列的前1 009项和.故选C.答案:C8.(2018·山西八校联考)已知a ,b ∈R ,i 为虚数单位,若3-4i 3=2-b i a +i ,则a +b等于( )A .-9B .5C .13D .9解析:由3-4i 3=2-b i a +i 得,3+4i =2-b i a +i,即(a +i)(3+4i)=2-b i ,(3a -4)+(4a+3)i =2-b i ,则⎩⎪⎨⎪⎧3a -4=2,4a +3=-b ,解得⎩⎪⎨⎪⎧a =2,b =-11,故a +b =-9,故选A.答案:A9.(2018·石家庄模拟)当n =4时,执行如图所示的程序框图,则输出的S 的值为( )A .9B .15C .31D .63解析:执行程序框图,k =1,S =1;S =3,k =2;S =7,k =3;S =15,k =4;S =31,k =5>4,退出循环.故输出的S =31,故选C.答案:C10.(2018·西安八校联考)如图给出的是计算12+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 014?B .i ≤2 016?C .i ≤2 018?D .i ≤2 020?解析:依题意得,S =0,i =2;S =0+12,i =4;…;S =0+12+14+…+12 014+12 016,i =2 018不满足,输出的S =12+14+16+…+12 014+120 16,所以题中的判断框内应填入的是“i ≤2 016”.答案:B11.(2018·重庆模拟)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”其意思为:今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和,恰好重1斤.问此人总共持金多少.则在此问题中,第5关收税金( )A.120斤B.125斤C.130斤 D.136斤 解析:假设原来持金为x ,则第1关收税金12x ;第2关收税金13(1-12)x =12×3x ;第3关收税金14(1-12-16)x =13×4x ;第4关收税金15(1-12-16-112)x =14×5x ;第5关收税金16(1-12-16-112-120)x =15×6x .依题意,得12x +12×3x +13×4x +14×5x +15×6x =1,即(1-16)x =1,56x =1,解得x =65,所以15×6x =15×6×65=125.故选B.答案:B12.(2018·惠州调研)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( ) A .33 B .34 C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.答案:B 二、填空题13.若a +b ii (a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 解析:a +b i i=a +bi2=b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.答案:-714.(2018·昆明模拟)将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:a 1 a 2,a 3 a 4,a 5,a 6 a 7,a 8,a 9,a 10……若第11行左起第1个数为a m ,则m =________.解析:要求这个数阵第11行左起的第1个数是这个数列中的第几项,只需求出这个数阵的前10项,且每一行都比上一行多1项,所以前10行共有1+2+3+…+10+2=m =56.答案:5615.在学习等差数列这一节时,可以这样得到等差数列的通项公式:设等差数列{a n }的首项为a 1,公差为d ,根据等差数列的定义,可以得到a 2-a 1=d ,a 3-a 2=d ,…,a n -a n -1=d ,将以上n -1个式子相加,即可得到a n =a 1+(n -1)d .“斐波那契数列”是数学史上一个著名的数列,在“斐波那契数列”{a n }中,令a 1=1,a 2=1,a 3=2,…,a n +2=a n +1+a n (n ∈N *),当a 2 018=t 时,根据上述方法可知数列{a n }的前2 016项和是________.解析:由题意知,a 3-a 2=a 1,a 4-a 3=a 2,…,a 2 018-a 2 017=a 2 016, 将以上2 016个式子相加,可得a 2 018-a 2=a 1+a 2+…+a 2 016=S 2 016. 因为a 2 018=t ,所以S 2 016=t -1.故答案为t -1. 答案:t -116.(2018·重庆模拟)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数; ②物理课时数多于体育课时数; ③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为________.解析:法一:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则由题意,得⎩⎪⎨⎪⎧x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x -y )+5(y-z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.法二:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则2z >x >y >z .由题意,知z 的最小值为3,由此易知y 的最小值为4,x 的最小值为5,故该学生的素质拓展课课表中的课时数x +y +z 的最小值为12.答案:12。

2019届高考数学二轮复习(理科)专题六第一讲算法、复数、推理与证明课件(33张)

2019届高考数学二轮复习(理科)专题六第一讲算法、复数、推理与证明课件(33张)

Ⅱ卷 算·T1
选择题或填空题,试题难度不大;
2018
程序框图问题·T7 2.对复数的考查,难度一般为容易,常在 选择题或填空题的前两题的位置呈现.一
复数的乘法运 Ⅲ卷
算·T2
般考查三个方面:一是复数的概念,如实 部、虚部、模、共轭复数等;二是复数的 四则运算;三是复数的几何意义.
3.推理与证明考查频次较低.
专题六 算法、复数、推理与证明、概率与统计 第一讲 算法、复数、推理与证明
C目录 ONTENTS
考点一 考点二 考点三 4 课后训练 提升能力
考情分析 明确方向
考查角度及命题 年份 卷别
位置
命题分析
复数运算及模的 Ⅰ卷
计算·T1 复数的除法运
1.程序框图是每年高考的必考内容,主要 考查循环结构的程序框图的输出功能以 及判断框内循环体结束条件的填充,多为
考点一 考点二 考点三 课后训练 提升能力
首页 上页 下页 尾页
考点二 算法
[全练——快速解答] 1.(2017·高考全国卷Ⅱ)执行如图所示的程序框图,如果输入 的a=-1,则输出的S=( )
考点一 考点二 考点三 课后训练 提升能力
首页 上页 下页 尾页
考点二 算法
A.2 C.4
B.3 D.5
∴N=2 成立.显然 2 是最小值. 故选 D.
答案:D
考点一 考点二
考点三
课后训练 提升能力
首页 上页 下页 尾页
考点二 算法
3.(2018·高考全国卷Ⅱ)为计算 S=1-12+13-14+…+919-1100, 设计了如图所示的程序框图,则在空白框中应填入( )
考点一 考点二 考点三 课后训练 提升能力
考点一 考点二 考点三 课后训练 提升能力

【配套K12】[学习]2019高考数学二轮复习 专题一 集合、常用逻辑用语等 专题跟踪训练8 算法、

【配套K12】[学习]2019高考数学二轮复习 专题一 集合、常用逻辑用语等 专题跟踪训练8 算法、

专题跟踪训练(八) 算法、复数、推理与证明一、选择题1.已知z =1+2i ,则复数2iz -2的虚部是( ) A .25 B .-25C .25i D .-25i[解析] 2i z -2=2i -1+2i =-1--1+-1-=45-25i ,该复数的虚部为-25.故选B .[答案] B2.若复数z =1+2i ,则4i z z --1等于( ) A .1 B .-1 C .i D .-i [解析]4i z z --1=4i+--1=i.故选C . [答案] C3.已知z (3+i)=-3i(i 是虚数单位),那么复数z 对应的点位于复平面内的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [解析] z =-3i 3+i=-33-3+3-=-3-3i 4=-34-3i4,z 对应的点⎝ ⎛⎭⎪⎫-34,-34位于复平面内的第三象限.故选C .[答案] C4.(2018·大连模拟)下列推理是演绎推理的是( )A .由于f (x )=c cos x 满足f (-x )=-f (x )对任意的x ∈R 都成立,推断f (x )=c cos x 为奇函数B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜出数列{a n }的前n 项和的表达式C .由圆x 2+y 2=1的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1的面积S =πabD .由平面三角形的性质推测空间四面体的性质[解析]由特殊到一般的推理过程,符合归纳推理的定义;由特殊到与它类似的另一个特殊的推理过程,符合类比推理的定义;由一般到特殊的推理符合演绎推理的定义.A是演绎推理,B是归纳推理,C和D为类比推理,故选A.[答案] A5.(2018·江西南昌三模)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s =( )A.8 B.17C.29 D.83[解析]根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量s 的值.模拟程序的运行过程:输入的x=3,n=2,当输入的a为2时,s=2,k=1,不满足退出循环的条件;当再次输入的a为2时,s=8,k=2,不满足退出循环的条件;当输入的a为5时,s=29,k=3,满足退出循环的条件.故输出的s的值为29.故选C.[答案] C6.用反证法证明命题:“已知a,b是自然数,若a+b≥3,则a,b中至少有一个不小于2”.提出的假设应该是( )A.a,b至少有两个不小于2B.a,b至少有一个不小于2C.a,b都小于2D.a,b至少有一个小于2[解析]根据反证法可知提出的假设为“a,b都小于2”.故选C.[答案] C7.(2018·广东汕头一模)执行如图所示的程序框图,输出的结果是( )A.56 B.54C.36 D.64[解析]模拟程序的运行,可得:第1次循环,c=2,S=4,c<20,a=1,b=2;第2次循环,c=3,S=7,c<20,a=2,b=3;第3次循环,c=5,S=12,c<20,a=3,b=5;第4次循环,c=8,S=20,c<20,a=5,b=8;第5次循环,c=13,S=33,c<20,a=8,b=13;第6次循环,c=21,S=54,c>20,退出循环,输出S的值为54.故选B.[答案] B8.(2018·广东茂名一模)执行如图所示的程序框图,那么输出的S值是( )A .12B .-1C .2008D .2[解析] 模拟程序的运行,可知S =2,k =0;S =-1,k =1;S =12,k =2;S =2,k =3;…,可见S 的值每3个一循环,易知k =2008对应的S 值是第2009个,又2009=3×669+2,∴输出的S 值是-1,故选B .[答案] B9.(2018·湖南长沙模拟)如图,给出的是计算1+14+17+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( )A .i >100,n =n +1B .i <34,n =n +3C .i >34,n =n +3D .i ≥34,n =n +3[解析] 算法的功能是计算1+14+17+…+1100的值,易知1,4,7,…,100成等差数列,公差为3,所以执行框中(2)处应为n =n +3,令1+(i -1)×3=100,解得i =34,∴终止程序运行的i 值为35,∴判断框内(1)处应为i >34,故选C .[答案] C10.(2018·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A.甲B.乙C.丙D.丁[解析]由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.[答案] B11.(2018·昆明七校调研)阅读如图所示的程序框图,运行相应的程序,若输出S的值为1,则判断框内为( )A.i>6? B.i>5?C.i≥3? D.i≥4?[解析]依题意,执行程序框图,进行第一次循环时,S=1×(3-1)+1=3,i=1+1=2;进行第二次循环时,S=3×(3-2)+1=4,i=2+1=3;进行第三次循环时,S=4×(3-3)+1=1,i=4,因此当输出的S的值为1时,判断框内为“i≥4?”,选D.[答案] D12.(2018·吉林一模)祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④[解析] 设截面与底面的距离为h ,则①中截面内圆的半径为h ,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R -h ,则截面圆的面积为π(R -h )2;③中截面圆的半径为R -h 2,则截面圆的面积为π(R -h2)2;④中截面圆的半径为R 2-h 2,则截面圆的面积为π(R 2-h 2).所以①④中截面的面积相等,故其体积相等,选D .[答案] D 二、填空题13.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.[解析] ∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚数,∴⎩⎪⎨⎪⎧1-2a ≠0,2+a =0,解得a =-2.[答案] -214.如图是一个三角形数阵:按照以上排列的规律,第16行从左到右的第2个数为________. [解析] 前15行共有+2=120(个)数,故所求的数为a 122=12×122-1=1243.[答案]124315.(2018·河南三市联考)执行如图所示的程序框图,如果输入m =30,n =18,则输出的m 的值为________.[解析] 如果输入m =30,n =18,第一次执行循环体后,r =12,m =18,n =12,不满足输出条件;第二次执行循环体后,r =6,m =12,n =6,不满足输出条件;第三次执行循环体后,r =0,m =6,n =0,满足输出条件,故输出的m 值为6.[答案] 616.“求方程⎝ ⎛⎭⎪⎫513x +⎝ ⎛⎭⎪⎫1213x =1的解”,有如下解题思路:设f (x )=⎝ ⎛⎭⎪⎫513x +⎝ ⎛⎭⎪⎫1213x ,则f (x )在R 上单调递减,且f (2)=1,所以原方程有唯一解x =2,类比上述解题思路,可得不等式x 6-(x +2)>(x +2)3-x 2的解集是________.[解析] 因为x 6-(x +2)>(x +2)3-x 2,所以x 6+x 2>(x +2)3+(x +2),所以(x 2)3+x 2>(x +2)3+(x +2).令f (x )=x 3+x ,所以不等式可转化为f (x 2)>f (x +2).因为f (x )在R 上单调递增,所以x 2>x +2,解得x <-1或x >2.故原不等式的解集为(-∞,-1)∪(2,+∞).[答案] (-∞,-1)∪(2,+∞)。

2019年高考数学文科第二伦专题:算法、推理证明(命题猜想)

2019年高考数学文科第二伦专题:算法、推理证明(命题猜想)

【考向解读】1.以客观题形式考查算法的基本逻辑结构,会与函数、数列、不等式、统计、概率等知识结合命题.2.以客观题形式考查复数的运算、复数的相等、共轭复数和复数及其代数运算的几何意义,与其他知识较少结合,应注意和三角函数结合的练习.3.推理与证明在选择、填空、解答题中都有体现,但很少单独命题,若单独命题,一般以客观题形式考查归纳与类比.4.通常是以数列、三角、函数、解析几何、立体几何等知识为载体,考查对推理与证明的掌握情况,把推理思路的探求、推理过程的严谨,推理方法的合理作为考查重点.【命题热点突破一】程序框图例1、(2018年北京卷)执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B. 【变式探究】(1)观察下列各式:C =40;01C +C =41;0313C +C +C =42;051525C +C +C +C =43;07172737……照此规律,当n ∈N *时,C +C +C +…+C =________.02n -112n -122n -1n -12n -1(2)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法可以求出过点A(-2,3),且法向量为n =(-1,2)的直线方程为(-1)×(x +2)+2×(y -3)=0,化简得x -2y +8=0.类比上述方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为n =(-1,2,-3)的平面的方程为________.【答案】(1)4n -1 (2)x -2y +3z -6=0 【感悟提升】由特殊结论得出一般结论的推理是归纳推理,归纳出的一般性结论要包含已知的特殊结论;根据已有结论推断相似对象具有相应结论的推理就是类比推理.归纳和类比得出的结论未必正确,其正确性需要通过演绎推理进行证明.合情推理和演绎推理在解决数学问题中是相辅相成的.【变式探究】已知cos =,cos c os =,cos cos ·cos =,……根据以上等式,可猜想的一般结论是π312π52π514π72π73π718________________.【答案】cos cos …cos =(n ∈N *) π2n +12π2n +1n π2n +112n 【解析】从已知等式的左边来看,3,5,7,…是通项为2n +1的等差数列,等式的右边是通项为的12n等比数列.由以上分析可以猜想出一般结论为cos cos …cos =(n ∈N *).π2n +12π2n +1n π2n +112n 4. (2018年天津卷)阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1B. 2C. 3D. 4【答案】B1. 【2017山东,文6】执行右侧的程序框图,当输入的x 值为4时,输出的y 的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤【答案】B 【解析】由题意得4x = 时判断框中的条件应为不满足,所以选B.【考点】程序框图2.【2017课标1,文10】如图是为了求出满足的最小偶数n空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D3.【2017课标3,文8】执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2【答案】D 【解析】若2N =,第一次进入循环,12≤成立,,2i =2≤成立,第二次进入循环,此时,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D. 7.【2017北京,文14】某学习小组由学生和【答案】C 4.(2015·新课标全国Ⅱ,8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .14【答案】B5.(2015·山东,13)执行如图所示的程序框图,输出的T 的值为________.【解析】当n =1时,T =1+x 1d x =1+21102x =1+=;1∫01232当n =2时,T =+x 2d x =+31103x =+=;321∫0323213116当n =3时,结束循环,输出T =.116【答案】116。

教育最新2019高考数学二轮复习专题六算法复数推理与证明概率与统计第一讲算法复数推理与证明教案理

第一讲算法、复数、推理与证明复数授课提示:对应学生用书第60页[悟通——方法结论]1.复数z =a +b i(a ,b ∈R )的分类 (1)z 是实数⇔b =0; (2)z 是虚数⇔b ≠0; (3)z 是纯虚数⇔a =0且b ≠0. 2.共轭复数复数a +b i(a ,b ∈R )的共轭复数是a -b i(a ,b ∈R ). 3.复数的四则运算法则(1)(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; (2)(a +b i)(c +d i)=(ac -bd )+(bc +ad )i ; (3)(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ). 提醒:记住以下结论,可提高运算速度 (1)(1±i)2=±2i;(2)1+i 1-i =i ;(3)1-i 1+i =-i ;(4)a +b i i=b -a i ;(5)i 4n =1,i 4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N ).[全练——快速解答]1.(2018·高考全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0 B.12 C .1D. 2解析:∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i2+2i =i ,∴|z |=1. 故选C. 答案:C2.(2017·高考全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22C. 2D .2解析:法一:由(1+i)z =2i 得z =2i1+i =1+i ,∴|z |= 2. 故选C.法二:∵2i =(1+i)2,∴由(1+i)z =2i =(1+i)2,得z =1+i ,∴|z |= 2. 故选C. 答案:C3.(2017·高考全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析:设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0. 当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题. 故选B. 答案:B4.(2017·高考天津卷)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:∵a ∈R ,a -i 2+i =(a -i )(2-i )(2+i )(2-i )=2a -1-(a +2)i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.答案:-2复数的概念及运算问题的解题技巧(1)与复数有关的代数式为纯虚数的问题,可设为m i(m ∈R 且m ≠0),利用复数相等求解.(2)与复数模、共轭复数、复数相等有关的问题,可设z=a+b i(a,b∈R),利用待定系数法求解.算法授课提示:对应学生用书第61页[悟通——方法结论]算法的两种基本逻辑结构(1)循环结构分为当型和直到型两种.(2)当型循环在每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足时则停止.(3)直到型循环在执行了一次循环体后,对控制循环的条件进行判断,当条件不满足时执行循环体,满足则停止.[全练——快速解答]1.(2017·高考全国卷Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S =( )A.2 B.3C.4 D.5解析:当K=1时,S=0+(-1)×1=-1,a=1,执行K=K+1后,K=2;当K=2时,S=-1+1×2=1,a=-1,执行K=K+1后,K=3;当K =3时,S =1+(-1)×3=-2,a =1,执行K =K +1后,K =4; 当K =4时,S =-2+1×4=2,a =-1,执行K =K +1后,K =5; 当K =5时,S =2+(-1)×5=-3,a =1,执行K =K +1后,K =6; 当K =6时,S =-3+1×6=3,执行K =K +1后,K =7>6. 输出S =3.结束循环. 故选B. 答案:B2.(2017·高考全国卷Ⅲ)执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2解析:假设N =2,程序执行过程如下: t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2,2≤2,S =100-10=90,M =--1010=1,t =3,3>2,输出S =90<91.符合题意. ∴N =2成立.显然2是最小值. 故选D. 答案:D3.(2018·高考全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A.i=i+1 B.i=i+2C.i=i+3 D.i=i+4解析:把各循环变量在各次循环中的值用表格表示如下.,由上表知i是1→3→5,…,所以i=i+2.因为N=N+i故选B.答案:B4.(2018·西安八校联考)如图是求样本x1,x2,…,x10的平均数x的程序框图,则空白框中应填入的内容为( )A .S =S +x nB .S =S +x n nC .S =S +nD .S =S +x n10解析:由题可知,该程序的功能是求样本x 1,x 2,…,x 10的平均数x ,由于“输出x ”的前一步是“x =Sn”,故循环体的功能是累加各样本的值,故应为S =S +x n .答案:A解答程序框图(流程图)问题的方法(1)首先要读懂程序框图,要熟练掌握程序框图的三种基本结构,特别是循环结构,在累加求和、累乘求积、多次输入等有规律的科学计算中,都有循环结构.(2)准确把握控制循环的变量,变量的初值和循环条件,弄清在哪一步结束循环;弄清循环体和输入条件、输出结果.(3)对于循环次数比较少的可逐步写出,对于循环次数较多的可先依次列出前几次循环结果,找出规律.推理与证明授课提示:对应学生用书第62页[悟通——方法结论] 两种合情推理的思维过程(1)归纳推理的思维过程:试验、观察→概括、推广→猜测一般结论 (2)类比推理的思维过程:试验、观察→联想、类推→猜测新的结论[全练——快速解答]1.(2017·高考全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩解析:依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩,因此选D.答案:D2.(2018·日照模拟)在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何体中可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.解析:设正四面体ABCD 的棱长为a ,高为h ,四个面的面积均为S ,内切球半径为r ,外接球半径为R ,则由4×13Sr =13Sh ,得r =14h =14×63a =612a .由相似三角形的性质可得R =64a , 所以V 1V 2=⎝ ⎛⎭⎪⎫r R 3=127.答案:1273.根据下面一组等式:s 1=1, s 2=2+3=5, s 3=4+5+6=15, s 4=7+8+9+10=34, s 5=11+12+13+14+15=65, s 6=16+17+18+19+20+21=111,……可得s 1+s 3+s 5+…+s 2n -1=________. 解析:n =1时,结果为s 1=1=14;n =2时,结果为s 1+s 3=1+15=16=24;n =3时,结果为s 1+s 3+s 5=16+65=81=34;……由此可以推知s 1+s 3+s 5+…+s 2n -1=n 4. 答案:n 4合情推理的解题思路(1)在进行归纳推理时,要先把已知的部分个体适当变形,找出它们之间的联系,从而归纳出一般结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.(3)归纳推理关键是找规律,类比推理关键是看共性.授课提示:对应学生用书第148页一、选择题1.(2018·福州四校联考)如果复数z =2-1+i ,则( )A .z 的共轭复数为1+iB .z 的实部为1C .|z |=2D .z 的实部为-1解析:∵z =2-1+i =2(-1-i )(-1+i )(-1-i )=-2-2i2=-1-i ,∴z 的实部为-1,故选D.答案:D2.(2018·辽宁五校联考)执行如图所示的程序框图,如果输入的x =-10,则输出的y =( )A .0B .1C .8D .27解析:开始x =-10,满足条件x ≤0,x =-7;满足条件x ≤0,x =-4,满足条件x ≤0,x =-1;满足条件x ≤0,x =2,不满足条件x ≤0,不满足条件y =23=8.故输出的y =8.故选C.答案:C3.i 是虚数单位,则复数i(2 018-i)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:复数i(2 018-i)=1+2 018i ,在复平面内对应的点为(1,2 018),故选A. 答案:A4.(2018·广州模拟)若复数z 满足(1+2i)z =1-i ,则|z |=( ) A.25 B.35 C.105D.10解析:法一:由(1+2i)z =1-i ,可得z =1-i 1+2i =(1-i )(1-2i )(1+2i )(1-2i )=1-2i -i -25=-15-35i ,所以|z |=1+95=105,选C. 法二:由(1+2i)z =1-i 可得|(1+2i)z |=|1-i|,即|1+2i||z |=|1-i|,得到5|z |=2,故|z |=105,选C. 答案:C5.(2018·南宁模拟)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人解析:由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.所以选C.答案:C6.(2018·沈阳模拟)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 的值为( )A .-3B .-3或9C .3或-9D .-9或-3解析:当输出的y =0时,若x ≤0,则y =(12)x-8=0,解得x =-3,若x >0,则y =2-log 3x =0,解得x =9,两个值都符合题意,故选B.答案:B7.(2018·长春模拟)已知某算法的程序框图如图所示,则该算法的功能是( )A .求首项为1,公差为2的等差数列的前2 017项和B .求首项为1,公差为2的等差数列的前2 018项和C .求首项为1,公差为4的等差数列的前1 009项和D .求首项为1,公差为4的等差数列的前1 010项和解析:由程序框图可得S =1+5+9+…+4 033,故该算法的功能是求首项为1,公差为4的等差数列的前1 009项和.故选C.答案:C8.(2018·山西八校联考)已知a ,b ∈R ,i 为虚数单位,若3-4i 3=2-b i a +i ,则a +b等于( )A .-9B .5C .13D .9解析:由3-4i 3=2-b i a +i 得,3+4i =2-b i a +i,即(a +i)(3+4i)=2-b i ,(3a -4)+(4a+3)i =2-b i ,则⎩⎪⎨⎪⎧3a -4=2,4a +3=-b ,解得⎩⎪⎨⎪⎧a =2,b =-11,故a +b =-9,故选A.答案:A9.(2018·石家庄模拟)当n =4时,执行如图所示的程序框图,则输出的S 的值为( )A .9B .15C .31D .63解析:执行程序框图,k =1,S =1;S =3,k =2;S =7,k =3;S =15,k =4;S =31,k =5>4,退出循环.故输出的S =31,故选C.答案:C10.(2018·西安八校联考)如图给出的是计算12+14+16+…+12 014+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 014?B .i ≤2 016?C .i ≤2 018?D .i ≤2 020?解析:依题意得,S =0,i =2;S =0+12,i =4;…;S =0+12+14+…+12 014+12 016,i =2 018不满足,输出的S =12+14+16+…+12 014+120 16,所以题中的判断框内应填入的是“i ≤2 016”.答案:B11.(2018·重庆模拟)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”其意思为:今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和,恰好重1斤.问此人总共持金多少.则在此问题中,第5关收税金( )A.120斤B.125斤C.130斤 D.136斤 解析:假设原来持金为x ,则第1关收税金12x ;第2关收税金13(1-12)x =12×3x ;第3关收税金14(1-12-16)x =13×4x ;第4关收税金15(1-12-16-112)x =14×5x ;第5关收税金16(1-12-16-112-120)x =15×6x .依题意,得12x +12×3x +13×4x +14×5x +15×6x =1,即(1-16)x =1,56x =1,解得x =65,所以15×6x =15×6×65=125.故选B.答案:B12.(2018·惠州调研)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( ) A .33 B .34 C .36D .35解析:由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B.答案:B 二、填空题 13.若a +b ii (a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 解析:a +b i i=i (a +b i )i2=b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.答案:-714.(2018·昆明模拟)将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:a 1 a 2,a 3 a 4,a 5,a 6 a 7,a 8,a 9,a 10……若第11行左起第1个数为a m ,则m =________.解析:要求这个数阵第11行左起的第1个数是这个数列中的第几项,只需求出这个数阵的前10行共有几项即可.因为第1行有1项,且每一行都比上一行多1项,所以前10行共有1+2+3+ (10)10×(1+10)2=55项,所以m =56.答案:5615.在学习等差数列这一节时,可以这样得到等差数列的通项公式:设等差数列{a n }的首项为a 1,公差为d ,根据等差数列的定义,可以得到a 2-a 1=d ,a 3-a 2=d ,…,a n -a n -1=d ,将以上n -1个式子相加,即可得到a n =a 1+(n -1)d .“斐波那契数列”是数学史上一个著名的数列,在“斐波那契数列”{a n }中,令a 1=1,a 2=1,a 3=2,…,a n +2=a n +1+a n (n ∈N *),当a 2 018=t 时,根据上述方法可知数列{a n }的前2 016项和是________.解析:由题意知,a 3-a 2=a 1,a 4-a 3=a 2,…,a 2 018-a 2 017=a 2 016, 将以上2 016个式子相加,可得a 2 018-a 2=a 1+a 2+…+a 2 016=S 2 016. 因为a 2 018=t ,所以S 2 016=t -1.故答案为t -1. 答案:t -116.(2018·重庆模拟)某学生的素质拓展课课表由数学、物理和体育三门学科组成,且各科课时数满足以下三个条件:①数学课时数多于物理课时数; ②物理课时数多于体育课时数; ③体育课时数的两倍多于数学课时数.则该学生的素质拓展课课表中课时数的最小值为________.解析:法一:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则由题意,得⎩⎪⎨⎪⎧x -y ≥1,y -z ≥1,2z -x ≥1,x ,y ,z ∈N *,则该学生的素质拓展课课表中的课时数为x +y +z .设x +y +z =p (x -y )+q (y -z )+r (2z -x )=(p -r )x +(-p +q )y +(-q +2r )z ,比较等式两边的系数,得⎩⎪⎨⎪⎧p -r =1,-p +q =1,-q +2r =1,解得p =4,q =5,r =3,则x +y +z =4(x -y )+5(y-z )+3(2z -x )≥4+5+3=12,所以该学生的素质拓展课课表中的课时数的最小值为12.法二:设该学生的素质拓展课课表中的数学、物理、体育的课时数分别为x ,y ,z ,则2z >x >y >z .由题意,知z 的最小值为3,由此易知y 的最小值为4,x 的最小值为5,故该学生的素质拓展课课表中的课时数x +y +z 的最小值为12.答案:12。

2019版高考数学复习算法复数推理与证明11.5数学归纳法学案理

11.5 数学归纳法[知识梳理] 数学归纳法的定义一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: 1.(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;2.(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立,上述证明方法叫做数学归纳法.[诊断自测] 1.概念思辨(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( )(2)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(3)用数学归纳法证明等式:1+2+3+…+n 2=n 4+n 22(n ∈N *)时,从n =k 到n =k +1左边应添加的项为(k +1)2.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )答案 (1)× (2)× (3)× (4)√2.教材衍化(1)(选修A2-2P 99B 组T 1)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .4 答案 C解析 三角形是边数最少的凸多边形,故第一步应检验n =3.故选C.(2)(选修A2-2P 96T 1)用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立时,其初始值至少应取( )A .7B .8C .9D .10 答案 B解析 左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.故选B.3.小题热身(1)已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案 D解析 分母为首项为n ,公差为1的等差数列,故f (n )共有n 2-n +1项,当n =2时,1n =12,1n 2=14,故f (2)=12+13+14.故选D. (2)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.答案 2k +1解析 由于步长为2,所以2k -1后一个奇数应为2k +1.题型1 用数学归纳法证明恒等式典例 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明 (1)当n =1时,左边=1-12=12,右边=11+1=12.左边=右边.(2)假设n =k 时等号成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,则当n =k +1时, 1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1)(2)可知,对一切n ∈N *,等式成立. 方法技巧数学归纳法证明等式的思路和注意点1.思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.注意点:由n =k 时等式成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程.提醒:归纳假设就是证明n =k +1时命题成立的条件,必须用上,否则就不是数学归纳法.冲关针对训练 用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(其中n ∈N *). 证明 (1)当n =1时,等式左边=12×4=18,等式右边=14(1+1)=18,∴等式成立.(2)假设n =k (k ≥1,k ∈N *)时等式成立. 即12×4+14×6+…+12k (2k +2)=k 4(k +1)成立,那么当 n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2]=k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2)=k +14[(k +1)+1],即n =k +1时等式成立.由(1)(2)可知,对任意n ∈N *等式均成立. 题型2 用数学归纳法证明不等式典例 已知数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .证明 (1)当n =1时,∵a 2满足a 22+a 2-1=0,且a 2<0, ∴a 1>a 2.(2)假设当n =k (k ∈N *)时,a k +1<a k ,∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0,∴a 2k +1-a 2k >0. 又a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0, ∴a k +2<a k +1,即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n . 方法技巧应用数学归纳法证明不等式应注意的问题1.适用范围:当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.2.关键:用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.冲关针对训练已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈⎣⎢⎡⎦⎥⎤14,12时,f (x )≥18. (1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.解 (1)由题意,知f (x )=ax -32x 2=-32⎝ ⎛⎭⎪⎫x -a 32+a26.又f (x )max ≤16,所以f ⎝ ⎛⎭⎪⎫a 3=a 26≤16.所以a 2≤1.又x ∈⎣⎢⎡⎦⎥⎤14,12时,f (x )≥18,所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12≥18,f ⎝ ⎛⎭⎪⎫14≥18,即⎩⎪⎨⎪⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1. (2)证明:用数学归纳法证明:①当n =1时,0<a 1<12,显然结论成立.因为当x ∈⎝ ⎛⎭⎪⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立. 由(1)知a =1,f (x )=x -32x 2,因为f (x )=x -32x 2的对称轴为直线x =13,所以当x ∈⎝ ⎛⎦⎥⎤0,13时,f (x )为增函数. 所以由0<a k <1k +1≤13, 得0<f (a k )<f ⎝⎛⎭⎪⎫1k +1.于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立. 根据①②,知对任何n ∈N *,不等式a n <1n +1成立.1.(2016·武陵期末)用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n ∈N *)的过程中,由n =k 递推到n =k +1时,下列说法正确的是( )A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中两项,但又少了一项1k +1 D .增加了A 中一项,但又少了一项1k +1答案 C解析 当n =k 时,左端=1k +1+1k +2+ (12),那么当n =k +1时,左端=1k +2+…+12k +12k +1+12(k +1), 故第二步由k 到k +1时不等式左端的变化是增加了两项,同时减少了1k +1这一项.故选C.2.(2017·珠海期末)《庄子·天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”,反映这个命题本质的式子是( )A .1+12+122+…+12n =2-12nB.12+122+…+12n <1C.12+122+…+12n =1 D.12+122+…+12n >1 答案 B解析 根据已知可得每次截取的长度构造一个以12为首项,以12为公比的等比数列,∵12+122+…+12n =1-12n <1, 故反映这个命题本质的式子是12+122+…+12n <1.故选B.3.(2017·北京西城区期末)若不等式1n +1+1n +2+1n +3+ (12)>a (n ∈N *)恒成立,则a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-∞,12解析 设f (n )=1n +1+1n +2+1n +3+…+12n, 则f (n +1)=1n +2+1n +3+…+12n +12n +1+12(n +1), 则f (n +1)-f (n )=12n +1+12(n +1)-1n +1=12n +1-12n +2>0, ∴数列f (n )是关于n (n ∈N *)的递增数列, ∴f (n )≥f (1)=12,∵不等式1n +1+1n +2+1n +3+…+12n >a (n ∈N *)恒成立,∴a <12,故a 的取值范围为⎝ ⎛⎭⎪⎫-∞,124.(2016·桥西期末)用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *)时,从n =k 到n =k +1时左边需增乘的代数式是________.答案 4k +2解析 用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n·1·3·5·…·(2n -1)(n ∈N *)时,从n =k 到n =k +1时左边需增乘的代数式是(k +1+k )(k +1+k +1)k +1=2(2k +1).故答案为4k +2.[基础送分 提速狂刷练]一、选择题1.(2016·安庆高三月考)用数学归纳法证明2n >n 2(n ≥5,n ∈N *),第一步应验证( ) A .n =4 B .n =5 C .n =6 D .n =7 答案 B解析 根据数学归纳法的步骤,首先要验证n 取第一个值时命题成立,又n ≥5,故第一步验证n =5.故选B.2.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D.13(k +1)[2(k +1)2+1] 答案 B解析 由n =k 到n =k +1时,左边增加(k +1)2+k 2.故选B.3.(2018·沈阳调研)用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳法假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案 A解析 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k 3即可.故选A.4.已知f (n )=(2n +7)·3n+9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6 答案 C解析 ∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36,∴f (1),f (2),f (3)都能被36整除,猜想f (n )能被36整除.证明如下:当n =1,2时,由以上得证.假设当n =k (k ≥2)时,f (k )=(2k +7)·3k +9能被36整除,则当n =k +1时,f (k +1)-f (k )=(2k+9)·3k +1-(2k +7)·3k =(6k +27)·3k -(2k +7)·3k =(4k +20)·3k =36(k +5)·3k -2(k ≥2),∴f (k +1)能被36整除.∵f (1)不能被大于36的数整除,∴所求最大的m 的值为36.5.(2017·泉州模拟)用数学归纳法证明n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)时,若记f (n )=n +(n +1)+(n +2)+…+(3n -2),则f (k +1)-f (k )等于( )A .3k -1B .3k +1C .8kD .9k 答案 C解析 因为f (k )=k +(k +1)+(k +2)+…+(3k -2),f (k +1)=(k +1)+(k +2)+…+(3k -2)+(3k -1)+(3k )+(3k +1),则f (k +1)-f (k )=3k -1+3k +3k +1-k =8k .故选C.6.(2018·太原质检)平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为 ( )A .n +1B .2n C.n 2+n +22D .n 2+n +1答案 C解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.故选C.7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数N (n,3)=12n 2+12n ;正方形数N (n,4)=n 2; 五边形数N (n,5)=32n 2-12n ;六边形数N (n,6)=2n 2-n .可以推测N (n ,k )的表达式,由此计算N (10,24)=( ) A .500 B .1000 C .1500 D .2000 答案 B解析 由已知得,N (n,3)=12n 2+12n =3-22n 2+4-32n ,N (n,4)=n 2=4-22n 2+4-42n ,N (n,5)=32n 2-12n =5-22n 2+4-52n ,N (n,6)=2n 2-n =6-22n 2+4-62n ,根据归纳推理可得,N (n ,k )=k -22n 2+4-k 2n .所以N (10,24)=24-22×102+4-242×10=1100-100=1000,故答案为1000.选B.8.若数列{a n }满足a n +5a n +1=36n +18,n ∈N *,且a 1=4,猜想其通项公式为( ) A .3n +1 B .4n C .5n -1 D .6n -2 答案 D解析 由a 1=4求得a 2=10,a 3=16,经检验a n =6n -2.故选D. 二、填空题9.设S n =1+12+13+14+…+12n ,则S n +1-S n =______.答案12n+1+12n +2+12n +3+…+12n +2n 解析 S n +1=1+12+13+14+…+12n +1S n +1-S n =12n+1+12n +2+12n +3+…+12n +2n . 10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.答案 3n 2-3n +1解析 由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6, 推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+[f (n -2)-f (n -3)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1,∴f (n )=3n 2-3n +1.11.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =______.答案nn +1解析 由(S 1-1)2=S 21,得S 1=12;由(S 2-1)2=(S 2-S 1)S 2,得S 2=23;由(S 3-1)2=(S 3-S 2)S 3,得S 3=34.猜想S n =nn +1.12.(2018·云南名校联考)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22解析 由第一个等式13=12,得13=(1+0)2;第二个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎢⎡⎦⎥⎤n (n +1)22.三、解答题13.(2017·河南期末)设等差数列{a n }的公差d >0,且a 1>0,记T n =1a 1a 2+1a 2a 3+…+1a n a n +1.(1)用a 1,d 分别表示T 1,T 2,T 3,并猜想T n ; (2)用数学归纳法证明你的猜想. 解 (1)T 1=1a 1a 2=1a 1(a 1+d );T 2=1a 1a 2+1a 2a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 3=2a 1a 3=2a 1(a 1+2d );T 3=1a 1a 2+1a 2a 3+1a 3a 4=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3+1d ⎝ ⎛⎭⎪⎫1a 3-1a 4=1d ⎝ ⎛⎭⎪⎫1a 1-1a 4=3a 1a 4=3a 1(a 1+3d );由此可猜想T n =na 1(a 1+nd ).(2)证明:①当n =1时,T 1=1a 1(a 1+d ),结论成立,②假设当n =k 时(k ∈N *)时结论成立, 即T k =ka 1(a 1+kd ),则当n =k +1时,T k +1=T k +1a k +1a k +2=ka 1(a 1+kd )+1(a 1+kd )[a 1+(k +1)d ]=k [a 1+(k +1)d ]+a 1a 1(a 1+kd )[a 1+(k +1)d ]=(a 1+kd )(k +1)a 1(a 1+kd )[a 1+(k +1)d ]=k +1a 1[a 1+(k +1)d ].即n =k +1时,结论成立.由①②可知,T n =1a 1(a 1+nd )对于一切n ∈N *恒成立. 14.(2017·扬州模拟)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论. 解 (1)a n =cos π3×2n -2=cos 2π3×2n -1 =2⎝ ⎛⎭⎪⎫cos π3×2n -12-1, ∴a n =2a 2n +1-1,∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12.(2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1, 当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2, 当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n ,下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立.②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !, 则当n =k +1,a k +1=a k +12< 2-2k ·k !2 =1-1k ·k !,b k +1=1-2(k +1)·(k +1)!, 要证a k +1<b k +1,即证明⎝⎛⎭⎪⎫1-1k ·k !2<⎝ ⎛⎭⎪⎫1-2(k +1)·(k +1)!2, 即证明1-1k ·k !<1-4(k +1)·(k +1)!+ ⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2, 即证明1k ·k !-4(k +1)·(k +1)!+⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2>0,即证明 (k -1)2k (k +1)·(k +1)!+⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得,当n =1时,a 1>b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .15.(2018·上饶模拟)已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n 且T n =1-12b n . (1)求数列{a n },{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由. 解 (1)设a n 的首项为a 1,∵a 2,a 5是方程x 2-12x +27=0的两根,∴⎩⎪⎨⎪⎧a 2+a 5=12,a 2·a 5=27,解得⎩⎪⎨⎪⎧ a 1=1,d =2, ∴a n =2n -1. ∵n =1时,b 1=T 1=1-12b 1,∴b 1=23. n ≥2时,T n =1-12b n ①,T n -1=1-12b n -1②,①-②得b n =13b n -1数列是等比数列. ∴b n =23·⎝ ⎛⎭⎪⎫13n -1=23n . (2)S n =1+(2n -1)2n =n 2,S n +1=(n +1)2, 以下比较1b n与S n +1的大小: 当n =1时,1b 1=32,S 2=4,1b 1<S 2, 当n =2时,1b 2=92,S 3=9,1b 2<S 3, 当n =3时,1b 3=272,S 4=16,1b 3<S 4, 当n =4时,1b 4=812,S 5=25,1b 4>S 5, 猜想:n ≥4时,1b n>S n +1. 下面用数学归纳法证明:①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k>S k +1, 即3k 2>(k +1)2,那么,n =k +1时, 1b k +1=3k +12=3·3k 2>3(k +1)2=3k 2+6k +3 =(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1.综合①②,当n ≥4时,1b n>S n +1. 16.(2018·合肥模拟)函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3;(2)求数列{x n }的通项公式.解 (1)证明:用数学归纳法证明2≤x n <x n +1<3.①当n =1时,x 1=2,直线PQ 1的方程为y -5=f (2)-52-4(x -4), 令y =0,解得x 2=114,所以2≤x 1<x 2<3. ②假设当n =k 时,结论成立,即2≤x k <x k +1<3.直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4(x -4), 令y =0,解得x k +2=3+4x k +12+x k +1. 由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3,x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2. 所以2≤x k +1<x k +2<3,即当n =k +1时,结论也成立. 由①②知对任意的正整数n,2≤x n <x n +1<3.(2)由(1)及题意得x n +1=3+4x n 2+x n. 设b n =x n -3,则1b n +1=5b n +1,即1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14, 所以数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1. 故数列{x n }的通项公式为x n =3-43·5n -1+1.。

湖南2019高考数学二轮练习:复数、算法与推理证明

湖南2019高考数学二轮练习:复数、算法与推理证明[第20讲 复数、算法与推理证明](时间:30分钟)1、在复平面内,复数i -1i 的共轭复数的对应点在( )A 、第二象限B 、第一象限C 、第三象限D 、第四象限2、设a ,b 为实数,假设复数1+2ia +b i =1+i ,那么( )A 、a =1,b =3B 、a =3,b =1C 、a =12,b =32D 、a =32,b =123、给出如图20-1所示的程序框图,那么输出的数是( )A 、2 450B 、2 550C 、5 150 D图20-1b ,c 中至少有一个是偶数时,以下假设中正确的选项是() A 、假设a ,b ,c 基本上偶数B 、假设a ,b ,c 都不是偶数C 、假设a ,b ,c 至多有一个是偶数D 、假设a ,b ,c 至多有两个是偶数5、复数1+i(1-i )2的共轭复数为()A 、-12+12iB 、-12-12iC.12-12iD.12+12i 6、如图20-2是一算法的程序框图,假设输出结果为S =720,那么在判断框中应填入的条件是()图20-2A 、k ≤6?B 、k ≤7?C 、k ≤8?D 、k ≤9?7、如图20-3是一个程序框图,那么输出结果为()A 、22-1B 、2C.10-1D.11-18、阅读如图20-4所示的程序框图,输出的s 值为()A 、0B 、1+ 2C 、1+22 D.2-1 9、观看数列1,12,21,13,22,31,14,23,32,41,…,那么数26将出现在此数列的第()A 、21项B 、22项C 、23项D 、24项10、设i 为虚数单位,那么1-i +i 2-i 3+i 4-…+i 20=________、11、二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观看发明S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观看发明V ′=S .那么四维空间中“超球”的三维测度为V =8πr 3,猜想其四维测度W =________、专题限时集训(二十)A【基础演练】1、D[解析]此题考查复数的运算,共轭复数,几何意义.i -1i =-i(i -1)=1+i ,它的共轭..复数为1-i ,对应点位于第四象限、应选D. 2、D[解析]a +b i =1+2i 1+i =32+12i ,因此a =32,b =12.应选D.3、A[解析]计算的是2+4+…+98=2+982×49=50×49=2450.4、B[解析]至少有一个的否定是一个也没有,即a ,b ,c 都不是偶数、【提升训练】5、B[解析]1+i (1-i )2=(1+i )×i -2i ×i =i -12=-12+12i ,其共轭复数为-12-12i.应选B.6、B[解析]k =10,S =10;k =9,S =90;k =8,S =720输出,判断框中应填入的条件是k ≤7?.7、D[解析]由框图可知:S =0,k =1;S =0+2-1,k =2;S =(2-1)+(3-2)=3-1,k =3;S =(3-1)+(4-3)=4-1,k =4;……S =8-1,k =8;S =9-1,k =9;S =10-1,k =10;S =11-1,k =11,满足条件,终止循环,S =11-1,选D.8、B[解析]s =sin π4+sin 2π4+sin 3π4+sin 4π4+sin 5π4+sin 6π4+sin 7π4+sin 8π4+sin 9π4+sin 10π4+sin 11π4.又∵sin π4+sin 2π4+sin 3π4+sin 4π4+sin 5π4+sin 6π4+sin 7π4+sin 8π4=0,sin 9π4+sin 10π4+sin 11π4=1+ 2.∴S =1+ 2.9、C[解析]数列中各项的分子是按照(1),(1,2),(1,2,3),(1,2,3,4),…的规律呈现的,分母是按照(1),(2,1),(3,2,1),(4,3,2,1),…的规律呈现的,显然前五组不可能出现26,我们不妨再写几个对应的数组(1,2,3,4,5,6),(1,2,3,4,5,6,7),(6,5,4,3,2,1),(7,6,5,4,3,2,1),能够发明第六组也不可,故只能是第七组的第二个、故那个数是第(1+2+…+6+2)项,即第23项、10、1[解析]1-i +i 2-i 3+…+i 20=1·[1-(-i )21]1-(-i )=1+i4×5+11+i =1.11、2πr 4[解析]因为(2πr 4)′=8πr 3,因此W =2πr 4.。

高考二轮复习课件 回扣11 推理与证明、算法、复数

考前回扣
回扣11 推理与证明、算法、复数
1
基础回归 易错提醒 回归训练2ⅠFra bibliotek基础回归
3
1.复数的相关概念及运算法则 (1)复数z=a+bi(a,b∈R)的分类 ①z是实数⇔b=0; ②z是虚数⇔b≠0; ③z是纯虚数⇔a=0且b≠0. (2)共轭复数
4
(4)复数相等的充要条件 a+bi=c+di⇔a=c且b=d(a,b,c,d∈R). 特别地,a+bi=0⇔a=0且b=0(a,b∈R). (5)复数的运算法则 加减法:(a+bi)±(c+di)=(a±c)+(b±d)i; 乘法:(a+bi)(c+di)=(ac-bd)+(ad+bc)i;
解析 2答6 案
10.下列类比推理的结论不正确的是 ①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合 律”; ②类比“设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8成等差数列”,
得到猜想“设等比数列{bn}的前n项积为Tn,则T4,
成等比数列”;
③类比“平面内,垂直于同一条直线的两直线相互平行”,得到猜想“空间中,
解析 3答1 案
13.执行如图所示的程序框图,则输出的结果是__3_2_____.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 3答2 案
14.在平面上,如果用一条直线去截正方形的一个角,那么截下的一 个直角三角形,按图所标边长,由勾股定理有c2=a2+b2.猜想正方形 换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱 两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积, S4表示截面面积,那么类比得到的结论是______________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 概率一、选择题1.(2018·高考全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.7解析:由题意可知不用现金支付的概率为1-0.45-0.15=0.4. 故选B. 答案:B2.(2018·云南模拟)在正方形ABCD 内随机生成n 个点,其中在正方形ABCD 内切圆内的点共有m 个,利用随机模拟的方法,估计圆周率π的近似值为( )A.m nB.2mnC.4m nD.6mn解析:依题意,设正方形的边长为2a , 则该正方形的内切圆半径为a ,于是有πa 24a 2≈mn ,即π≈4m n ,即可估计圆周率π的近似值为4mn.答案:C3.(2018·沧州联考)已知函数f (x )=x 2e x ,在区间(-1,4)上任取一点,则使f ′(x )>0的概率是( )A.12B.25C.13D.16解析:f ′(x )=2x -x 2e x ,由f ′(x )>0可得f ′(x )=2x -x2e x >0,解得0<x <2,根据几何概型的概率计算公式可得所求概率P =2-04--=25. 答案:B4.在区间[0,1]上随意选择两个实数x ,y ,则使x 2+y 2≤1成立的概率为( )A.π2B.π4C.π3D.π5解析:如图所示,试验的全部结果构成正方形区域,使得x 2+y 2≤1成立的平面区域为以坐标原点O 为圆心,1为半径的圆的14与x 轴正半轴,y 轴正半轴围成的区域,由几何概型的概率计算公式得,所求概率P =π41=π4.答案:B5.已知向量a =(x ,y ),b =(1,-2),从6张大小相同分别标有号码1,2,3,4,5,6的卡片中,有放回地抽取两张,x ,y 分别表示第一次、第二次抽取的卡片上的号码,则满足a·b >0的概率是( )A.112B.34C.15D.16解析:设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有6×6=36个,a·b >0,即x -2y >0,满足x -2y >0的基本事件有(3,1),(4,1),(5,1),(6,1),(5,2),(6,2),共6个,所以所求概率P =636=16. 答案:D6.(2018·湖南五校联考)在矩形ABCD 中,AB =2AD ,在CD 上任取一点P ,△ABP 的最大边是AB 的概率是()A.22B.32C.2-1D.3-1解析:分别以A ,B 为圆心,AB 的长为半径画弧,交CD 于P 1,P 2,则当P 在线段P 1P 2间运动时,能使得△ABP 的最大边是AB ,易得P 1P 2CD=3-1,即△ABP 的最大边是AB 的概率是3-1. 答案:D7.(2018·天津六校联考)连掷两次骰子分别得到点数m ,n ,则向量a =(m ,n )与向量b =(-1,1)的夹角θ>90˚的概率是( )A.512B.712C.13D.12解析:连掷两次骰子得到的点数(m ,n )的所有基本事件为(1,1),(1,2),…,(6,6),共36个.∵(m ,n )·(-1,1)=-m +n <0,∴m >n .符合要求的事件为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共15个,∴所求概率P =1536=512.答案:A8.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18 B.14 C.34D.78解析:由题意作图,如图所示,Ω1的面积为12×2×2=2,图中阴影部分的面积为2-12×12×1=74,则所求的概率P =742=78.答案:D 二、填空题9.(2018·长沙模拟)在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD ­A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:由题意,在正方体中与点O 距离等于1的是个半球面,V 正=23=8,V 半球=12×43π×13=23π, V 半球V 正=2π8×3=π12,∴所求概率P =1-π12.答案:1-π1210.如图,在等腰直角△ABC 中,过直角顶点C 作射线CM 交AB 于M ,则使得AM 小于AC 的概率为________.解析:当AM =AC 时,△ACM 为以A 为顶点的等腰三角形,∠ACM =180˚-45˚2=67.5˚.当∠ACM <67.5˚时,AM <AC , 所以AM 小于AC 的概率P =∠ACM 的度数∠ACB 的度数=67.5˚90˚=34.答案:3411.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖,则中奖的概率是________.解析:由题意,所有可能的结果是{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2},共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为P =412=13.答案:1312.一只受伤的候鸟在如图所示(直角梯形ABCD )的草原上飞,其中AD =3,CD =2,BC =5,它可能随机落在该草原上任何一处(点),若落在扇形沼泽区域(图中的阴影部分)CDE 以外候鸟能生还,则该候鸟生还的概率为________.解析:直角梯形ABCD 的面积S 1=12×(3+5)×2=8,扇形CDE 的面积S 2=14π×22=π,根据几何概型的概率公式,得候鸟生还的概率P =S 1-S 2S 1=8-π8=1-π8. 答案:1-π8三、解答题13.(2018·宝鸡模拟)为了解我市的交通状况,现对其6条道路进行评估,得分分别为5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:(1)(2)用简单随机抽样的方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.解析:(1)6条道路的平均得分为16×(5+6+7+8+9+10)=7.5,∴该市的总体交通状况等级为合格.(2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从6条道路中抽取2条的得分组成的所有基本事件为(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本事件.事件A 包括(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共7个基本事件. ∴P (A )=715.故该样本平均数与总体平均数之差的绝对值不超过0.5的概率为715.14.(2018·西安八校联考)从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.解析:(1)设质量指标值落在区间[75,85]内的频率为x ,则质量指标值落在区间[55,65),[65,75)内的频率分别为4x,2x .依题意得(0.004+0.012+0.019+0.030)×10+4x +2x +x =1,解得x =0.05. 所以质量指标值落在区间[75,85]内的频率为0.05.(2)由(1)得,质量指标值落在区间[45,55),[55,65),[65,75)内的频率分别为0.3,0.2,0.1.用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,则在区间[45,55)内应抽取6×0.30.3+0.2+0.1=3件,记为A 1,A 2,A 3;在区间[55,65)内应抽取6×0.20.3+0.2+0.1=2件,记为B 1,B 2;在区间[65,75)内应抽取6×0.10.3+0.2+0.1=1件,记为C .设“从样本中任意抽取2件产品,这2件产品都在区间[45,65)内”为事件M ,则所有的基本事件有:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C ),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C ),(A 3,B 1),(A 3,B 2),(A 3,C ),(B 1,B 2),(B 1,C ),(B 2,C ),共15种,事件M 包含的基本事件有:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共10种,所以这2件产品都在区间[45,65)内的概率P =1015=23.15.(2018·长沙模拟)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)列出2×2列联表,并判断是否可以在犯错误的概率不超过0.01的前提下,认为抗倒伏与玉米矮茎有关?(2)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,则选取的植株均为矮茎的概率是多少?附:K2=a +b c+d a+c b+d,其中n=a+b+c+d.解析:(1)根据统计数据得2×2列联表如下:由于K2的观测值k=19×26×25×20≈7.287>6.635,因此可以在犯错误的概率不超过0.01的前提下,认为抗倒状与玉米矮茎有关.(2)由题意得,抽到的高茎玉米有2株,设为A,B,抽到的矮茎玉米有3株,设为a,b,c,从这5株玉米中取出2株的取法有AB,Aa,Ab,Ac,Ba,Bb,Bc,ab,ac,bc,共10种,其中均为矮茎的选取方法有ab,ac,bc,共3种,因此选取的植株均为矮茎的概率是310.。

相关文档
最新文档