风速传感器讲解
风速风向传感器

风速风向传感器风速风向传感器是一种用于测量风速和风向的设备,其在气象、环境监测以及工业领域中有广泛应用。
本文将介绍风速风向传感器的原理、构造和应用。
原理风速风向传感器通常基于热线、超声波、动态压力等原理来测量风速,基于光、磁、机械等原理来测量风向。
其中较为常见的是热线原理和超声波原理。
热线原理热线原理是利用一个细长的金属丝来测量风速,该金属丝其实就是一根电热丝,在风速作用下,风会带来一定的冷却效果,使得电热丝温度降低。
通过测量电热丝的电流变化,即可反映风速的大小。
热线风速传感器具有响应速度快、精度高、维护方便等优点。
超声波原理超声波原理是利用超声波传感器来测量风速,其基本原理是将超声波传感器分别安装在风向的东西南北方向上,风速经过超声波传感器时会产生一定的超声波信号的变化,通过对这些变化进行测量即可反映风速的大小。
超声波传感器具有结构简单、响应速度快等优点。
构造风速风向传感器通常由风向传感器、风速传感器、信号处理器、数据采集器等部分组成。
不同类型的传感器其构造和特点也有所不同。
以热线原理的风速传感器为例,其主要由金属丝、加热器、电流调节器、计算器等部分组成。
金属丝作为传感器的核心部件,需要精细加工和严格控制其直径、长度、材料等因素,以确保测量精度。
同时,为了保证传感器的工作可靠性,需要加热器来保持金属丝的合适温度,电流调节器则用于控制加热器加热时的电流大小。
计算器主要用于对电热丝电流变化进行处理和输出。
而风向传感器通常由风向指示器、风向传感器和信号处理器等部分组成,其核心部件是风向传感器。
根据不同的原理,风向传感器通常分为机械式、光电式、电子式等类型。
机械式风向传感器一般由叶轮、方向盘等部件组成,方向盘会受到风的影响而转动,通过对方向盘转角的测量就能够输出风向信息。
应用风速风向传感器在气象、环境监测和工业领域中均有广泛应用。
在气象领域中,风速和风向是影响天气的两个重要因素,而风速风向传感器则是测量这两个因素的重要设备。
风速传感器的工作原理

风速传感器的工作原理风速传感器是一种用于测量风速的仪器。
它具有广泛的应用,包括气象观测、航空航天、环境监测、风力发电等领域。
下面将详细介绍风速传感器的工作原理。
1. 振动传感原理(热线式风速传感器)- 热线式风速传感器利用电流和电压的变化来测量风速。
传感器内部有一个细丝,通常是由铮丝制成,称为热线。
- 当空气吹过热线时,热线的温度会发生变化,进而改变电流和电压。
传感器通过测量电流和电压的变化来计算出风速。
2. 风压传感原理(差压式风速传感器)- 差压式风速传感器通过测量风压的差异来计算风速。
传感器通常有两个或多个孔洞,其中一个孔洞面对风的方向,另一个孔洞面对风的背离方向。
- 风吹过传感器时,会在面对风的孔洞产生高压,而在背离风的孔洞产生低压。
通过测量两个孔洞的差压,可以计算出风速。
3. 利用超声波原理测量风速- 超声波风速传感器利用超声波传播的速度变化来测量风速。
它通常由发射器和接收器组成。
- 发射器发出一束超声波,在没有风的情况下,接收器接收到的超声波时间会与发射时间相同。
但是,当风吹过传感器时,超声波传播的速度会发生变化,从而导致接收时间的变化。
通过测量接收时间的差异,可以计算出风速。
4. 利用激光散射原理测量风速- 激光散射风速传感器利用激光在空气中散射的原理来测量风速。
传感器通常由激光器和接收器组成。
- 激光器发出一束激光,在没有风的情况下,接收器接收到的激光散射信号强度是一个基准值。
但是,当风吹过传感器时,空气中的颗粒会随着风速的增加而散射更多的激光,导致接收到的散射信号强度减弱。
通过测量散射信号强度的变化,可以计算出风速。
5. 光电效应原理(旋转式风速传感器)- 旋转式风速传感器通过测量旋转物体的旋转速度来计算风速。
传感器通常由一个或多个旋转物体和光电传感器组成。
- 当风吹过旋转物体时,物体的旋转速度会随之改变。
光电传感器会对旋转物体上的标记进行检测,从而测量旋转的频率和速度。
通过这些测量值,可以计算出风速。
风速传感器的原理和使用

风速传感器的原理和使用一、背景介绍风速传感器是一种用于测量风速的仪器,广泛应用于气象、农业、建筑、环保等领域。
风速是指气体流动的速度,通常以米/秒(m/s)或千米/小时(km/h)为单位。
风速的测量对于气象学、农业、建筑和环境保护等领域具有重要的意义。
风速传感器是一种将气体流动速度转换为电信号输出的测量装置。
本文将介绍风速传感器的原理和使用。
二、工作原理风速传感器的工作原理基于测量气体流动速度导致的压力变化。
一般来说,风速传感器由两部分组成:测量部件和信号处理部件。
测量部件通常包括一个或多个装有压敏电阻和加热器的物理孔。
不同的设计将气压变化转化为电流、电压或频率信号。
这些信号用于测量气体流动速度。
加热器是为了保持传感器在工作时有稳定的工作温度。
在静止大气中,气压信号传感器是一个非常小的数字,有时只有几百帕斯卡(Pa)。
信号处理部件将电信号处理后输出一个标准化的电信号,以便于数据记录和分析。
电信号形式可以是模拟或数字输出。
通常情况下,输出信号的标准化范围为4mA到20mA或0mA到10V。
三、应用风速传感器广泛应用于气象学、农业、建筑和环境保护领域。
在气象领域,风速传感器通常与其他气象元素一起使用,如温度、湿度和气压,在处理气候变化数据、气象预测、风能利用等方面是必不可少的。
在农业领域,风速传感器可以被用来测量农田中的微气候,同时也可以帮助计算灌溉的水量。
在建筑领域中,风速传感器可用于测量风力,以检测建筑物的结构强度和抗风能力。
在环境保护领域,风速传感器可以用来测量环境空气质量和风能利用潜力。
在风能开发中,风速传感器是一件必不可少的仪器,可用于测量风速和方向,以帮助选择最佳的风能发电站位置。
四、结论风速传感器是一种用于测量气体流动速度的重要仪器。
它们广泛应用于气象、农业、建筑和环境保护领域。
传感器的原理是利用测量气体流动速度导致的压力变化,并将信号转换为电信号输出。
信号处理部分可以输出标准化的电信号,以便数据记录和分析。
风速风向传感器原理

风速风向传感器原理
风速风向传感器是一种用于测量风速和风向的仪器。
其工作原理是基于流体动力学的原理。
风速传感器通常使用一个细长的杆状物体,称为杆状探头,在风中悬挂。
探头一端连接到一个敏感的传感器,该传感器可以测量由风速引起的细小位移或压力变化。
当风吹过探头时,它会施加一个力或压力,这个力或压力可以转化为电信号。
传感器中有一个敏感元件,例如应变计或压阻器。
当风压施加在探头上时,敏感元件发生形变或电阻变化。
这个变化会被传感器转化为电信号,然后通过电路进行放大和处理。
风速传感器可以根据风吹过探头引起的电信号的强度来测量风速。
在已知的环境条件下,可以通过校准来将电信号转化为实际的风速值。
在同一个风速风向传感器中,还包含一个用于测量风向的元件。
通常使用一个指向不同方向的风向标志,比如一个箭头或一个圆盘。
当风吹过探头时,风向标志会指向风的方向。
传感器会检测风向标志的位置,并将其转化为相应的电信号。
综上所述,风速风向传感器是利用风吹过探头引起的位移或压力变化来测量风速,并利用风向标志的位置来测量风向的仪器。
通过将被测量的物理量转化为电信号,并通过电路处理和放大,最终可以得到准确的风速和风向数值。
风速传感器介绍

日常生活生产中,很多地方都需要对风速值大小进行测量,如海上作业、环保、飞行作业,各类风扇制造业、通风空调系统等领域。
对于不同的测量地点,进行不同的风速测量,可选择用不同方式的测风传感器进行测量,选型正确,对于测量的方便性和准确性都有很大的帮助。
风速传感器可分为:1、G75B叶轮式风速传感器叶轮式风速传感器可广泛应用在管道测风、建筑节能、环保监测等领域,避免了风杯式风速传感器体积较大,安装不方便的缺点。
适用于有微小颗粒粉尘的设备管道中的微风测量技术参数:安装直径最小40mm;启动风速:G75B:0.5m/s最小显示分辨率0.01m/s;温度范围:-20~80℃;测量范围0-50m/s;输出接口:1、脉冲;2、电流;3、电压;4、继电器接口(1c);5、RS232/RS485;6、显示接口(用户定制或现有的标准显示仪表);7、开关量输出接口NPN/PNP。
2、FS01型风速传感器FS01型风速传感器采用高塑合金铝经严格的氧化、喷塑工艺加工而成,用于实现对环境风速的测量,输出标准的脉冲信号或电流信号,方便使用。
可广泛用于智能温室、气象站、船舶、工程机械、风力发电等环境的风速测量。
技术参数:量程:0-30m输出:脉冲/4-20mA信号(FS01/S)供电电压:DC12-24v精度:5%功耗:<0.5W环境温度:-20~85℃传输距离:>300m响应时间:<1s重量:0.32Kg安装方式:法兰盘安装或螺纹安装3、FS02摆锤式风速传感器FS02摆锤式风风速传感器专为各种大型起重、悬臂机械设备而研制开发,具有自调节竖直角度的智能风速传感设备,风杯采用优质合金铝制成,机械强度高、抗风能力强,且采用树脂喷涂技术,室外安装不生锈。
主要适用于履带式起重机、汽车吊及抖动颠簸、起伏变化较大的露天设备。
用它可以实时采集外界环境的实际风速并输出相应的信号。
技术参数:量程:0-30m输出: 4-20mA供电电压:DC24V精度:<5%环境温度:-40~120℃启动风速:<0.5m/s杯体摆动角度:120°重量:3Kg4、FS03管道安装风速传感器管道风速的测量已经在工业管道检测领域非常普遍,产品在管道安装非常方便。
风速传感器的原理和使用注意事项 传感器工作原理

风速传感器的原理和使用注意事项传感器工作原理风速传感器是可连续监测上述地点的风速、风量(风量=风速x 横截面积)大小,能够对所处巷道的风速风量进行实时显示,是矿井通风安全参数测量的紧要仪表。
其传感器组件由风速传感器、风向传感器、传感器支架构成。
紧要适用于煤矿井下具有瓦斯爆炸不安全的各矿井通风总回风巷、风口、井下紧要测风站、扇风机井口、掘进工作面、采煤工作面等处,以及相应的矿产企业。
原理超声波涡接测量原理超声波风速传感器是利用超声波时差法来实现风速的测量。
声音在空气中的传播速度,会和风向上的气流速度叠加。
若超声波的传播方向与风向相同,它的速度会加快;反之,若超声波的传播方向若与风向相反,它的速度会变慢。
因此,在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应。
通过计算即可得到的风速和风向。
由于声波在空气中传播时,它的速度受温度的影响很大;本风速仪检测两个通道上的两个相反方向,因此温度对声波速度产生的影响可以疏忽不计。
通过压差变化原理在流动方向上设置一个固定的障碍物(孔板、喷嘴等),这样依据流速不同便会产生一个压差。
通过测量压差,可以转换成流速的测量。
热量转移原理依据卡曼涡街理论,在无限界流场中垂直插入一根无限长的非线性阻力体(即旋涡发生体C,风速传感器的探头横杆),当风流流经旋涡发生体C时,在漩涡发生体边缘下游侧会产生两排交替的、内旋的旋涡列(即气流旋涡),而旋涡的产生频率f正比于流速V,用公式表示如下:f=St V/d;因此超声波风速传感器就是利用超声波旋涡调制的原理来测定旋涡频率的。
注意事项两个禁止:1、禁止在可燃性气体环境中使用风速传感器,2、禁止将风速传感器探头置于可燃性气体中。
七个不要:1、不要拆卸或改装风速传感器;2、不要将探头和风速计本体暴露在雨中;3、不要触摸探头内部传感器部位;4、不要将风速计放置在高温、高湿、多尘和阳光直射的地方;5、不要用挥发性液体来擦拭风速传感器;6、不要摔落或重压风速传感器;7、不要在风速计带电的情况下触摸探头的传感器部位。
风速传感器的应用原理

风速传感器的应用原理1. 介绍风速传感器是一种常用的气象仪器,用于测量和监测风速。
它可以广泛应用于气象观测、气候研究、航空、航海、环境监测、能源研究等领域。
本文将介绍风速传感器的应用原理和工作原理。
2. 工作原理风速传感器通常由一个风速测量装置和一个输出电路组成。
风速测量装置是通过感测风的作用力来测量风速的。
2.1 风速测量装置风速测量装置通常由一个旋转臂和一个测量元件组成。
旋转臂通常会安装在一个固定的结构上,如塔或杆子上。
测量元件可以是一些细嗅风的部件,如风力发电机。
2.2 输出电路输出电路通常由一个传感器和一个电路组成。
传感器测量风速测量装置产生的信号,并将其转换成电信号。
电路可以将电信号转换成数字信号或模拟信号。
3. 应用原理风速传感器的应用原理是基于风速传感器对环境风速的测量和监测。
它可以通过测量风速来了解风的强度和方向,为气象观测、气候研究、航空、航海、环境监测、能源研究等领域提供数据支持。
3.1 气象观测风速传感器在气象观测中广泛应用,可以测量和监测气象站点的风速,为天气预报和气候研究提供数据支持。
通过分析风向和风速的变化,可以预测风力等级、气象灾害等信息。
3.2 航空和航海在航空和航海领域,风速对于飞机、船只的航行和操纵具有重要意义。
风速传感器可以监测飞机和船只周围的风速,提供航行和导航的参考数据。
3.3 环境监测风速传感器还可以用于环境监测,如工业污染监测、空气质量监测等。
通过测量风速,可以了解污染物的扩散情况,为污染防治提供数据支持。
3.4 能源研究风能是一种可再生的能源,风速是风能发电的重要参数之一。
风速传感器可以用于测量风能发电场的风速,为风能发电的规划和管理提供数据支持。
4. 总结风速传感器是一种重要的气象仪器,广泛应用于气象观测、气候研究、航空、航海、环境监测、能源研究等领域。
它通过感测风的作用力来测量风速,并通过输出电路将其转换成电信号。
风速传感器的应用原理基于对环境风速的测量和监测,为各个领域提供数据支持。
风速传感器介绍

如图 1 所示。主要作用是负责处理由 DVI 接来的信号。 示的 LVDS 格式信号。
元
(2)主芯片 U12
器
(JAGASM), 如 图 2 所示。主要作用是:
件
处理本机的所有通
与
道 的 图 像 信 号 ,并
和 MCU 控制电路 U2
代
(TSC80251G20)一起
换
完成整机的控制。
图 4 DS90C385AMT 实物图
图 4 风速传感器 AFS- 0001 的外观形貌( 二) 2. 使用锗热敏电阻器的风速传感器 使用锗热敏电阻器的风速传感器是一种可以同时 测量风速和风温的风速传感器。使用锗热敏电阻器进 行风速和风温的测量,可以测量 0.05~10 m/s 的风 速,以及 0~+50℃的风温。 通常,风速传感器的输出电压与风速的关系不是 直线性的,所以需要有线性化电路。为此而生产了专用 的信号变换器。 在图 5~图 8 中给出了使用锗热敏电阻器的风速 传感器的外观形貌。
图 6 FLI 2310 实物图
这种传感器可以用于城市下水道漏气量的测量以 及焚烧炉烟道等过于苛刻的条件下,具有可靠性好、精 度高等特点,可以测量 0.45~3805 m/s 风速。它是一 种利用卡曼涡流的风速传感器。
一般情况下,当流体穿过障碍物时,会产生乱流。
·60· (总 564 页) 家电检修技术 2007 年第 8 期
码芯片 U12 处理数 图 6 所示。主要作用是:对所有信号进行隔行 / 逐行
据时,有足够的存 处理,对图像进行其他的修饰处理等。
储空间来存放相关
(7)MCU 控制 U2(TSC80251G2D),如图 7 所示。主
的数据。
要作用是负责整机的相关控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要矿用传感器是煤矿监控系统的“耳目”,它用于监测煤矿环境参数与生产过程参数,将各种物理量转换为电信号。
环境安全监控系统主要用来监测甲烷浓度、一氧化碳浓度、二氧化碳浓度、氧气浓度、硫化氢浓度、风速、负压、湿度、温度、风门状态、风窗状态、风筒状态、局部通风机开停、主通风机开停、工作电压、工作电流等,并实现甲烷超限声光报警、断电和甲烷风电闭锁控制等。
环境参数传感器包括甲烷、一氧化碳、二氧化碳、温度、湿度、风速、绝对压力、相对压力(负压)、粉尘、烟雾等传感器。
生产参数传感器包括机电设备开/停、料位、皮带秤重、机组位置、皮带打滑、电压、电流、功率等传感器。
矿用风速传感器在煤矿开采业中的作用,不可小觑。
在煤矿开采时风速的大小直接影响矿工的生命安全,风速太小,有害气体得不到及时的稀释,可能导致爆炸;如瓦斯爆炸。
当风速太大时,可能导致粉尘爆炸。
因此风速传感器在煤矿开采中至关重要。
主要是将信号转换为超声波,利用接收换能器接收经过风速调制的信号。
然后经过中频放大、检波、低频放大、整形后得到方波,然后分两路,一路送给就地显示,一路进行F/I转换。
关键词:传感器.,风速,超声波,CW7800卡曼涡街效应,1 矿用风速传感器概述1.1矿用风速传感器的应用矿用风速传感器用于检测煤矿井下各坑道、风口、主风扇等处的风速。
在煤炭开采的过程中,总有瓦斯涌出。
为稀释矿井空气中的瓦斯,需不断地向井下输送新鲜空气。
风量是通风系统的重要参数之一。
因此,对矿井风速的监测是矿井监控的主要内容之一。
1.2矿用风速传感器的安装位置安装:风速传感器可安装在主要测风站和进回风巷等地。
安装地应在距顶板较好无明显淋水,不妨碍运输和行人安全的地方,传感头指向应与风流方向一致。
安装前应首先测量通道平均风速,任选一点安装,遥控器对准传感器按动上、下键,使就地显示为平均风速即可。
注意:传感器安装一定要牢固,不得摆动,传感器测风面一定要垂直风流方向。
1.3设计的意义矿用风速传感器在煤矿开采业中的作用,不可小觑。
在煤矿开采时风速的大小直接影响矿工的生命安全,风速太小,有害气体得不到及时的稀释,可能导致爆炸;如瓦斯爆炸。
当风速太大时,可能导致粉尘爆炸。
因此风速传感器在煤矿开采中至关重要1.4矿用风速传感器的分类(1)按传感器用途可分为环境参数传感器与生产参数传感器。
(2)按供电方式可分为自带电源式传感器与外接电源式传感器两种。
(3)按其输出信号形式可分为模拟量、开关量、累计脉冲量等。
模拟信号应符合下列信号制式:电流模拟信号为1~5mA或4~20mA,频率模拟信号为200~1000Hz或5~15Hz。
(4)按作用原理不同可分为:机械翼式风速传感器、电子翼式风速传感器、热效应式风速传感器超声波风速传感器。
(5)按风速的测量范围可分为高速风速传感器(V>10m/s)、中速风速传感器(V=0.5m/s~10m/s)、低速风速传感器(V =0.3m/s~0.5m/s)1.3矿用风速传感器的技术指标测量范围:0.4 ~15m/s测量误差:≤±0.3m/s输出信号:频率型200Hz~1000Hz 或电流型1mA~5mA工作电压:12V ~21V(DC)工作电流:≤90 mA传输距离:≤2Km1.5测风方法测量井巷的风量一般要在测风站内进行,在没有测风站的巷道中测风时,要选一段巷道没有漏风、支架齐全、断面规整的直线段进行测风。
空气在井巷中流动时,由于受到内外摩擦的影响,风速在巷道断面内的分布是不均匀的,如图1-1所示。
在巷道轴心部分风速最大,而靠近巷道周壁风速最小,通常所说的风速是指平均风速而言,故用风速传感器测风必须测出平均风速。
为了测得巷道断面上的平均风速,测风时可采用路线法,即将风速传感器按图1-2所示的路线均匀移动测出断面上的风速;或者采用分格定点法,如图1-3所示,即将巷道断面分为若干方格,使风表在每格内停留相等的时问,进行移动测定,然后计算出平均风速。
根据断面大小,常用的有9点法、12点法等。
图1-1 风速流动状态 图1-2 线路法测风 图1-3 定点法测风测风时,根据测风员的站立姿势不同又分为迎面法和侧身法两种。
迎面法是测风员面向风流方向,手持风速传感器,将手臂向正前方伸直进行测风。
此时因测风人员立于巷道中间,阻挡了风流前进,降低了风速传感器测得的风速。
为了消除测风时人体对风流的影响,须将测算的真实风速乘以校正系数(1.14)才能得出实际风速。
侧身法是测风人员背向巷道壁站立,手持风速传感器,将手臂向风流垂直方向伸直,然后测风。
用侧身法测风时,测风人员立于巷道内减少了通风断面,从而增大了风速,需对测风结果进行校正,其校正系数按下式计算:SS K 4.0-= 式中 K —--测风校正系数,S ——测风站的断面积(m 2),0.4--- 测风人员阻挡风流的断面积(m 2)。
1.6测风注意事项(1)风速传感器度盘一侧背向风流,即测风员能看到度盘;否则,风速传感器指针会发生倒转。
(2)风速传感器不能距人体太近,否则会引起较大的误差。
(3)风速传感器在测量路线上移动时,速度一定要均匀。
在实际工作中,这点常不被重视,由此引起的误差是很大的。
如果风速传感器在巷道中心部分停留的时间长,则测量结果较实际风速偏高;反之,测量结果较实际值偏低。
(4)叶轮式风速传感器一定要与风流方向垂直,在倾斜巷道测风时,更应注意。
如表1-1传感器偏角对测量结果的影响。
由表1-1可知偏角10°以内时所产生的误差可忽略不计。
表1-1传感器偏角对测量结果的影响风度偏角/(°) 风表平均读数误差/%O 141.O O.355 140.5 1.4210 139.O 2.5015 137.5 6.5020 132.O(5)在同一断面测风次数不应小于3,三次测量结果的最大误差不应超过5%。
(6)传感器的量程应和测定的风速相适应,否则将造成风速传感器损坏或量程不准确。
(7)为了减小测量误差,一般要求在1min时间内,使传感器从移动路线的起点到达终点。
(8)使用前还应注意传感器的校正有效期。
1.7 各类传感器性能比较矿用风速传感器的种类优点缺点机械翼式风速传感器体积小,质量轻,可测平均速度。
精度低,不能直接指示风速,不能自动遥测,不能测微风。
电子翼式风速传感器接近开关式(感应式)电容式光电式能发展遥测,精确度比机械翼式高,能直接指示瞬时风速。
叶片有惯性运动,所以测量值偏大,体积和质量比机械翼式大,构造复杂,风速过高不能测、风速过低也不能测。
热效应式风速传感器热线式热球式热敏电阻式没有惯性影响,高低风速均可测,能发展遥测。
热敏电阻和热球的测值呈非线性,受湿度和气体成份的影响。
超声波风速传感器结构简单,寿命长,性能稳定,不受风流的影响,精度高,风速测量范围大。
通过表中的比较,可以明显的看到,设计传感器最好的选择就是超声波风速传感器。
不仅结构简单,性能稳定,不受风流影响而且精度高,测量范围大。
2工作原理及设计方案2.1工作原理矿用风速传感器是利用卡曼涡街原理和超声波旋涡式风速传感器工作原理,下面分别介绍卡曼涡街效应和旋涡式风速传感器工作原理。
2.1.1卡曼涡街原理超声波旋涡式风速传感器是利用卡曼涡街效应设计的。
在流体中设置旋涡发生体(阻流体),从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡曼涡街,如图2-1所示。
旋涡列在旋涡发生体下游非对称地排列。
图2-1 卡曼涡街效应d v s f •=式中:f -漩涡频率;s -常数;圆柱形挡体的s 值为0.21;v -未扰动流体的速度;d-阻挡体宽度(或直径)首先将风速转换成与风速成正比的旋涡频率,然后通过超声波将旋涡频率转换成超声波脉冲,后将超声波脉冲转换成电脉冲,从而测得风速。
由于超声波旋涡式风速传感器具有寿命长,易维护,成本低等优点。
因此,在矿井监控系统中获得了广泛应用。
我们知道,在流动的水中,垂直于流向插人一阻挡体,在阻挡体的下游会产生两列内旋的互相交替的旋涡。
可以证明:在无限界流场中,垂直流向插入一根无限长非流线形阻挡体,阻挡体的下游将产生两列内旋、互相交替的旋涡,若对流速、阻挡体截面面积和形状作适当的限制,则旋涡频率与流速成正比:其旋涡的发生频率为f,被测介质来流的平均速度为V,旋涡发生体迎面宽度为d,交替产生的漩涡数通过压电元件检测出频率f,经电子线路检测后送给定时控制器、锁定寄存器进行运算处理给显示电路进行显示。
2.1.2超声波旋涡式风速传感器工作原理:如图2-2 所示。
在风洞中设置确定旋涡发生杆(即阻挡体),在阻挡体下方安装一对超声波发射器和接收器,当流动空气经过旋涡发生杆时,在其下方产生两列内旋相互交替的旋涡。
由于旋涡对超声波的阻挡作用,超声波接收器将会收到强度随旋涡频率变化的超声波,即旋涡没有阻挡超声波时,接收到的超声波强度最大,旋涡正好阻挡超声波时,接收到的超声波强度最小。
超声波接收器将接收到的幅度变化的超声波转换成电信号,所经过放大、解调、整形等就可获得与风速成正比的脉冲频率。
图2-2 超声波旋涡式风速传感器工作原理当发生杆一定时,风速越大,形成的卡曼旋涡就越强,对超声波束调制度越大。
当风速很低时,会形不成旋涡。
为检测较低的风速,可以增大发生杆直径或提高超声波接收器的灵敏度。
能产生旋涡的发生杆直径与风速关系如图2-3所示。
图2-3 产生旋涡的发生杆直径与风速关系为了解决低风速的测量问题,首先要设法提高调制度,方法一是选择合理的漩涡发生体;方法二是用灵敏度高的超声波换能器,超声波发射与接收器的形状、断面尺寸、相对位置及安装紧固程度和偏移角等都会影响灵敏度。
超声波发射与接收器应设置在其轴线距发生杆的距离为发生杆直径 6 倍的地方,以保证线性度。
超声波的工作频率应为140~150kHz,即高于风速旋涡频率两个数量级,但不要过高,过高会造成超声波在空气中传播时的严重衰减。
2.2设计方案矿用风速传感器主要由:电源电路,发射电路,接收电路,整形电路,频流转换,就地显示组成。
超声波旋涡风速传感器是利用卡曼涡街对超声波调制原理来实现对风速的测量的。
传感器输出1~5mA的直流模拟信号,其值对应0.4~15m/s的风速值。
并有就地数字显示功能,直读风速值。
可对煤矿井下的风速进行遥测。
其测量范围0.4~15m/s。
1.电源电路:由三端固定集成稳压器W和由闸流管SCR、稳压管D4组成的保护电路构成。
由电源箱供给21V 450mA直流电源,经本电路稳压后输出12V 直流电压作为传感器的工作电路,当W由于某种原因损坏,使输出电压大于13V 时,稳压管D4被击穿,闸流管SCR导通电流经SCR流入地,从而实现就地保护。
2.发射电路:该电路由电感三点式振荡器(哈特莱电路)和乙类推挽功率放大器组成。