整式乘除章节分析
初中数学_北师大版数学七年级下册第一章《整式的乘除》讲评课教学设计学情分析教材分析课后反思

四、巩固提升归纳第一章《整式的乘除》中出现的三类典型的蕴含重要数学思想的题型,让学生对知识的运用形成体系,明确在具体题目当中出现的数学方式,并能较好的进行分析和解决。
1.公式的灵活应用将多项式4x2+1加上一个单项式后,使它能成为一个形如(a+b)的完全平方,则添加单项式的方法共有多少种2.数形结合思想我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用如图所示的面积关系来说明。
(1)根据图形请你写出一个等式:(2)根据等式请你画出一个能说明等式成立的图形:(2a+b)(a+3b)=2a2+7ab+3b2从代数到图形,从图形到代数,彼此是互相支撑互相补充的关系。
对于给出的代数恒等式(2a+b)(a+b)=2a2+3ab+b2,可以用同一个图形的面积相等去解释等号左右相等,所谓“以形助数”使代数问题几何化。
另外一方面,给出一个图形,学生也可以根据面积相等列出一个代数恒等式,所谓的“以数辅形”,使几何问题代数化。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,初中数学中实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系。
学情分析学生的知识技能基础:学生在这一章中了解了整数指数幂的意义和正整数指数幂的运算性质,经历了探索整式乘除法法则的过程,理解了整式乘除的算理,运用这些知识解决了一些相关的实际问题。
但这一章的运算法则较多,公式也容易混淆,而且学生对这些知识的理解缺乏整体认知,还没形成体系.学生活动经验基础:在学习整式乘除法的过程中,学生经历了许多数学活动,积累了一定的经验.但是学生有条理的思考和表达能力还比较薄弱,缺乏综合运用知识解决较复杂问题的经验,需要进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
学生在进行完章测试之后,迫切希望知道成绩以及自己知识点上的欠缺,所以讲评课要抓住学生的这种心理,趁热打铁,促进知识的稳固和提升。
整式的乘除运算章节总结

整式的乘除运算章节总结
经过总结和整理,将本章节的额知识点进行分类,得到十五个考点:
1、同底数幂的乘法,
2、幂的乘方,
3、积的幂,
4,同底数幂的除法,
5、零指数幂,
6、负指数幂,
7、科学计数法,
8、单项式乘以单项式,
9、单项式乘以多项式,
10、多项式乘以多项式,
11、单项式除以单项式,
12、多项式除以单项式,
13、平方差公式,
14、完全平方公式,
15、整式综合运算及化简求值,
具体知识点如下:
掌握基础知识点、基本概念和公式及基础运算方法是学习的第一步,对于公式的学习不能仅仅局限于记住,需要理解其运算要点和细节,能灵活应用才是关键。
学的好不好,做题便知道,数学的学习需要做题,一是通过做题可以加深对知识点的理解和运用能力,二是通过做题可以发现我们存在的问题,及时查漏补缺。
第一章 整式的乘除(单元小结)七年级数学下册(北师大版)

考点专练
【要点指导】幂的运算包括同底数幂的乘法、幂的乘方、 积的乘方、同底数幂的除法以及零指数幂、负整数指数 幂的运算, 计算时, 要熟练掌握各自的运算法则, 并能灵活 运用这些运算法则进行计算. 幂的运算法则还可以逆用.
考2y2-xy)-y(x2-x3y)]×3x2y,其中x=1,y=3. 解:原式=(x3y2-x2y-x2y+x3y2) ×3x2y
=(2x3y2-2x2y) ×3x2y = 6x5y3-6x4y2 . 当x=1,y=3时,原式=6×27-6×9=108.
谢谢~
新课标 北师大版 七年级下册
第一章 整式的乘除
单元小结
本章知识架构
整式的乘法
同底数幂的乘法,幂的乘方,积的乘方 单项式乘以单项式 单项式乘以多项式 多项式乘以多项式 (平方差公式,完全平方公式)
整式的除法
同底数幂的除法(零指数,负指数次幂,科学计数法) 单项式除以单项式 多项式除以单项式
知识专题
知识专题
1.零指数幂. 任何不等于0的数的零次幂都等于1.
a0=1 (a≠0)
2.负指数幂.
a≠0,p是正整数
知识专题
3.科学记数法 一般地,一个绝对值小于1的数可以用科学记数法表示为:
a×10-n(其中1≤|a|<10,n是整数) 注意: (1) 1≤|a|<10 ,
(2) n从左起第一个非零数前零的个数.
(三)积的乘方. 积的乘方等于把积的每一个因式分别乘方,再把 所得的幂相乘,即, (ab)n=anbn(n是正整数).
知识专题
(四)同底数幂的除法. 同底数幂相除,底数不变,指数相减.即 am÷an=am-n (a≠0,m,n都是正整数,m>n). 注:(1)底数必须相同. (2)适用于两个或两个以上的同底数幂相除. (3)逆运用常考am-n= am÷an
七年级数学-第02讲 整式的乘法(解析版)

2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第02讲整式的乘法【考点梳理】考点1:单项式、多项式及整式的概念1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x 按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221yy x xy x --++-按y 的降幂排列:1223223-++--x xy y x y 考点2:单项式及多项式的乘法法则1、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:=∙-xy z y x 32322.单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。
八整式的乘除讲义-整章

一 整式的乘除一、同底数幂的乘法1.同底数幂的乘法法则同底数幂相乘,底数不变,指数相加。
即:mnm na a a +⋅=(m ,n 都是正整数)。
这个公式的特点是:左边是两个或两个以上的同底数幂相乘,右边是一个幂,指数相加。
注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.公式拓展:p n m a a a ⋅⋅= 。
【典型例题】例1:计算:(1)821010⨯; (2)23x x ⋅-(-)(); (3)32)(x x -⋅例2:计算:(1))()()(32b a a b b a +⋅+⋅+ (2)23x 2y y x -⋅()(2-)(3))()()(25y x x y y x -⋅-⋅- (4)n 2n 1n a a a a ++⋅⋅⋅总结()()(),n nn a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数例3、计算:31213)(2x x x x x x n n n ⋅+⋅--⋅-+ 4236)()()()(a a a a -⋅-⋅-⋅-例4:已知x 22m +=,用含m 的代数式表示x 2。
【变式练习】(1) –x2·(-x3) (2) –a·(-a)2·a3(3) –b2·(-b)2·(-b)3(4) x·(-x2)·(-x)2·(-x3)·(-x)3(5) 1+-•n n x x x (6)x 4-m ·x 4+m·(-x)(7) x 6·(-x)5-(-x)8·(-x)3(8) -a3·(-a)4·(-a)52 逆用同底数幂的法则逆用法则为:n m nm a a a •=+(m 、n 都是正整数)【典型例题】1.(1)已知x m=3,x n=5,求x m+n。
《整式的乘除》学情分析

《整式的乘除》学情分析一、学情分析目的《整式的乘除》是继七年级上册第5、6章代数式中学习了代数式、整式及其加减运算后,进一步学习整式的乘除,是七年级上册第5、6章的延续和发展。
本章的主要内容有同底数幂的乘法和除法,幂的乘方和积的乘方,以及单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘,单项式除以单项式、多项式除以单项式等运算,以及零指数、负整数指数幂的意义和用科学记数法表示绝对值较小的数等。
整式的乘除法既是七年级上册整式的加减的后续学习,也是本册第12章《乘法公式与因式分解》和八年级分式学习的基础,因此,本章内容的地位也至关重要。
二、教学内容及地位本章属于《课程标准》中的“数与代数”领域,其核心知识是:整式的乘除运算。
这些知识是在学习了有理数的运算、列代数式、整式加减和解一元一次方程的基础引入的。
也是进一步学习分式和根式运算、一元二次方程以及函数等知识的基础,同时又是学习物理、化学等学科及其他科学技术不可缺少的数学工具,因此,本章在初中学段占有重要地位。
三、本章教学内容本章内容的突出的特点是:内容联系紧密、以运算为主。
全章紧紧围绕整式的乘除运算,分层递进,层层深入。
在整式的乘除中,单项式的乘除是关键,这是因为其他乘除都要转化为单项式除法。
实际上,单项式的乘除进行的是幂的运算与有理数的运算,因此幂的运算是学好整式乘除的基础。
四、本节教学重点、难点(1)教学重点是整式的乘除运算(2)教学难点乘法公式的灵活应用五、学情分析的方法和工具1、观察法。
教师的观察可分为课前、课上、课后三个阶段。
课前主要是通过预习新课暴露学生存在的问题,寻找大部分学生在本节课上的最近发展区进行教学。
在课上,教师要观察在各个教学环节中应全面观察学生的学习状态、学习热情、学习心理以及学习风格等学情信息并适当的做出调整。
在课后,教师可根据学生的作业情况了解到学习效果,对学情信息进行分析,以便于在以后的教学中加以调整。
2、访谈法。
北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习
《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。
八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)
八年级上册第14章整式的乘除与因式分解
1.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C.2x·2x5=4x5
D.5x3·4x4=9x7
2.下列运算正确的是( D )
A.x2·x3=x6
B.x2+x2=2x4
C.(-2x)2=-4x2
D.(-2x2)(-3x3)=6x5
八年级上册第14章整式的乘除与因式分解
第14章 整式的乘除与因式分解
八年级上册
八年级上册第14章整式的乘除与因式分解
14.1.4 整式的乘法
第1课时
八年级上册第14章整式的乘除与因式分解
1.探索并了解单项式与单项式、单项式与多项式相乘的法则, 并运用它们进行运算. 2.让学生主动参与到探索过程中去,逐步形成独立思考、主 动探索的习惯,培养思维的批判性、严密性和初步解决问题 的能力.
八年级上册第14章整式的乘除与因式分解
2.填空:
a4 26
(1)6 2
a9 28
9 x2 y4 4
1
八年级上册第14章整式的乘除与因式分解
光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是 多少千米吗? 分析:距离=速度×时间,即(3×105)×(5×102); 怎样计算(3×105)×(5×102)? 地球与太阳的距离约是: (3×105)×(5×102)=(3 ×5)×(105×102) =15×107=1.5×108(千米)
八年级上册第14章整式的乘除与因式分解
2.单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多 项式的每一项,再将所得的积相加即可.
初中数学-整式的乘除-复习课教学设计学情分析教材分析课后反思精选全文完整版
可编辑修改精选全文完整版七下第一章《整式的乘除》复习教学设计教学目标:1、掌握同底数幂的乘法、幂的乘方和积的乘方。
2、能灵活运用单项式和多项式的乘法。
3、熟练平方差公式和完全平方公式4、通过练习,梳理知识建立系统的知识体系。
教学重点:重点:掌握同底数幂的乘法、幂的乘方和积的乘方。
能灵活运用单项式和多项式的乘法。
难点:熟练和灵活运用平方差公式和完全平方公式教学思路:先复习整式乘除一系列的知识,通过学生自己对自我知识的掌握情况有针对性的找出重点题、易错题、难题,小组对题目分析和理解,然后全班交流,以学生为主体、教师主导,共同分享解决问题,最后归纳方法、思路,明确知识。
教学方法:小组分组学习为主教学过程:教学过程预设环节教师活动(教学内容的呈现)学生活动(学习活动的设计)设计意图一、梳理知识①请一位学生将梳理的整式的乘除这部分的知识进行板书。
学生板书②其余学生小组交流,互相检查,看看是否同学是否写对了,有遗漏之处,互相补充。
小组学员互助二、学生自主出题把学生分成6个大组,每个大组再分成两个小组,小组之间互相共享、推荐、解决学生自己找出的重点题、易错题、难题,然后每组派一个代表上黑板给全班同学推荐好题,并由学生充当小老师讲解,然后不当之处教师点播。
提起学生的兴趣提高学生的辨析题目的能力提高学生的语言表达能力提高学生的逻辑思维能力七下第一章《整式的乘除》学情分析及教学方法和学法从年龄特点来看,初一学生好动,好奇,好表现,爱发表见解,希望得到老师的表扬,所以在教学中要抓住这一生理特点,充分调动学生的的兴趣、创造性,另一方面要创造条件和机会,让其发表见解,发挥学习的主动性。
从知识掌握层次来看,学生已经学会了整式运算的相关知识,具备了一定解题技巧和能力,只是缺少对零散知识点进行组串,使之条理化、系统化,形成新的认知结构。
此时让学生让学生根据以往的作业、试卷、课外题等手头的资料,根据自己平时的易错题、重点题目,进行反思总结,集大家的智慧与一体,教师和学生们进行甄选。
第十四章 整式的乘除与因式分解教材分析
第十四章整式的乘除与因式分解教材分析1、教学内容及地位本章属于《课程标准》中的“数与代数”领域,其核心知识是:整式的乘除运算和因式分解。
这些知识是在学习了有理数的运算、列代数式、整式加减和解一元一次方程及不等式的基础引入的。
也是进一步学习分式和根式运算、一元二次方程以及函数等知识的基础,同时又是学习物理、化学等学科及其他科学技术不可缺少的数学工具,因此,本章在初中学段占有重要地位。
2、本章教学内容在学习上各部分知识之间的联系如下:从上面可以看出,本章内容的突出的特点是:内容联系紧密、以运算为主。
全章紧紧围绕整式的乘除运算,分层递进,层层深入。
在整式的乘除中,单项式的乘除是关键,这是因为其他乘除都要转化为单项式除法。
实际上,单项式的乘除进行的是幂的运算与有理数的运算,因此幂的运算是学好整式乘除的基础。
3、教学目标《课程标准》目标人教材具体目标目标1:了解整数指数幂的意义和基本性质,会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)目标1:掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行计算.掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行计算.目标2:会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单目标2:会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算.⑴解析每个目标①目标1中《课标》对整式乘法运算的要求——其中的多项式相乘仅指一次式相乘,是对多项式与多项式相乘的难度作一个要求。
②目标2中对乘法公式的要求不仅是能利用公式进行(简单)的乘法运算,更要引起老师们注意的是,目标要求会“推导”乘法公式,因此在教学中要从代数、几何多个角度出发推导公式。
③目标3中,《课标》要求:会用提公因式法、公式法(直接用公式不超过二次)分解因式(指数是正整数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
础上学习的七年级上册“整式加减”的延续和发展。
启下:学生进一步学习因式分解、分式、方程、函
数以及其他数学内容的基础,同时也是学习物理、 化学等学科不可缺少的数学工具。本章所蕴涵的数 学思想和方法,如化归的思想、换元法也是今后学 习和工作中常用到的。
二、内 容 分 析 :
第6课时 完全平方公式
设计思路:
课前检测 复习引入 推出公式
2 2
引入①(p+1) 2 ④ (m-2) 2
② (m+2) ⑤ (a+b)
③ (p-1) ⑥ (a-b)
2 2
(1) 安排一组符合公式的题目,让学生做一做,引 导学生发现规律,努力用文字语言表述出来.教师 要因材施教,让学生充分参与
四.分课时说明
四.分课时说明
(三)整式的乘法运算 (9课时)
单×单,单×多,多×多,平方差公式,完全平方公式
设计思路:
课前检测 课后检测 实际引入 课后作业 推出公式 小结提升 公式验证 应用练习
四.分课时说明
(三)整式的乘法运算 (9课时)
第1课时 单×单
2 2 (2)4a2x5·(-3a3bx) 基 (1)2x y·3xy (3)(-5a2b3)(-3a); (4)(2x)3(-5x2y); 础 (5)(-3x)2·(2xy2)2; 题: (6)(-3ab)(-a2c)2·6ab(c2)3 (7)(-4x2y)·(-x2y2)· y3 (8)(-6an+2)·3anb (9)8xnyn+1· x2y (10)(-3xn+1yn+1)(- xny2) (11) 4 )2 ( x2 )2 x ( x2 )2 x3 ( x)3 ( x2 ) ( x) (x
四.分课时说明
(三)整式的乘法运算 (9课时)
第1课时 单×单
注意:(1)法则实际分为三点: ①系数相乘——有理数的乘法; ②相同字母相乘——同底数幂的乘法; ③只在一个单项式中含有的字母,连同它 的指数作为积的一个因式,不能丢。
(2)不论几个单项式相乘,都可以用这个法则.
(3)单项式相乘的结果仍是单项式.
x(2 x 3) ( x 7)( x 6) x2 10 3、解方程
4、解不等式(3x+4)(3x-4)>9(x-2)(x+3).
四.分课时说明
(三)整式的乘法运算 (9课时)
第3课时
注意: 1.在运算中要系数的符号。
2、多项式相乘在合并同类项之前所得积的项数应是两个多 项式项数之积,检查是否漏乘 3、在多项式与多项式相乘中,要引导学生用好几何图形拼图 来解释运算性质,这样直观还利于渗透数形结合的思想方法 4、同类项产生的错误。
四.分课时说明
(三)整式的乘法运算 (9课时)
第2课时 单×多
拓展题: (2x2 )(3x2 ax 6) 3x3 x2 中不含x的三次项,则a= (1)若 (2)若 n2 n 1 0, 则 n3 2n2 2008 _______. (3)设m2+m-1=0,求m3+2m2+2004的值. (4)n为自然数,试说明n(2n+1)-2n(n-1)的值一定是3的倍数. (5)要使x(x2+a)+3x-2b=x3+5x+4成立,则a,b的值分别为 (6)若3k(2k-5)+2k(1-3k)=52,求k的值. (7)解不等式x2+x(3-2x)<2.
四.分课时说明
(三)整式的乘法运算 (9课时)
第5课时 平方差公式
设计思路:
课前检测 实际引入 推出公式 公式应用 拓展题:
1、19982-1997×1999.
公式验证 公式分析
2003 2003 2 2004 2002
(2+1)(22+1)(24+1)…(22n+1).
2、已知(a+b)2=7,(a-b)2=4,求a2+b2,ab的值. 3、找规律 4、几何类型题
第5课时 平方差公式
设计思路:
课前检测 复习引入 推出公式
(1) 安排一组符合公式的题目,让学生做一做,引 导学生发现规律,努力用文字语言表述出来.教师 要因材施教,让学生充分参与
四.分课时说明
(三)整式的乘法运算 (9课时)
第5课时 平方差公式
设计思路:
课前检测 复习引入 推出公式 公式验证
(2)公式的几何意义,是利用 图形割补去解释平方差公式, 让学生真正理解
5
3
2
10
x y z ) (- x y ) = x y
2
2
4 7
2
3
3
四.分课时说明
(三)整式的乘法运算 (9课时)
第1课时 单×单
拓展题:
1、如果单项式-3x4a-by2与5x3ya+b是同类项,求这 两个单项式的积。 2、若(am+1bn+2)·(a2n-1b2m)=a5b3。求m+n的值。
3、已知x3ym-1·xm+ny2n+2=x9y9,求4m-3n的值。
四.分课时说明
(三)整式的乘法运算 (9课时)
第1课时 单×单
注意:
(4)强调:只在一个单项式中含有的字母,连同它的指数作 为积的一个因式,不能丢掉这个因式. (5)单×单中若有乘方、乘法、加减等运算,要注意运算顺序。 (6)注意整体思想:(a+b)2(a+b)3 (7)注意(a ×102) (b×103)中a 和b都作为系数,最后的 结果仍然是科学记数法。
第3课时
基础题:
多×多
3 2 2 2 ( ab 2a )( a b ) 2 3
(2m 1)(3m 2)
5x(x2+2x+1)-(2x+3)(x-5).
(a+b)(a-2b)-(a+2b)(a-b)
化简求值: (3x2 x)(2x 3) (6x 7)( x2 4) 其中x=2 。 (1) ( (2) a b)(a2 ab b2 ) b2 (b a) a3 其中a=-1,b=2。
特征:( a + b )2= a2 + b2 + 2ab
( a - b )2= a2 + b2 - 2ab 首平方加尾平方,首尾2倍在中央不能忘
四.分课时说明
(三)整式的乘法运算 (9课时)
第1课时 单×单 辨析题:判断,如果不对,怎样改正? (1)3a3•2a2=6a6; (2) 2x2 • 3x2=6x4 ; (3) 3x2 • 4x2=12x2; (4) 5y3 • y2= 15y5
( (-2 10 ) ·-10 ) ·3 10 ) = -6 10 ( (7 4
②幂的乘方 (4课时)
⑤小结与复习(3课时)
四.分课时说明
(一)整式的乘法运算 (9课时)
单×单,单×多,多×多,平方差公式,完全平方公式 目标:
1、使学生会进行简单的整式乘、除运算,提高运算能力,并 能进行简单的应用; 2、使学生学会推导乘法公式(a+b)(a-b)= a2-b2; (a+b)2 = a2 + 2ab+b2, (a-b)2 = a2 - 2ab+b2 了解公式的几何背景,并能进行简单的计算和应用; 3、在整式的运算法则的推导过程中,培养学生观察、归纳、 猜想、论证的能力,体验和学习研究问题的方法。 4、通过公式的几何背景,运算的转化,渗透数形结合、换元 等数学方法和转化的数学思想。
四.分课时说明
(三)整式的乘法运算 (9课时)
第5课时 平方差公式
设计思路:
课前检测 课后作业 实际引入 小结检测 推出公式 公式应用 公式验证 公式分析
注意:1、公式中的字母可以代表数字,字母,单项式,多项式 2、应用公式做题一定要先判断是否符合公式。
四.分课时说明
(三)整式的乘法运算 (9课时)
四.分课时说明
(三)整式的乘法运算 (9课时)
第2课时 单×多 注意: 转化 1、单×多 乘法对加法的分配率
单×单
2.单项式乘多项式的结果仍是多项式,积的项数与原多项式 的项数相同,用此法可检查是否漏乘 3.在单项式乘法运算中要注意系数的符号。 4、在单项式与多项式相乘, 要引导学生用好几何图形拼图 来解释运算性质,这样直观还利于渗透数形结合的思想方法
多×多
四.分课时说明
(三)整式的乘法运算 (9课时)
第4课时 小结与复习 1、对知识的系统的整理, 2、这一章的公式法则比较多,学生容易乱,及时 复习及时巩固的作用。 3、留10分钟左右小测,查漏补缺 4、对于(x+p)(x+q)可以进行拓展,为后边十字相 乘因式分解做好铺垫。
四.分课时说明
(三)整式的乘法运算 (9课时)
四.分课时说明
(三)整式的乘法运算 (9课时)
第2课时 单×多 基础题: 1、(1) (2) (3) 3x(2x2 x 1) x(2x 3) 4(1 x2 ) (4) (5)3x x(4 x 2 x) 3( x 1)
2.求值:yn(yn + 9y - 12) – 3(3yn+1 - 4yn), 其中y= - 3,n=2.
①整式的概念及其加减运算(已学)
整 式 及 其 运 算
同底数幂的乘法、幂的乘方,积的乘方 ②幂 同底数幂的除法,零指数和负整式数幂 单项式乘单项式 ③整式的乘法 单项式乘多项式 多项式乘多项式, 平方差公式,完全平方公式
④整式的除法
单项式除以单项式 多项式除以单项式
三.课时安排—共20课时
①整式的概念及其加减运算(1课时)