电流的磁场教案(改)
电流的磁效应(教案)

电流的磁效应教学目标:1. 了解电流的磁效应的概念。
2. 掌握电流产生磁场的规律。
3. 学会使用电流表和磁场传感器进行实验。
4. 能够运用电流的磁效应解释生活中的现象。
教学内容:第一章:电流的磁效应简介1.1 电流的磁效应概念1.2 电流产生磁场的规律1.3 电流表的使用方法第二章:磁场传感器介绍2.1 磁场传感器的工作原理2.2 磁场传感器的使用方法2.3 磁场传感器的实验操作第三章:电流的磁效应实验3.1 实验目的和意义3.2 实验器材和步骤3.3 实验数据记录和分析第四章:生活中的电流磁效应现象4.1 电风扇的运行原理4.2 电磁炉的加热原理4.3 磁悬浮列车的运行原理第五章:电流的磁效应应用5.1 电磁铁的制作和应用5.2 电动机的制作和应用5.3 发电机的制作和应用教学方法:1. 采用问题驱动的教学方法,引导学生主动探究电流的磁效应。
2. 通过实验和生活中的实例,让学生直观地感受电流的磁效应。
3. 利用多媒体辅助教学,展示电流的磁效应的原理和应用。
教学评价:1. 课堂问答:检查学生对电流的磁效应概念的理解。
2. 实验报告:评估学生在实验中的操作能力和对实验数据的分析能力。
3. 课后作业:巩固学生对电流的磁效应的知识点掌握。
教学资源:1. 电流表和磁场传感器。
2. 实验器材:导线、电池、铁钉等。
3. 多媒体教学课件。
教学步骤:第一章:电流的磁效应简介1.1 引导学生思考电流和磁场之间的关系,引入电流的磁效应概念。
1.2 讲解电流产生磁场的规律,让学生了解电流方向和磁场方向的关系。
1.3 演示电流表的使用方法,让学生学会如何测量电流。
第二章:磁场传感器介绍2.1 讲解磁场传感器的工作原理,让学生了解磁场传感器的功能。
2.2 演示磁场传感器的使用方法,让学生学会如何操作磁场传感器。
2.3 分组实验,让学生亲身体验磁场传感器的操作和实验现象。
第三章:电流的磁效应实验3.1 讲解实验目的和意义,让学生明白实验的重要性。
2024年八年级物理校本课程教案,随意下载,教学设计

2024年八年级物理校本课程教案,随意,教学设计一、教学内容本节课选自2024年八年级物理校本课程,涉及教材的第三章《电与磁》的第5节“电流的磁场”。
具体内容包括:电流的磁场现象、安培定则、磁场对电流的作用以及电磁感应现象。
二、教学目标1. 理解并掌握电流的磁场现象,能够运用安培定则判断简单电流的磁场方向。
2. 掌握磁场对电流的作用,了解电动机的原理。
3. 了解电磁感应现象,理解发电机的工作原理。
三、教学难点与重点难点:安培定则的应用、电磁感应现象。
重点:电流的磁场、磁场对电流的作用、电磁感应现象。
四、教具与学具准备教具:电流磁场演示器、安培定则模型、电动机和发电机模型。
学具:电流方向标识卡片、磁场方向标识卡片、导线和电池。
五、教学过程1. 实践情景引入(5分钟)通过展示电流磁场演示器,引导学生观察电流周围小磁针的变化,激发学生对电流磁场的兴趣。
2. 理论知识讲解(15分钟)讲解电流的磁场现象,引导学生理解电流周围存在磁场的原理。
介绍安培定则,并通过模型演示和实例分析,帮助学生掌握安培定则的应用。
3. 例题讲解(10分钟)出示例题,引导学生运用安培定则判断电流磁场的方向。
解析例题,强调注意事项。
4. 随堂练习(10分钟)分组讨论,让学生互相出题,巩固安培定则的应用。
教师点评,解答学生疑问。
5. 磁场对电流的作用(15分钟)展示电动机模型,讲解磁场对电流的作用原理。
学生观察发电机模型,了解电磁感应现象。
6. 课堂小结(5分钟)六、板书设计1. 电流的磁场现象2. 安培定则3. 磁场对电流的作用4. 电磁感应现象七、作业设计1. 作业题目:(1)判断下列电流磁场的方向。
(2)简述电动机和发电机的工作原理。
2. 答案:(1)略(2)电动机:利用磁场对电流的作用,将电能转化为机械能;发电机:利用电磁感应现象,将机械能转化为电能。
八、课后反思及拓展延伸1. 课后反思:本节课学生对电流的磁场现象和安培定则的理解程度较高,但对磁场对电流的作用和电磁感应现象的理解还需加强。
物理磁场对电流的作用教案

物理磁场对电流的作用教案物理磁场对电流的作用教案作为一名人民教师,常常需要准备教案,教案是备课向课堂教学转化的关节点。
那么教案应该怎么写才合适呢?下面是小编收集整理的物理磁场对电流的作用教案,仅供参考,欢迎大家阅读。
物理磁场对电流的作用教案1(一)教学目的1.知道磁场对通电导体有作用力。
2.知道通电导体在磁场中受力的方向与电流方向和磁感线方向有关,改变电流方向或改变磁感线方向,导体的受力方向随着改变。
3.知道通电线圈在磁场中转动的道理。
4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。
5.培养学生观察能力和推理、归纳、概括物理知识的能力。
(二)教具小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架(吊铝箔筒用),如课本图12-10的挂图,线圈(参见图12-2),抄有题目的小黑板一块(也可用投影片代替)。
(三)教学过程1.引入新课本章主要研究电能;第一节和第二节我们研究了获得电能的原理和方法,第三节我们研究了电能的输送。
电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器--电动机。
出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。
提问:电动机是根据什么原理工作的呢?讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现--电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。
根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。
下面我们通过实验来研究这个推断。
2.进行新课(1)通电导体在磁场里受到力的作用板书课题:〈第四节磁场对电流的作用〉介绍实验装置,将铝箔筒两端的铝箔条吊挂在支架上,使铝箔筒静止在磁铁的磁场中(参见课本中的图12-9)。
2022年教科版物理《电流的磁场》精选教案(推荐)

电流的磁场教学目标一、知识与能力1.了解奥斯特的发现及其意义, 知道通电直导线周围的磁场情况.2.知道通电螺线管周围的磁场分布, 掌握安培定那么.3.知道磁现象的电本质.二、过程与方法1.通过对奥斯特发现的实验的观察, 了解导线周围的磁场.2.经历关于通电螺线管周围磁场分布的实验探究过程, 知道螺线管磁场和条形磁体磁场的相似性.三、情感、态度与价值观1.通过实验探究及讨论活动, 培养学生善于观察、勤于思考、勇于探究的科学素养.2.通过实验探究和讨论活动, 培养学生积极与他人合作的意识.教学重难点【教学重点】通电螺线管周围的磁场分布.【教学难点】磁现象的电本质.教学准备◆教师准备多媒体教学课件、螺线管、铁屑、电池、小磁针等.◆学生准备螺线管、铁屑、电池、小磁针等.教学过程一、情境导入1.情景:1820年, 安培在科学院的例会上做了一个小实验, 如图7-2-1所示, 把螺线管沿东西方向水平悬挂起来, 然后给导线通电, 发现螺线管通电转动后停在南北方向上, 这一现象引起了与会科学家的极大兴趣. 你知道这是怎么回事吗?2.回忆:师:当把小磁针放在条形磁体的周围时, 能观察到什么现象?其原因是什么?生思考交流:观察到小磁针发生偏转;因为磁体周围存在着磁场, 小磁针受到磁场的磁力作用而发生偏转.师:同学们答复得很好, 带电体和磁体有一些相似的性质, 这些相似是一种巧合呢?还是它们之间存在着某些联系呢?科学家们基于这一想法, 一次又一次地寻找电与磁的联系. 1820年丹麦物理学家奥斯特终于用实验证实通电导体的周围存在着磁场, 这一重大发现轰动了科学界, 使电磁学进入一个新的开展时期. 今天, 我们沿着奥斯特的足迹, 来再现一下奥斯特所做的实验.二、进行新课(一)奥斯特的发现1.奥斯特实验.先向学生说明实验要求, 如图7-2-2所示, 然后学生分组实验:将直导线与小磁针平行并放. 观察现象:①如图7-2-2 (a), 当直导线通电时会发生什么现象?(小磁针发生偏转)②如图7-2-2 (b), 断电后会发生什么现象?(小磁针转回到原来指南北的方向)③如图7-2-2 (c), 改变通电电流的方向后会发生什么现象?(小磁针发生偏转, 其N极所指方向与图a时相反)提问:(1)通过实验, 你观察到了哪些物理现象?(通电时小磁针发生偏转;断电时小磁针转回到指南北的方向;通电电流方向相反, 小磁针偏转方向也相反)(2)通过这些物理现象你能总结出什么规律?(①通电导线周围存在磁场;②磁场方向与电流方向有关)师:同学们答复得很好, 我们鼓掌给予鼓励. 以上实验是丹麦的科学家奥斯特首先发现的, 此实验又叫奥斯特实验. 这个实验说明, 除了磁体周围存在着磁场外, 电流的周围也存在着磁场, 即电流的磁场.总结奥斯特实验. 现象:导线通电, 周围小磁针发生偏转;通电电流方向改变, 小磁针偏转方向相反. 规律:通电导线周围存在磁场, 磁场方向与电流方向有关.师:这个实验看上去非常简单, 但在当时这一重大发现轰动了科学界. 因为它揭示了电现象和磁现象不是各自孤立的, 而是紧密联系的, 从而说明外表上互不相关的自然现象之间是相互联系的, 这一发现有力地推动了电磁学的研究和开展. 奥斯特实验用的是一根直导线, 后来科学家们又把导线弯成各种形状, 通电后研究电流的磁场. 我们也研究一下, 说出你们的做法和观察的结果. (学生把直导线弯成各种形状, 通电后看小磁针的变化. )(二)通电螺线管的磁场.1.演示通电螺线管的磁场:把直导线缠在铅笔上, 然后抽出铅笔, 再通电, 小磁针偏转, 周围存在磁场.师:这种把导线绕在圆筒上, 做成的螺线管也叫线圈. 它能使各导线产生的磁场叠加在一起,磁场就会强得多, 这样在生产实际中用途就大. 那么通电螺线管的磁场是什么样的?观察铁屑的分布和小磁针的指向. 如图7-2-3所示, 在板上均匀撒满铁屑, 在螺线管两端各放一个小磁针, 通电后观察小磁针的指向. 轻轻敲板, 观察铁屑的排列. 改变电流方向再观察一次.提问:(1)通电前小磁针如何指向?通电后会发生什么现象?(原指南北, 通电后磁针偏转. )(2)通电后, 轻轻敲板, 铁屑为什么会产生规那么排列?铁屑的排列与什么现象一样?(铁屑磁化变成“小磁针〞, 轻敲使铁屑可自由转动, 使铁屑按磁场进行排列, 其排列与条形磁体的排列相同, 通电螺线管相当于条形磁体. )(3)改变通电方向, 小磁针的指向有什么不同?这说明什么?(小磁针指向相反, 说明通电螺线管两端的极性与通电电流有关. )2.通电螺线管的极性和电流关系——安培定那么.师:我们知道通电螺线管两端的极性跟螺线管中的电流方向有关, 有什么样的关系?我们能否想出一句话来概括这种普遍规律?学生讨论交流, 归纳总结.师:大家答复得都很好, 虽有不同的看法, 还是说出了自己的观点, 我很快乐看到这样的场面. 我们知道, 通电导体周围存在着磁场, 通电螺线管外部的磁场和条形磁体的磁场相似. 通电螺线管相当于一个条形磁体, 其极性和电流方向的关系符合安培定那么——右手螺旋定那么:用右手握螺线管, 让四指弯向螺线管电流的方向, 那么大拇指所指的那端就是螺线管的北极.(三)物体磁性从哪里来.1.提出问题:(1)磁体和电流都能产生磁场, 磁体的磁场和电流的磁场是否有相同的起源呢?(2)电流的本质是电荷定向运动, 所以电流的磁场应该是由于电荷的运动而产生的. 那么磁体的磁场是否也是由电荷的运动产生的呢?2.学生展开讨论交流, 教师巡视, 进行指导帮助.3.利用课件展示安培的分子电流假说:通电螺线管的外部磁场与条形磁体的磁场具有相似性, 法国学者安培由此受到启发, 提出了著名的分子电流假说. 他认为:在原子、分子等物质微粒的内部, 存在着一种环形电流, 分子电流使每个物质微粒都成为微小的磁体, 它的两侧相当于两个磁极, 物体内大量微小的磁体有序排列使得物体显示磁性.4.课件展示:利用安培分子电流假说解释磁现象, 联系磁化和消磁进行分析与理解.三、反思总结1.请学生总结本节课的主要内容, 教师再作适当的补充.2.教师进一步强调本节课的重点、难点和关键点. 请学生反思自己本节课的学习情况, 谈谈收获和体会.3.布置思考题及课后作业.(1)制作“家庭实验室〞的电磁炮.(2)课后作业:“自我评价〞第1、2题.【板书设计】第2节电流的磁场(一)奥斯特的发现——电流的磁效应现象:导线通电, 周围小磁针发生偏转;通电电流方向改变, 小磁针偏转方向相反.规律:通电导线周围存在磁场;磁场方向与电流方向有关.(二)通电螺线管的磁场1.通电螺线管外部的磁场与条形磁体的磁场相似.2.安培定那么:用右手握螺线管, 让四指弯向螺线管电流的方向, 那么大拇指所指的那端就是螺线管的北极.(三)物体磁性从哪里来?安培分子电流假说.第2节磁场对电流的作用第1课时┃教学过程设计┃第2课时┃教学小结┃。
16.2电流的磁场(第三届全国“教学中的互联网搜索”优秀教案评选)

354698990&objURLhttp%3A%2F%%2F188%2Fup%2Fdoc%2F200851339604465.JPG&fromURLhttp%3A%2F%%2F188%2Fshowco urse.asp%3Fcourse_id%3D287&W209&H135&T9111&S4&TPjpg
如图所示为电磁继电器,它的主要组成部分有:。
请你简要说明图中水位自动报警器的工作原理。
(提示:纯净的水是绝缘体,所示,根据图中给出的条件画出螺线管的绕线。
.如图所示,要使这个铁钉磁化后的磁性增强,应采取以下哪个措
施?( )
A .改变电流方向
B .减小通过导线的电流(第1题) (1) (3) (
6.如图所示,通电螺线管周围小磁针静止时的指向不正确的是( ) A.a B.b C.c D.d
7.如图所示,电磁铁左侧的C为条形磁铁,
的D为软铁棒,A、B是电源的两极。
下列判断中(第3题)
(第4题) (第5题) 6题)
(第7题)。
电流的磁场(第二课时)教案

16.2 电流的磁场(第二课时)班级___________ 姓名_________ 学号__________学习目标:1、了解电磁铁的特性和工作原理;2、了解电磁继电器的结构和工作原理。
学习重难点:1、探究电磁铁的磁性强弱与哪些因素有关。
2、电磁继电器的工作原理。
学习过程一、自主学习1、蚂蚁和猴子分别用两种生动的语言来描述通电螺线管的电流方向与N极位置的关系.(1)图(a):蚂蚁沿着电流方向绕螺线管向上爬行,它说:“N极就在我的(选填“左”或“右”)边.”(2)图(b):猴子用右手把一个大螺线管夹在腋下,它说:“如果电流沿着我右臂所指的方向,N极就在我的(选填“前”或“后”)方.”二、合作探究(一)、电磁铁1、叫做电磁铁。
2、探究电磁铁的磁性强弱与哪些因素有关实验表明:电磁铁的磁性强弱与和有关。
3、电磁铁的优点:(1)电磁铁的磁性有无可以由来控制;(2)电磁铁的磁性强弱可以通过来控制;(3)电磁铁的极性变换可以通过来实现。
(二)、电磁继电器1、电磁继电器实质上就是一种利用来控制工作电路的开关。
2、利用电磁继电器可以用、的电路来控制、的电路。
3、电磁继电器的构造B A如图所示,A 是 ,B 是 ,C 是 ,D 是 ,E 是 。
电磁继电器工作电路可分为 和 。
4、电磁继电器的工作原理: 闭合低压控制电路中的开关,电流通过电磁铁A 的线圈产生 ,从而把 吸引下来,使动触点D 与静触点E ,工作电路 ,电动机 。
当断开低压开关时,线圈中的电流消失,电磁铁的磁性 ,衔铁B 在 的作用下与电磁铁 A ,使动触点D 与静触点 E ,工作电路 ,电动机 。
【课堂练习】1、下列没有用到电磁铁的是( )A 、电磁起重机B 、电磁继电器C 、电铃D 、电灯 2、电磁铁里常用软铁而不用钢做铁芯,这是因为( )A 、软铁能被磁化,而钢不能被磁化B 、被磁化后,软铁的磁性会比钢的强C 、软铁要比钢便宜D 、磁化后,软铁的磁性易消失,而钢的磁性不易消失3、如图轻弹簧下悬挂一条形磁铁,磁铁下方有一通电螺线管,为使悬挂磁铁的轻弹簧伸得最长,下列措施正确的是( )A 、S2闭合B 、滑片P 向b 移动C 、螺线管内插入铁芯D 、把电源两极对调后,接入原电路4、小亮在“制作、研究电磁铁”过程中,使用两个相同的大铁钉制成电磁铁进行实验,如图所示,下列说法正确的是( ) A 、电磁铁能够吸引的大头针越多,表明它的磁性越强B 、通过B 线圈的电流小于通过A 线圈的电流C 、要使电磁铁磁性增强,应将滑动变阻器的滑片P 向右移动D 、若将两电磁铁上部靠近,会相互吸引 5.为探究“影响电磁铁磁性强弱的因素”,小明以电池(电压一定)、滑动变阻器、数量较BD 低压控制电路 高压工作电路ACE多的大头针、铁钉以及长导线为主要器材,进行如图16—27所示的简易实验.(1)他将导线绕在铁钉上制成简易电磁铁,并巧妙地通过来显示电磁铁磁性的强弱.(2)连接好电路,使变阻器连入电路的阻值较大,闭合开关,观察到如图(a)所示的情景;接着,移动变阻器滑片,使其连人电路的阻值变小,观察到如图(b)所示的情景.比较图(a)和图(b),可知图中的电流较小,从而发现,通过电磁铁的电流越选填“大”或“小”)磁性越强.(3)如图(c)所示,将导线绕在两枚铁钉上,构成两个简易电磁铁串联的电路.从图(c)的情景看出,在相同的情况下,线圈的匝数越(选填“多”或“少”)磁性越强.6.如图所示是温度自动报警器的原理图,它运用了许多物理知识,以下说法中不正确的是( )A.温度计中的水银是液态金属B.当温度达到设定温度时铃响报警C.报警器中的电磁铁运用了电流的热效应D.电磁继电器是一种电路开关4.如图所示,在电磁铁正上方用弹簧挂着一条形磁体,开关闭合后,当滑片P从A端向b端滑动时,会出现的现象是( )A.电流表示数变大,弹簧长度变长B.电流表示数变大,弹簧长度变短教学反思。
《电流的磁场》说课教案
《电流的磁场》教学设计宛城区汉冢中学毕文全《电流的磁场》教学设计一、对教材的分析:本节课是在已有的电学知识和简单的磁现象知识基础上,将电和磁对立统一起来。
本节课是初中物理电磁学部分的一个重点,也是可持续发展的物理学习的必要基础。
本节课主要包括三个重要的知识点:通过奥斯特实验明确通电导线周围存在磁场;通电螺线管的磁场;安培定则,是一节内容较多、信息量较大的课。
但是这节课的优点是知识结构上条理清晰、层次分明。
本节课有两个实验,并且都有着直观的实验结果,相对较为生动,容易引发学生的学习积极性。
一、教学设计思路:本节课的基本思路是:(1)根据新课改精神,培养学生在已知的知识基础上联系所熟悉的事例。
通过观察、实验,经过分析、归纳总结出物理概念和规律;培养学生观察实验能力和思维能力;通过从感性材料上升到概念和规律的过程,培养学生逐步掌握分析和概括的方法。
(2)信息技术的高速发展,为课堂教学开辟了新的教学模式,利用网络资源,利用多媒体技术可以把一些在实验室不便进行或效果不明显的实验展示出来,可以收到意想不到的效果。
(3)因为电流的磁场是很抽象的,看不见、摸不着,极性又不像磁体那样显见,所以电流磁场这节课是非常难讲的一节课,但是这节课又是非常重要的,因为这节课揭示了电磁学之间的内在联系,拉开了现代电磁学的序幕,而且所揭示的物理规律在历史上起到了很大的作用。
(4)这节课我设计了“三个”三,即三个层次、三个实验和三个设问。
三个层次:a 通电导线周围存在磁场b 通电螺线管的磁场c 右手螺旋定则。
三个演示实验:a奥斯特实验b通电螺线管周围磁场与条形磁铁周围相似c 通电螺线管两端极性与电流方向有关。
三个设问:a 带电体和磁体有一些相似的性质,这些相似是一种巧合呢?还是它们之间存在着某些联系呢?b 这个实验你看到了什么现象,这个现象说明了什么? c 通电螺线管两端的极性与通电电流的方向究竟有什么关系呢?二、教学目标:(一)知识目标通过实验让学生认识到电流周围存在磁场,初步认识到电与磁之间的联系知道通电螺线管对外相当于一个条形磁铁会根据右手螺旋定则判断通电螺线管的磁极或螺线管的电流方向。
2024年教科版九年级物理全册教案完整版
2024年教科版九年级物理全册教案完整版一、教学内容本教案依据2024年教科版九年级物理全册教材,主要涉及第十章《电磁学》的第二节“电流的磁场”和第三节“电磁感应”,具体内容包括:电流的磁场产生原理、安培定则、电磁感应现象及其应用。
二、教学目标1. 让学生掌握电流的磁场产生原理,理解安培定则,并能运用安培定则判断电流周围的磁场方向。
2. 让学生了解电磁感应现象,理解法拉第电磁感应定律,并能运用相关知识解释实际现象。
3. 培养学生的实验操作能力和观察能力,激发学生对物理现象的好奇心和探索精神。
三、教学难点与重点难点:安培定则的理解与应用、法拉第电磁感应定律的理解。
重点:电流的磁场产生原理、电磁感应现象及其应用。
四、教具与学具准备教具:电流磁场演示仪、电磁感应实验装置、电流表、电压表、导线、磁铁、滑动变阻器等。
学具:每组一套电流磁场演示仪、电磁感应实验装置,每组一份实验报告单。
五、教学过程1. 实践情景引入通过演示电流磁场实验,让学生观察电流周围小磁针的变化,引出电流的磁场产生原理。
2. 教学内容讲解(1)电流的磁场产生原理。
通过讲解安培定则,让学生了解电流周围磁场的方向判断方法。
(2)电磁感应现象。
通过演示电磁感应实验,让学生观察感应电流的产生,进而介绍法拉第电磁感应定律。
3. 例题讲解(1)运用安培定则判断电流周围磁场的方向。
(2)根据法拉第电磁感应定律,计算感应电动势。
4. 随堂练习(1)判断给定电流方向的磁场方向。
(2)根据法拉第电磁感应定律,分析实际问题。
5. 学生实验操作(1)每组学生进行电流磁场实验,观察并记录实验现象。
(2)每组学生进行电磁感应实验,测量感应电流的大小,并分析实验结果。
六、板书设计1. 电流的磁场产生原理2. 安培定则3. 电磁感应现象4. 法拉第电磁感应定律七、作业设计1. 作业题目:2. 答案:(1)根据安培定则判断。
(2)根据法拉第电磁感应定律计算。
八、课后反思及拓展延伸1. 反思:学生对安培定则的理解和运用尚有不足,需要加强练习。
磁场的教案
磁场的教案电流的磁场教案篇一一、电流的磁效应说明:人类很早就留意到了电流的磁效应。
例如:①一名英国商人发现,雷电过后,他的一箱新刀竟然带上了磁性②富兰克林也在实验中发现,在莱顿瓶放电后,附近的缝衣针被磁化了说明:那么电流和磁场之间有什么关系吗?19 世纪,随着对摩擦生热等现象认识的深人,人们逐步相信自然界各种运动之间存在m.huzhidao. 着广泛联系。
除了表面上的一些相似性之外,电和磁之间是否还存在着更深刻的联系?一些科学家相信.答案是肯定的,在实验中寻找这种联系,就成为他们的探索目标。
后来,丹麦物理学家奥斯特首先获得成功。
1820 年,奥斯特发现:把一根导线平行地放在磁针的上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。
这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应问:既然电流能够产生磁场,那么电流的方向和磁场的方向之间是否存在什么关系呢?演示实验实验仪器:直导线、硬纸板、细铁屑、直流电源实验过程:①使直导线穿过一块硬纸板②给导线通电③在硬纸板上均匀地撒一层细铁屑④轻敲硬纸板⑤观察细铁屑的排列情况,以得到电流的方向和磁场的方向之间的关系说明:以安培为代表的法国科学家经过长期实验,总结了直线电流和磁场方向之间的关系,得出了安培定则,具体内容是:右手握住导线,伸直的拇指的方向代表电流的方向,那么弯曲的四指所指的方向就是磁感线的环绕方向问:直线电流的磁场可以用什么图形表示?(一系列的同心圆)问:这些同心圆有何特征?(内紧外松)演示实验实验仪器:环形导线、硬纸板、直流电源、细铁屑实验过程:①把环形导线穿过硬纸板②给导线通电③在硬纸板上均匀地撒一层细铁屑④轻敲硬纸板⑤观察细铁屑的排列情况,以得到电流的方向和磁场的方向之间的关系说明:以安培为代表的法国科学家经过长期实验,总结了环形电流和磁场方向之间的关系,右手握住环形导线.弯曲的四指所指的方向代表电流的方向,拇指所指的方向就是圆环中心周线上的磁感线的方向问:螺线管可以看成由多个环形导线组成,那通电螺线管的电流方向跟它的磁感线方向之间有怎样的关系呢?(右手握住螺线管.弯曲的四指所指的方向代表电流的方向,拇指所指的方向就是螺线管内部磁感线的方向说明:通电螺线管外部的磁场与条形磁体十分相似,如果把它看做一个条形磁体,那如何判断螺线管的N极?(拇指的指向是条形磁体的N 极)《磁场》教案篇二本文是关于介绍高二物理《磁场》教学反思的范文,老师们参考并加以修改,便可以运用到课堂上了,一起看看具体的内容吧。
16.2 电流的磁场(教案)
16.2 电流的磁场
一、教学目标
1.知识与技能
(1)了解奥斯特实验,初步认识通电螺线管外部的磁场
(2)会观察、收集实验中的现象、信息,并会处理这些信息
(3)会利用互联网搜集相关材料、搜索学习中遇到的各种问题的答案
2.过程与方法
(1)经历观察和探究的过程,经历电生磁的发现过程,能简单描述在探究过程中观察
到的现象
(2) 能在实验和探究中发现、提出问题,并能制定简单的实验方案
(3) 在讨论、评估、交流中能用书面和口头表明自己的观点,能利用互联网工具搜集相
关资料
3.情感态度与价值观
(1) 通过对电生磁的研究和对通电螺线管外部磁场的探究,进一步激发学生学习科学的
兴趣。
(2)通过本节课的学习,培养学生尊重事实、实事求是的科学态度。
二、教学重点、难点
1.重点:知道电能生磁;掌握安培定则并能熟练应用。
2.难点:熟练运用安培定则由电流方向判定磁场方向、螺线管磁极。
三、教学设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流的磁场
一、教学任务分析
磁场的知识是高中阶段学习磁学的开始,磁场以及电流的磁场的知识是整个经典电磁学的基础和核心内容之一,同时也为以后学习磁场对电流的作用、磁感应强度、电磁感应等知识奠定基础。
本节课设计关于电流磁场的学习,以初中对磁场概念的认识和电流的有关知识为基础。
对于电流周围存在磁场的现象,初中阶段已初步涉及,本设计的重点是在实验验中学习用磁感应线来描述电流周围磁场的分布,并复习右手螺旋定则来判断电流磁场的方向。
这节课通过学生的参与和亲身体验,在学习过程中运用观察、分析和空间想象等科学方法,从实验所呈示的现象中得出有关现象的本质和规律,感受建立科学模型方法在物理学研究中的重要作用。
二、教学目标
1.知识与技能
(1)知道电流周围存在磁场。
(2)理解电流周围的磁场不仅有强弱,而且有方向,在实验中学会用磁感应线来形象表示磁场的强弱分布和方向。
(3)学会应用右手螺旋定则判断电流磁场的方向。
(4)会画几种常见的电流磁场的磁感应线分布情况。
2.过程与方法
(1)在学习用磁感应线描述磁场的过程中,感受建立模型的方法在物理研究中的重要意义。
(2)通过展示磁感应线分布的图像、模型,感受分析、模拟、空间想象等科学方法。
3.情感、态度与价值观
(1)通过对磁感应线的观察,感悟磁感应线图像的对称美、形式美。
(2)通过了解生活中磁场的运用感受知识给科技带来的活力。
三、教学重点与难点
教学重点:电流的磁场特点,正确画电流周围磁感应线并用右手螺旋定则判断电流磁场的方向。
教学难点:从立体到平面磁感应线描述电流的磁场
四、教学资源
1、器材:直导线,线圈,螺线管,实物投影仪,电脑等。
2、课件:自制课件。
六、教学过程:
引入:小游戏
设问1:我们已经磁体周围存在着磁场,电流的周围也存在磁场吗?怎么能知道?
演示实验1:通电直导线周围存在着磁场,小磁针发生了偏转(观察转动方向),改变电流方向,小磁针是否偏转?(转动方向是否相同?)你能得出什么结论?
探究一:观察通电直导线周围的磁感线,画出直线电流的磁感线
步骤一:根据小铁棒被磁化后在通电导线电流周围磁场中的排列,记录此时小磁针N极所指的方向,画出直线电流的磁感线
步骤二:改变直线电流的方向,记录此时小磁针N极所指的方向,画出直线电流的磁感线(电流方向发生变化,磁场的形状有没有变化?方向呢?)
设问2:通过对磁感线的描绘,你能观察出直线电流周围的磁场分布有什么特点?(1、以直导线上一点为圆心的同心圆,越靠近导线磁感线分布越密;2、电流方向不同,磁场的方向不同)(演示立体空间的磁感线分布)
设问3:你能否根据立体图画出,直线电流的磁场的俯视图,正视图?
(根据学生的画图情况进行纠正)
设问3:直线电流周围的磁场方向与电流有没有确定的空间关系呢?(讲述安培的故事)右手螺旋定则:
右手螺旋定则一:
右手握住导线,让伸直的拇指的方向与电流的方向一致,那么弯曲的四指所指的方向就是磁感线的环绕方向。
练习:横放导线后画出直线电流的截面图,侧视图。
(动态演示)
探究二:环线电流周围磁场的分布
设问5:如果我把导线弯曲了,你能否猜想下环形电流周围磁场的分布?(把每一小段视作直导线,动画演示)通过实验来检验你的猜想。
(还是环状,不过不是同心圆了)
实验探究:环形电流周围磁场的分布并描绘磁感线
设问6:环形电流周围的磁场分布有什么特点?(环状,离环越远,磁场越弱)(演示空间分布)
设问7:观察到环形电流磁场内部磁场方向都是同向的,能不能更快捷地来判断磁场方向? 右手螺旋定则二:
环形电流:
环形电流产生的磁场:弯曲的四指与环形电流方向一致,拇指指向为环形电流中心轴线上的磁感应线方向。
设问8:能否根据立体图画出环形电流的截面图和侧视图?
探究三:通电螺线管周围磁场分布
设问8:如果导线不是一圈而是多圈组成一个螺线管,它通以电流后的磁场分布又怎样?科学探究的环节:猜想——设计实验——实验验证——结论,你能否自己设计实验过程进行探究?
实验探究:螺线管周围磁场分布并描绘磁感线(演示立体磁感线)
思考:
1、你能猜想下通电螺线管周围的磁感线分布是什么样的?
2、通电螺线管磁场分布与哪个磁体的磁感线分布相似?有无磁极?
3、通电螺线管内部磁场分布有什么特点?方向如何?
4、可以用右手螺旋定则判断通电螺线管的磁场方向吗?
小组分享和交流
总结:几种磁场的特点。