基于Matlab的OFDM系统设计与仿真

合集下载

基于Matlab平台的OFDM系统仿真分析

基于Matlab平台的OFDM系统仿真分析
基于Matlab平台的OFDM系统仿真 分析
目录
01 引言
03 系统仿真分析
02 预备知识 04 优化与改进
引言
正交频分复用(OFDM)技术是一种广泛应用于无线通信领域中的多载波调制 技术。它凭借高谱效率、抗多径干扰能力强和频谱利用率高等优点,在4G、5G等 通信系统中扮演着关键角色。本次演示将基于Matlab平台,对OFDM系统进行仿真 分析,探究其应用优势、存在问题以及未来发展方向。
(1)抗多径干扰能力强:由于OFDM技术将高速数据流分散到多个子载波上 传输,即使某些子载波受到干扰,也不会对整个系统造成太大影响。
(2)频谱利用率高:OFDM技术通过相邻子载波之间的正交性,允许不同用 户在同一频段上同时传输数据,从而提高了频谱利用率。
(3)适用于多用户通信:OFDM技术可以与多用户接入技术相结合,实现多 个用户在同一频段上同时传输数据,提高系统整体性能。
2、OFDM系统存在的问题和不足
尽管OFDM系统具有诸多优点,但在实际应用中仍存在一些问题和不足:
(1)对信道模型的准确性要求较高:如果信道模型不准确,将导致系统性 能下降,甚至出现通信中断。
(2)易受频率偏移影响:OFDM系统对频率偏移较为敏感,即使微小的频率 偏移也会导致子载波之间的正交性破坏,从而导致系统性能下降。
(3)实现复杂度较高:OFDM系统涉及到的计算量和复杂性较其他通信系统 要高,尤其是在处理高速数据流时,需要更高的计算能力和更高效的算法。
优化与改进
针对上述问题和不足,本次演示提出以下优化和改进方案:
1、信道模型估计与跟踪
在OFDM系统中,信道模型估计与跟踪是一个重要环节。通过采用准确的信道 模型,可以有效提高系统抗多径干扰能力和频谱利用率。在实际应用中,可以采 用基于导频的训练序列法、基于循环前缀的训练序列法等信道估计方法,并通过 对训练序列进行优化设计,提高信道估计准确性。

基于matlab的ofdm通信系统设计与仿真开题报告

基于matlab的ofdm通信系统设计与仿真开题报告

基于matlab的ofdm通信系统设计与仿真开题报告一、选题背景随着通信技术的不断发展,OFDM技术成为了通信系统中广泛应用的一种调制技术。

OFDM技术相对于传统的调频调幅技术具有许多优势,例如对多径衰落的敏感性更低、扩频抗干扰性能更好等等。

因此,在实际应用场景中,OFDM技术得到了越来越广泛的应用。

因此,基于matlab的OFDM通信系统设计与仿真的研究也变得越来越受到人们的关注。

二、研究内容本文拟研究基于matlab的OFDM通信系统设计与仿真技术,研究内容包括以下几个方面:1. OFDM基础本文将首先介绍OFDM技术的基础知识,例如OFDM信号的生成、调制与解调原理等等。

同时,还会介绍OFDM技术的优缺点、应用领域等相关内容,以便更好地理解OFDM 技术在通信系统中的应用。

2. OFDM通信系统设计在了解了OFDM技术的基础知识之后,本文将研究如何基于matlab实现OFDM通信系统的设计。

具体而言,将会介绍OFDM通信系统中不同模块的实现,例如QPSK调制器、加扰器、插零器、IFFT模块、CP插入模块等等。

3. OFDM通信系统仿真通过matlab的仿真工具,可以对OFDM通信系统进行全面的仿真,并得到各种参数的数据。

本文将详细介绍如何进行OFDM通信系统的仿真设计,以及如何评估OFDM通信系统的性能。

三、研究意义随着通信技术的不断发展,OFDM技术正在逐渐成为通信系统中的主流技术之一。

因此,基于matlab的OFDM通信系统设计与仿真技术的研究对于通信系统的研发和应用具有十分重要的意义。

通过本文的研究,可以更好地了解OFDM技术的应用原理、技术优势和性能表现,同时也可以更加深入地理解无线通信系统这一领域。

四、研究方法与流程本文的研究方法主要包括文献调研、matlab仿真、性能评估等方面。

具体研究流程如下:1. 文献调研:在开始研究之前,需要进行大量的文献调研,了解OFDM技术的基础知识、历史发展、应用场景等等。

基于MATLAB的OFDM系统仿真及分析

基于MATLAB的OFDM系统仿真及分析

基于MATLAB的OFDM系统仿真及分析OFDM(正交频分复用)是一种广泛应用于无线通信系统中的多载波调制技术。

在OFDM系统中,信号被分为多个独立的子载波,并且每个子载波之间正交。

这种正交的特性使得OFDM系统具有抗频率选择性衰落和多径干扰的能力。

本文将基于MATLAB对OFDM系统进行仿真及分析。

首先,我们需要确定OFDM系统的参数。

假设我们使用256个子载波,其中包括8个导频符号用于信道估计,每个OFDM符号的时域长度为128个采样点。

接下来,我们需要生成调制信号。

假设我们使用16QAM调制方式,每个子载波可以传输4个比特。

在MATLAB中,我们可以使用randi函数生成随机的比特序列,然后将比特序列映射为16QAM符号。

生成的符号序列可以通过IFFT(Inverse Fast Fourier Transform)将其转换为时域信号。

OFDM系统的发射端包括窗函数、导频符号插入、IFFT和并行到串行转换等模块。

窗函数用于增加OFDM符号之间的过渡带,导频符号用于信道估计和符号同步。

通过将符号序列与导频图案插入到OFDM符号序列中,然后进行IFFT变换,再进行并行到串行转换即可得到OFDM信号的时域波形。

接下来,我们需要模拟OFDM信号在信道中传输和接收。

假设信道是Additive White Gaussian Noise(AWGN)信道。

在接收端,OFDM信号的时域波形通过串行到并行转换,然后进行FFT(Fast Fourier Transform)变换得到频域信号。

通过在频域上对导频符号和OFDM信号进行正交插值,可以进行信道估计和等化。

最后将频域信号进行解调,得到接收后的比特序列。

通过比较发送前和接收后的比特序列,我们可以计算比特误码率(BER)来评估OFDM系统的性能。

比特误码率是接收到错误比特的比特数与总传输比特数之比。

通过改变信噪比(SNR)值,我们可以评估OFDM系统在不同信道条件下的性能。

基于MATLAB的OFMD仿真实验-OFDM系统设计1

基于MATLAB的OFMD仿真实验-OFDM系统设计1

GI, TG (frac of TU)
24.6%
SubC 1K/2K
spacing/Hz
(子载波间隔)
4K/8K
1⁄4, 1⁄32
​1⁄8,
​1⁄16,

1⁄4, 1⁄32
​1⁄8,
​1⁄16,

1⁄4,
​1⁄6,
​1⁄9
4, 464 1, 116
4,464, 2,232, 1,116
2,000
1/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4.
(CFO):
f
f
tx c
f
rx c
Doppler Shift (多普勒偏移)
CFO Estimation & Compensation
(先估计出偏移然后补偿,然后就可以消除频偏CFO实现同步)
Time/Frequency Synchronization
Find the start point of OFDM symbols (ISI free) CFO Estimation & Compensation (ICI free)
Noise Figure
SNR -- Signal to Noise Ratio -- 信噪比
Tx/Rx process of OFDM system
Time Synchronization
(时间同步)
Inter-symbol Interference (ISI)
N
N
N
Find the start point of OFDM symbols
Physical Layer System Design

基于MATLAB的OFDM系统设计与仿真综述

基于MATLAB的OFDM系统设计与仿真综述

基于MATLAB的OFDM系统设计与仿真摘要:随着通信产业的逐步发展,4G时代已经来临。

作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。

它具有频谱利用率高、抗干扰能力强等优点。

本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。

最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。

关键词:正交频分复用;MATLAB;仿真;BERDesign and Simulation of OFDM System Based on MATLABAbstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve .Keywords: OFDM; MATLAB; Simulation; BER目录1 引言 (4)1.1 OFDM概述 (4)1.1.1 OFDM技术发展历史 (4)1.1.2 OFDM技术的优缺点 (5)2 OFDM基本原理及关键技术 (5)2.1 OFDM基本原理及系统构成 (5)2.1.1 OFDM基本原理 (5)2.1.2 串并转换 (6)2.1.3 调制与解调 (6)2.1.4 保护间隔与循环前缀 (8)2.2 OFDM的关键技术 (10)2.2.1 信道估计概述 (10)2.2.2 基于导频的信道估计方法 (10)2.2.3 信道的插值方法 (11)3 OFDM的系统设计与仿真 (12)3.1 MATLAB概述 (12)3.2 OFDM系统设计与仿真 (12)3.2.1 随机序列的产生 (12)3.2.2 串并转换 (14)3.2.3 QPSK调制 (14)3.2.4 QPSK调制星座图 (14)3.2.5 IFFT/FFT运算 (15)3.2.6 保护间隔和循环前缀 (16)3.2.7 并串转换 (16)3.2.8 加入高斯白噪声 (17)3.2.9 QPSK解调 (17)3.2.10 接收信号 (18)3.3 系统误码率的分析 (18)3.4 基于Simulink的系统仿真 (19)4 总结 (21)参考文献 (21)附录 (22)1 引言1.1 OFDM概述随着移动通信和无线网需求的不断增长,需要越来越高速的无线系统设计,而这其中一个最直接的挑战就是克服无线信道带来的严重的频率选择性衰落。

基于Matlab的OFDM系统仿真

基于Matlab的OFDM系统仿真

基于Matlab的OFDM系统仿真实验名称:基于matlab的OFDM系统仿真实验原理:图1 基带OFDM系统实验目的:根据给定的参数完成OFDM信号的调制、传输和解调以及信道建模和信道估计。

主要研究噪声和循环前缀的长度对系统误码率的影响。

实验内容:包括发送端、信道和接收端三个模块。

1、发送模块进行的处理包括OFDM 信号的产生、加入循环前缀、插入训练序列和加扰等部分;2、信道模块对发射端产生的信号施加多径、频偏、相偏等影响;3、接收模块进行的处理包括去循环前缀、解调和信道估计等。

实验参数:1、 Ns=5:一个帧结构中OFDM符号的个数;2、para=40:并行传输的子载波个数;3、gl=10:设置保护时隙的长度;4、an:每条多径的幅度增益0-10dB,粒度为0.1;5、tn:时延扩展0-4us,单位为us;6、wn:频偏-100Hz-100Hz,粒度为0.1Hz;7、sita:设置相偏0-2*pi,粒度为pi/100;8、Np:插入的导频数目实验步骤:1、产生二进制信息,这个可以通过matlab中的round(rand(1,para*Ns*4))命令来实现。

产生的是一个长度为para*Ns*4的0-1序列。

由于采用的是16QAM调制,所以每四个码元调制为一个符号,因此总长度要乘以4。

2、映射:采用的是16QAM调制。

这种调制有圆形星座图和方形星座图两种,本次实验采用方形的星座图。

这一过程是通过子函数fangQAM.m来实现的,图二为方形的星座图。

16-QAM星座图-4-3-2-101234图23、串并转换、插入导频:OFDM的原理就是通过串并转换将高速传输的串行数据转换为并行传输的数据,在matlab中,串并转换是通过reshape(x,para,Ns)来实现的,将串行传输的信号x转换为para个并行传输的子数据流,每个数据流中符号的个数为Ns。

为了接收端能够进行信道估计,在发送端要在发送信号中插入导频,导频的分布模式一般分为块状导频和梳状导频两种,本次实验中插入的是块状导频,所谓的块状分布就是指导频在时域周期性的分配给OFDM符号,这种导频分布模式特别适用于慢衰落的无线信道,由于训练符号包含了所有的导频,所以在频域就不需要插值,因此这种导频分布模式对频率选择性衰落相对不敏感。

无线通信原理-基于matlab的ofdm系统设计与仿真

无线通信原理-基于matlab的ofdm系统设计与仿真基于matlab的ofdm系统设计与仿真摘要OFDM即正交频分复用技术,实际上是多载波调制中的一种。

其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。

该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。

本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。

重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。

在仿真过程中对OFDM信号使用QPSK 调制,并在AWGN信道下传输,最后解调后得出误码率。

整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

- 1 -第一章 ODMF系统基本原理1.1多载波传输系统多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。

用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。

在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。

图1,1中给出了多载波系统的基本结构示意图。

图1-1多载波系统的基本结构多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM中,各子载波必须保持相互正交,而在MCM则不一定。

1.2正交频分复用OFDM就是在FDM的原理的基础上,子载波集采用两两正交的正弦或余弦函sinm,tcosn,t数集。

基于MATLAB的OFMD仿真实验-OFDM系统设计2

(块大小与单个OFDM符号中的比特数相对应)
The interleaver is defined by a two-step permutation (置换). The first permutation ensures that adjacent coded bits are
mapped onto nonadjacent subcarriers. The second ensures that adjacent coded bits are mapped
Convolutional code
[1 0 1 1 0 1 1]=(133)8
1/2编码,约束长度为7
[1 1 1 1 0 0 1]=(171)8
test_coding.m
Puncturing (打孔)
# 1/2编码,多一倍 然后打孔punctuate
# 进去9个,出来12个 就有 r = 3/4
Main Parameters of 802.11a
Tg 4
Ttotal 5Tg
f 20MHz 64 312.5KHz
B f 54 16.875MHz
Tx/Rx process of OFDM system
Modulation: BPSK/QPSK/16QAM/64QAM Coding: 1/2 Convolutional code Coding Rate (Punctuate (打孔)): 1/2、2/3、3/4
alternately onto less and more significant bits of the constellation and, thereby, long runs of low reliability (LSB) bits are avoided. ( Least Significant Bit 还需要好好理解!)

基于MATLAB的OFDM系统性能分析与仿真研究

基于MATLAB的OFDM系统性能分析与仿真研究OFDM(正交频分复用)是一种常用于无线通信系统中的多载波调制技术。

它将一个高速数据流分成多个子载波进行同时传输,提高了频谱利用率,也减小了频域上的干扰。

本文将基于MATLAB对OFDM系统的性能进行分析与仿真研究。

首先,我们需要搭建OFDM系统的仿真模型。

OFDM系统包括信号生成、子载波调制、信道传输、接收、解调和误码分析几个主要环节。

信号生成阶段,我们可以使用伪随机码(PN码)生成器产生信号序列作为待传输的数据。

然后,将信号序列进行并行-串行转换,将其分组成多个子载波。

子载波调制阶段,我们可以选择常用的调制方式,如BPSK、QPSK等。

在MATLAB中,我们可以利用内置的调制函数进行实现。

信道传输阶段,我们可以引入AWGN(加性高斯白噪声)信道模型,模拟无线信道中的噪声干扰。

通过调整信道衰落因子、信噪比等参数,可以模拟不同的信道环境。

接收阶段,我们需要进行并行信号转换成串行信号,并进行解调操作。

对于解调部分,与调制阶段相反,我们可以使用MATLAB中的解调函数,如bpskdemod、qpskdemod等。

误码分析阶段,我们通过计算误码率(BER)来评估系统性能。

可以通过比较原始信号和接收信号之间的差异,统计错误的比特数量来计算误码率。

在进行OFDM系统的性能分析与仿真时,我们可以分析以下几个方面的内容:1.调制方式对系统性能的影响:通过比较不同调制方式(如BPSK、QPSK、16QAM、64QAM等)下的误码率,评估调制方式对系统的影响。

2.子载波数量的选择:通过改变子载波的数量,比较不同子载波数量下的误码率与频谱效率,找到最佳子载波数量。

3.信道传输对系统性能的影响:通过改变信道衰落因子、信噪比等参数,比较不同信道环境下的误码率,评估信道传输对系统性能的影响。

4.信道估计与均衡:在OFDM系统中,由于信道传输的不确定性,需要进行信道估计与均衡。

基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真OFDM(正交频分复用)是一种高效的调制技术,广泛应用于无线通信系统中。

本文将基于MATLAB对OFDM系统进行设计与仿真,并介绍其主要步骤和关键技术。

首先,我们需要对OFDM系统进行建模。

OFDM系统由发送端和接收端两部分组成。

发送端主要包括数据源、调制器、IFFT以及保护间隔插入器。

接收端主要包括保护间隔删除器、FFT、解调器以及数据恢复。

在发送端,我们首先生成要传输的数据序列。

然后通过调制器将数据转换为带符号的复数序列。

接着,通过将复数序列进行IFFT,将频域数据转换为时间域信号。

在转换过程中,需要注意对数据进行零填充,以确保IFFT输出的结果长度是原始数据长度的整数倍。

最后,通过保护间隔插入器插入保护间隔,以减小信号之间的干扰。

在接收端,我们首先对接收到的信号进行保护间隔删除。

然后,通过FFT将时域信号转换为频域信号。

接着,通过解调器将复数序列转换为二进制数据。

最后,进行数据恢复,解码得到发送方发送的原始数据。

为了验证OFDM系统的性能,我们需要进行信道建模和误码率性能评估。

在信道建模中,我们可以选择多径信道模型,例如Rayleigh信道。

根据信道模型的不同,我们可以添加多径衰落和噪声等效果,从而模拟实际的信道环境。

在误码率性能评估中,我们可以通过比较接收到的数据与发送的原始数据,计算误码率。

在MATLAB中,我们可以使用信号处理工具箱和通信工具箱来实现这些功能。

信号处理工具箱提供了丰富的功能和算法,例如IFFT和FFT,用于信号处理和频谱分析。

通信工具箱则提供了OFDM系统建模和仿真所需的函数和工具,例如调制器、解调器等。

在进行OFDM系统设计与仿真时,我们可以根据不同的场景和需求进行调整和优化。

例如,可以尝试不同的调制方式、不同的子载波数量和间距,以及不同的保护间隔长度。

此外,还可以改变不同参数下的OFDM系统性能,如带宽利用率、误码率等。

总之,基于MATLAB的OFDM系统设计与仿真是一项重要的研究工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1绪论 (1)1.1课题研究背景及意义 (1)1.2无线通信 (1)1.2.1无线通信概述 (1)1.2.2无线信道特性 (2)1.3 OFDM概述及应用 (3)1.3.1 OFDM的发展 (3)1.3.2 OFDM的关键技术 (3)1.3.3 OFDM的优缺点 (4)2 OFDM基本原理 (6)2.1原理及数学描述 (6)2.1.1 OFDM基本原理 (6)2.1.2串并转换 (6)2.1.3子载波调制 (7)2.1.4 DFT变换 (10)2.1.5保护间隔、循环前缀和子载波数选择 (11)2.1.6 OFDM基本参数的选择 (14)2.1.7 QPSK调制 (15)2.1.8 QPSK信号的产生 (18)3 OFDM的系统仿真 (20)3.1 MATLAB特点与功能 (20)3.2 OFDM系统收发机 (20)3.3 OFDM系统仿真 (22)3.3.1串行数据的产生 (22)3.3.2串并转换 (23)3.3.3 QPSK调制 (25)3.3.4 QPSK调制星座图 (29)3.3.5 IFFT/FFT运算 (30)3.3.6保护间隔和循环前缀 (32)3.3.7并串转换 (34)3.3.8加入高斯噪声 (35)3.3.9 QPSK解调 (37)3.3.10接收信号 (38)3.4系统误码率的分析 (38)3.5 BER性能曲线 (40)3.6本章小结 (41)参考文献 (42)附录 (43)致谢........................................................................................................................... 错误!未定义书签。

摘要随着人们对通信数据化、宽带化、个人化和移动化的需求,OFDM技术在综合无线接入领域得到广泛应用,它将是第四代移动通信的核心技术之一。

OFDM(Orthogonal Frequency Division Multiplexing)是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。

目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB—T)、无线局域网等领域得到广泛的应用。

本文简述了无线信道的特点,概述了OFDM技术的发展状况、原理、数学表示、部分关键技术,采用Matlab仿真的方法,并且对由于高斯噪声而引起码间干扰等问题进行了仿真和讨论,并对QPSK调制技术进行了较为全面的仿真和分析,并且通过仿真得出了在一定信噪比范围内的BER性能曲线。

关键词:正交频分复用;调制;解调AbstractAs people on the needs of data communication, broadband, individuals and mobile, OFDM technology accesses a wide range of applications in the field of integrated wireless , it will be one of the core technology of 4 G mobile communications. OFDM (Orthogonal Frequency Division Multiplexing) is a special multi-carrier transmission scheme , it combines some technologies such as figure modulation, digital signal processing, multi-carrier transmission .It is the maximum utilization of the spectrum communication system ,with the advantages of faster transfer rates ,anti-multipath interference. Currently known at present, OFDM technology is widely used in the digital audio broadcasting (DAB), terrestrial digital video broadcasting (DVB-T) and wireless LAN.The paper analyzes the features of wireless channel, and briefly summarizes the development, principles, mathematics denotation, some key technology of the OFDM. At the same time, imitate and discuss deeply about some problems, such as ISI and QPSK modulation by using the method of matlab simulation. This paper simulates the scope of BER performance curve within a certain signal to noise ratio.Key words: OFDM; Modulation; Demodulation1绪论1.1课题研究背景及意义进入21世纪以来,无线通信技术正在以前所未有的速度向前发展。

随着用户对各种实时多媒体业务需求的增加和互联网技术的迅猛发展,可以预计,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。

为了支持更高的信息传输速率和更高的用户移动速度,在下一代的无线通信中必须采用频谱效率更高、抗符号间干扰能力更强的新型传输技术。

OFDM(Orthogonal Frequency Division Multiplexing)通信技术是多载波传输技术的典型代表。

多载波传输把数据流分解为若干个独立的比特流,每个子数据流将具有低得多的比特速率,用这样低比特率形成的低速率多状态符号去调制相应的子载波,就构成了多个低速率符号并行发送的传输系统。

OFDM是多载波传输方案的实现方式之一,具有抗多径能力强、频谱利用率高,利用快速傅里叶逆变换和快速傅里叶变换来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。

1.2无线通信OFDM(Orthogonal Frequency Division Multiplexing)是目前已知的频谱利用率最高的一种通信系统,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,使得它在系统的频谱利用率、功率利用率、系统复杂性方面综合起来有很强的竞争力,是支持未来移动通信特别是移动多媒体通信的主要技术之一[1]。

1.2.1无线通信概述(1)1G阶段主要采用频分复用,语音信号为模拟调制。

由于受到网络容量限制,只能传输语音。

其主要缺点是,频谱利用率低、业务种类有限、无高速数据业务、设备成本高、终端体积大、质量大、不能提供自动漫游等。

(2)2G阶段主要采用了时分多址(TDMA)技术和码分多址(CDMA)技术。

主要体制有GSM、DAMPS、IS-95。

GSM发源于欧洲,GSM标准体制较为完善,技术相对成熟,其不足之处是相对于模拟系统容量增加不多,无法和模拟系统兼容,不能提供分组数据业务等。

(3)3G阶段第三代移动通信主要体制有WCDMA、CDMA2000和TD—SCDMA。

提供了更大的系统容量和高质量的传输,提高了无线频率利用效率。

实现了卫星在内的全球覆盖并实现有线和无线以及不同无线网络之间业务的无缝连接。

(4)4G阶段第四代移动通通信可以在不同的固定、无线平台和不同频带的网络中提供无线服务。

可以在任何地方宽带接入互联网,能够提供信息通信之外的定位、定时数据采集、远程控制等综合功能。

被4G看好的高速调制技术就是多载波正交频分复用(OFDM)调制技术。

1.2.2无线信道特性无线信道包括了电波的多径衰落,时延扩展,以及多普勒效应,在移动通信中,必须要充分考虑这些特性,并提出相关的解决方案。

(1)时延扩展各路径长度不同使得信号到达时间不同,基站发送一个脉冲信号,则接收信号中不仅含有该信号,还包含有它的各个时延信号。

这种由于多径效应使接收信号脉冲宽度扩展的现象,称为时延扩展。

(2)多径衰落由于接收者所处地理环境复杂,因此到达接收者的电波不仅有直射波的主径信号,还有从不同建筑物反射及绕射过来的多条不同路径信号,而且他们到达时的信号强度、到达时间及到达时的载波相位都不一样,所接收的信号是上述各路信号的矢量和,从而会引起信号衰落及失真,称为多径衰落。

(3)多普勒效应由于移动通信中移动台的移动性,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。

这就是由多普勒效应效应引起的。

1.3 OFDM概述及应用1.3.1 OFDM的发展OFDM由多载波调制(MCM)发展而来。

1971年,Weistein和Ebert在IEEE杂志上发表了用离散傅立叶变换(DFT)来实现多载波调制的方法;20世纪80年代,人们对多载波调制在高速调制解调器、数字移动通信等领域中的应用进行了较为深入的研究,但是由于当时技术条件的限制,多载波调制没有得到广泛的应用;进入20世纪90年代,由于数字信号处理技术和大规模集成电路技术的进步,OFDM技术在高速数据传输领域受到了人们的广泛关注。

现在OFDM已经在欧洲的数字音视频广播、欧洲和北美的高速无线局域网系统、高比特率数字用户线以及电力线载波通信中得到广泛的使用。

1.3.2 OFDM的关键技术1. 时域和频域同步OFDM系统对定时和频率偏移敏感,特别是实际应用中与FDMA、TDMA和CDMA 等多址方式结合使用时,时域和频率同步显得尤为重要。

与其他数字通信系统一样,同步分为捕获和跟踪两个阶段。

在下行链路中,基站向各个移动终端广播发送同步信号,所以下行链路同步相对简单,较易实现。

在上行链路中,来自不同移动终端的信号必须同步到达基站才能保证子载波间的正交性。

基站根据各移动终端发来的子载波所携带信息进行时域和频域同步信息的提取,再由基站发回移动终端,以便让移动终端进行同步。

具体实现时,同步将分为时域同步和频域同步,也可以时域和频域同时进行同步。

相关文档
最新文档