离散数学(第2版)
离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
离散数学第2版教学课件-关系的运算

4.3.1定义域与值域
定义4.8
设R是二元关系,A为集合,
(1)R在A上的限制记作R↾ A,其中 R↾ A = {<x, y>|xRyxA}
(2)A在R下的像记作R[A],其中 R[A]=ran (R↾ A)
由定义可得出,R在A上的限制R↾ A是R的子关系,而A在R下的像R[A]是ranR的子集。
例2.14
设 R = {<1, 2>, <1, 3>, <2, 2>, <2, 4>, <3, 2>} R↾ {2} = {<2, 2>, <2, 4>}, R[{2}] = {2,4}
4.3.2 限制与像
定理4.3
设R为二元关系,A和B为集合,则有 (1) R↾ (A B) = R↾ A R ↾ B (2) R[A B] = R[A] R[B] (3) R↾ (A B) = R↾ A R↾ B (4) R[A B] R[A] R[B]
证:(3) 对任意的<x, y>, <x, y>∈R↾ (A B) <x, y>∈R∧x∈A B <x, y>∈R∧(x∈A∧x∈B) (<x, y>∈R∧x∈A)∧(<x, y>∈R∧x∈B) <x, y>∈R↾ A∧<x, y>∈R↾ B <x, y>∈R↾ A R↾ B 所以有R↾ (A B) = R↾ A R↾ B。 其他证明略。
例 4.17
设A={a, b, c, d}, R={<a, b>, <b, a>, <b, c>, <c, d>}, 求R的各次幂。
离散数学第二版最全课后习题答案详解

离散数学第二版最全课后习题答案详解离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电气工程等领域都有着广泛的应用。
对于学习离散数学的同学们来说,课后习题的解答是巩固知识、加深理解的重要环节。
本文将为您提供离散数学第二版的最全课后习题答案详解,希望能对您的学习有所帮助。
在开始讲解具体的习题答案之前,让我们先简要回顾一下离散数学的主要内容。
离散数学包括集合论、数理逻辑、图论、代数结构等几个部分。
集合论是离散数学的基础,它研究集合的性质、运算和关系。
在集合论的习题中,常见的问题包括集合的表示、集合的运算(并集、交集、补集等)、集合的包含关系以及集合的基数等。
例如,有这样一道习题:设集合 A ={1, 2, 3},B ={2, 3, 4},求 A ∪ B 和A ∩ B。
答案是:A ∪ B ={1, 2, 3, 4},A ∩ B ={2, 3}。
这是因为并集是包含两个集合中所有元素的集合,而交集是同时属于两个集合的元素组成的集合。
数理逻辑是研究推理和证明的工具,它包括命题逻辑和谓词逻辑。
在数理逻辑的习题中,需要掌握命题的符号化、逻辑公式的等价变换、推理规则的应用等。
比如,给出这样一个命题:“如果今天下雨,那么我就不去公园”,将其符号化。
我们可以设“今天下雨”为 P,“我去公园”为 Q,那么这个命题可以符号化为P → ¬Q。
图论是研究图的性质和应用的分支。
图的概念在计算机网络、交通运输等领域有着重要的应用。
图论的习题常常涉及图的表示、顶点的度、路径、连通性、图的着色等问题。
假设有这样一道题:一个无向图有 10 个顶点,每个顶点的度都为 6,求这个图的边数。
根据顶点度数之和等于边数的两倍这个定理,我们可以计算出边数为 30。
代数结构则包括群、环、域等概念,在这部分的习题中,需要理解和运用代数结构的定义和性质来解决问题。
接下来,我们具体来看一些习题的详细解答。
例 1:设集合 A ={x | x 是小于 10 的正奇数},B ={x | x 是小于 10 的正偶数},求 A B。
离散数学第二版屈婉玲

离散数学第二版屈婉玲简介《离散数学第二版》是由屈婉玲编写的离散数学教材。
离散数学是计算机科学中的一门基础课程,主要研究离散对象及其结构、性质和相互关系。
这本教材系统地介绍了离散数学的各个方面,具有循序渐进、清晰易懂的特点,适合计算机科学及相关专业本科生使用。
目录•离散数学概论–离散数学的基本概念–命题逻辑–谓词逻辑与推理–集合与命题逻辑的应用•图论基础–图的基本概念–有向图与无向图–图的遍历–最短路径•关系与函数–二元关系–关系的闭包与等价关系–函数与映射关系–函数的复合与反函数•计数原理–基本计数原理–排列与组合–生成函数–容斥原理•离散数学中的数论–整数与整除性–模运算与同余关系–素数与因子分解–公约数与最大公约数•离散结构中的代数系统–代数系统的基本概念–半群与幺半群–群与子群–环与域内容概述离散数学概论第一章介绍了离散数学的基本概念和离散对象的性质。
包括集合论、命题逻辑和谓词逻辑等内容。
后续讲解了命题逻辑的推理规则,以及如何应用集合论和命题逻辑解决实际问题。
图论基础第二章介绍了图论的基本概念和图的表示方法。
包括有向图和无向图的概念、图的遍历算法和最短路径算法。
通过实例讲解了如何使用图论解决实际问题。
关系与函数第三章介绍了关系与函数的概念和性质。
包括二元关系的定义和性质、关系的闭包和等价关系的概念,以及函数与映射关系的概念和性质。
通过实例讲解了如何使用关系和函数解决实际问题。
计数原理第四章介绍了计数原理的基本概念和计数方法。
包括基本计数原理、排列与组合、生成函数和容斥原理等内容。
通过实例讲解了如何使用计数原理解决实际问题。
离散数学中的数论第五章介绍了离散数学中的数论知识。
包括整数与整除性、模运算与同余关系、素数与因子分解、公约数与最大公约数等内容。
通过实例讲解了如何使用数论知识解决实际问题。
离散结构中的代数系统第六章介绍了离散结构中的代数系统。
包括代数系统的基本概念、半群与幺半群、群与子群、环与域等内容。
离散数学第二版罗熊课后答案

离散数学第二版罗熊课后答案第1章绪论 1 .试述数据、数据库、数据库系统、数据库管理系统的概念。
答:( l )数据( Data ) :叙述事物的符号记录称作数据。
数据的种类存有数字、文字、图形、图像、声音、正文等。
数据与其语义就是不可分的。
解析在现代计算机系统中数据的概念就是广义的。
早期的计算机系统主要用作科学计算,处置的数据就是整数、实数、浮点数等传统数学中的数据。
现代计算机能够存储和处置的对象十分广为,则表示这些对象的数据也越来越繁杂。
数据与其语义就是不可分的。
500 这个数字可以表示一件物品的价格是 500 元,也可以表示一个学术会议参加的人数有 500 人,还可以表示一袋奶粉重 500 克。
( 2 )数据库( DataBase ,缩写 DB ) :数据库就是长期储存在计算机内的、存有非政府的、可以共享资源的数据子集。
数据库中的数据按一定的数据模型非政府、叙述和储存,具备较小的冗余度、较低的数据独立性和易扩展性,并可向各种用户共享资源。
( 3 )数据库系统( DataBas 。
Sytem ,缩写 DBS ) :数据库系统就是所指在计算机系统中导入数据库后的系统形成,通常由数据库、数据库管理系统(及其开发工具)、应用领域系统、数据库管理员形成。
解析数据库系统和数据库就是两个概念。
数据库系统就是一个人一机系统,数据库就是数据库系统的一个组成部分。
但是在日常工作中人们常常把数据库系统缩写为数据库。
期望读者能从人们讲话或文章的上下文中区分“数据库系统”和“数据库”,不要引发混为一谈。
( 4 )数据库管理系统( DataBase Management sytem ,简称 DBMs ) :数据库管理系统是位于用户与操作系统之间的一层数据管理软件,用于科学地组织和存储数据、高效地获取和维护数据。
DBMS 的主要功能包含数据定义功能、数据压低功能、数据库的运转管理功能、数据库的创建和保护功能。
解析 DBMS 就是一个大型的繁杂的软件系统,就是计算机中的基础软件。
离散数学(第二版)最全课后习题答案详解

27.设 A、B 都是含命题变量项 p1,p2,…,pn的公式,证明: 重言式.
是重言式当且仅当 A 和 B 都是
解:
A
B
0
0
0
1
1
0
1
1
由真值表可得,当且仅当 A 和 B 都是重言式时,
0 0 0 1 是重言式。
28. 设 A、B 都是含命题变量项 p1,p2,…,pn的公式,已知
,该式为重言式,所以论述为真。
18.在什么情况下,下面一段论述是真的:“说小王不会唱歌或小李不会跳舞是正确的,而说如 果小王会唱歌,小李就会跳舞是不正确的.” 解:p:小王会唱歌。q:小李会跳舞。
真值为 1.
真值为 0.可得,p 真值为 1,q 真值为 0.
所以,小王会唱歌,小李不会跳舞。
19.用真值表判断下列公式的类型:
(2)p: 是无理数.
(7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以 π. (13)p:2008 年元旦下大雪.
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.
(1)5 是有理数.
答:否定式:5 是无理数. p:5 是有理数.q:5 是无理数.其否定式 q 的真值
5.将下列命题符号化,并指出真值. (1)2 或 3 是偶数. (2)2 或 4 是偶数. (3)3 或 5 是偶数. (4)3 不是偶数或 4 不是偶数. (5)3 不是素数或 4 不是偶数.
答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数 (1)符号化: p q∨ ,其真值为 1. (2)符号化:p r∨ ,其真值为 1. (3)符号化:r t∨ ,其真值为 0. (4)符号化:¬ ∨¬q s,其真值为 1. (5)符号化:¬ ∨¬r s,其真值为 0.
离散数学第二版 屈婉玲 1-5章(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。
解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。
离散数学(第2版-刘爱民)习题答案

习题答案习题一答案1.1下列各语句中哪些是命题?1) 不是;2) 是;3) 不是;4) 不是;5) 不是;6) 是;7) 是;8) 不是9) 不是;10)是;11)不是;12)是。
1.2 将下列命题符号化。
1) p∧⌝q, p:太阳明亮,q:湿度高;2) q→⌝p, p:明天你看到我,q:我要去深圳。
3) p→q, p:我出校,q:我去图书城;4) q→p , p:你去,q:我去;5) 5.1) p∧q; 5.2) p∧⌝q; 5.3) p∧q; 5.4) p∧⌝q;6) 6.1) p∨q 6.2) ⌝(p ↔q) 6.3) p∧¬q6.4) ¬ (p∧r) 6.5) (p∧q) →r 6.6)¬ (r→ (p∧q))7) p:蓝色和黄色可以调配成绿色;8) ⌝(p↔q), p:李兰现在在宿舍, q:李兰在图书馆里;9) ¬p→¬ q, p:一个人经一事,q:一个人长一智;10) (p∧¬q) →⌝(r↔ s), p:晚上小王做完了做业, q: 晚上小王没有其他事情,r: 晚上小王看电视, s: 晚上小王看电影。
11) ⌝(r↔ s), r:小飞在睡觉, s:小飞在游泳;12) ¬p∧¬q∧r, p:这个星期天我看电视,q: 这个星期天我外出,r:这个星期天我在睡觉。
13) p→q , p:卫星上天了,q:国家强大了;14) p→q, p:今天没有课,q:我呆在图书馆里;15) p→q,p:我去图书城,q:我有时间;16) ¬p→¬q , p:人们辛劳,p: 人们收获1.3 1) 小李家住北大西门外, 他现在坐在公共汽车里看书,没有考虑问题;2) 小李在思考问题, 他没有乘坐公共汽车,也没有看书;3) 小李只要乘坐公共汽车,他就看书或考虑问题;4) 小李乘坐公共汽车,要么看书不考虑问题,要么考虑问题不看书,5) 同4);6) 如果小李家住北大西门外,则他现在没有乘坐公共汽车,没有看书,也没有考虑问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学(第2版)——关于数学中重要的研究方向
离散数学是一门涉及数学中各种离散对象的研究方向,包括数论、图论、代数等。
离散数学是计算机科学、通信工程和其他许多工科领域的基础,对于理解计算机算法的原理和应用具有重要意义。
本文将对离散数学(第2版)这本数学教材进行介绍。
离散数学(第2版)是由美国杜克大学的Kenneth H. Rosen所著的数学教材。
这本书共分为五章,分别是基础概念、逻辑和计算、数论、图论、代数和应用。
第一章主要介绍了离散数学的基础概念,包括逻辑基础、集合、关系和函数。
第二章介绍了逻辑和计算的相关内容,包括命题逻辑、谓词逻辑、计算机科学中的逻辑和布尔代数。
第三章是关于数论的章节,包括质数、最大公约数、最小公倍数、模运算、同余方程等内容。
第四章是关于图论的章节,包括无向图、有向图、连通图、生成树、最短路径、最小生成树等内容。
第五章是关于代数和应用的章节,包括代数系统、群、域、同余环、线性代数和代数应用等内容。
本书还附有大量的练习题,帮助读者检验自己的学习效果。
离散数学(第2版)是一本系统而全面的数学教材,涵盖了离散数学的各个方面。
它适合作为计算机科学和工科领域的数学基础教材,也可作为普及离散数学的参考书。