关于用初等变换求向量组的极大无关组的方法

合集下载

3.4极大线性无关组

3.4极大线性无关组
称为这个向量组的秩, 记作 r(1,2 , , s )
2 4 2
例如:
向量组
1
-1 3
,
2
-2 5
,
3
-1 4

1
4
-1
秩为2。
2. 矩阵的秩
2.1. 行秩、列秩、矩阵的秩
把矩阵的每一行看成一个向量,则矩阵可被认为由这些行向量组成, 把矩阵的每一列看成一个向量,则矩阵可被认为由这些列向量组成。
(2)用非零常数k乘以A的第i行
引理2:矩阵的初等行变换不改变矩阵的列秩。
(列)
(行)
证:设矩阵A经过初等行变换变为B,
即存在有限个初等矩阵 P1, P2 , , PS 使得 P1P2 PS A B 令 P P1P2 PS 则 PA B
把 Amn 按列分块,设 Amn (1, 2 , , n ) 不妨设A的列向量组的极大无关组为 1,2 , ,r ,
a11 x1 a12 x 2
a21
x1
a22 x2
an1 x1 an2 x2
a1m xm b1 a2m xm b2 有解,
anm xm bn
或者,令
a11 a12
A
a21
a22
an1
an2
a1m
a2m
(1
,
2
,
anm
,m )
得方程组 Ax 有解.
x1
x
等价向量组的基本性质
定理:设 1,2 , , s 与 1, 2 , , t 是两个向量组,如果 (1) 向量组1,2 , , s 可以由向量组 1, 2 , , t 线性表示;
(2) s t
则向量组 1,2 , , s 必线性相关。

线性代数 第3.4节 向量组的极大线性无关组(修改)

线性代数 第3.4节  向量组的极大线性无关组(修改)

, s 线性无关 r (1 , 2 , , s 线性相关 r (1 , 2 ,
, s ) s , s ) s
(3)如果向量组 1 , 2 , 线性表示,则
, s 可以由向量组 1 , 2 , , s ) r ( 1 , 2 , , t )
定义4:
矩阵的行向量组的秩,就称为矩阵的行秩; 矩阵的列向量组的秩,就称为矩阵的列秩。
1 0 例2:讨论矩阵 A 0 0
(1) 矩阵A的行秩为3
矩阵A的行向量组是
1 2 0 0
3 1 1 4 0 5 0 0
的行秩和列秩
1 2 3 4
(1,1, 3,1) (0, 2, 1, 4) (0, 0, 0, 5) (0, 0, 0, 0)
1 2
向量组的等价关系具有以下三个性质:
(1)自反性:一个向量组与其自身等价; (2)对称性:若向量组 A 与 B 等价,则 B 和 A 等价; (3)传递性:A 与 B 等价, B 与 C 等价,则 A 与 C 等价。
定理1: 设 1 , 2 , (1) 向量组 1 , 2 , (2) s t 则向量组
, s )
2 4 2 1 2 1 , 2 , 3 的 例如: 向量组 1 3 5 4 1 4 1
秩为2。
注:
(1)零向量组的秩为0。 (2)向量组 1 , 2 , 向量组 1 , 2 ,

0 5 0 3 2 6 1 3 2 3 A 2 0 1 5 3 1 6 4 1 4 1 6 4 1 4 1 1 0 4 3 2 0 1 5 3 3 2 0 5 0

线性代数-第2章

线性代数-第2章

第2章对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。

矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。

任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。

通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。

考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。

总而言之,初等变换不会改变矩阵的秩。

因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。

矩阵的秩,同时又可定义为不为零的子式的最高阶数。

满秩矩阵的行列式不等于零。

非满秩矩阵的行列式必为零。

既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。

另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。

齐次线性方程组的解的结构问题,可以用基础解系来表示。

当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。

通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。

非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。

在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。

矩阵的加法和数乘,与向量的运算类同。

矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。

即可以把一个矩阵看作是一种线性变换在数学上的表述。

矩阵的乘法,反映的是线性变换的叠加。

如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。

线性代数第三章第二节 向量组及其最大无关组(2014版)

线性代数第三章第二节 向量组及其最大无关组(2014版)
极大线性无关组
等价向量组 极大线性无关组性质 向量空间的基与维数
3.2.1. 极大线性无关组
定义 对向量组A,如果在A中有r个向量 1 , 2 , , r 满足:(1)A0 :1,2 , ,r 线性无关。
(2)任意r+1个向量都线性相关。(如果有的话)
那么称部分组 A0为向量组A 的一个最大(极大)线性


1
,
2
,

s








1 , 2 , s,1 , 2 , t









向量

1
,
2
,

t

它线性表示

1
,
2
,
t
可由
1
,
2
,
线性表示
s
定理咋还这 么多?烦人!
例 2 设1,2 , n 与 1, 2 , n 为两向量组,且
1 a111 a122 a1nn
2
a211
小结
1.最大线性无关向量组的概念: 最大性、线性无关性.
2. 矩阵的秩与向量组的秩的关系: 矩阵的秩=矩阵列向量组的秩 =矩阵行向量组的秩
3. 关于向量组秩的一些结论:
4. 求向量组的秩以及最大无关组的方法: 将向量组中的向量作为列向量构成一个矩 阵,然后进行初等行变换.
思考题
总结证明向量组等价的方法
如零向量组等价,但D=0.
例 4 设 1,2 , ,n是n个n维向量,证明:1,2 , ,n 线性无关 的充分必要条件是任意一个n维向量都可由它线性表示。

3.3 向量组的极大无关组与秩

3.3 向量组的极大无关组与秩

矩阵 C的列向量组能由 A的列向量组线性表示,
因此r ( C ) r ( A). 又因为 C T B T AT ,由上段证明知 r ( C T ) r ( B T ), 25 即r ( C ) r ( B).
练习
1.求下列向量组的秩:
T T (1) 1 (2, 1, 1) , 2 (5, 4, 2, ) , 3 (3, 6, 0) T T ( 3 , 1 , 0 , 2 ) ( 1 , 1 , 2 , 1 ) (2) 1 , , 2 3 (1, 3, 4, 4) T .
20

1 1 3 2 , 2 1 2 .
1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 2 2 3 1 1 2 2 , 0 0 0 0 0 0
2 0 1 1 而 ( 1 , 2 , 1 , 2 ) 3 1 3 1
9
定理3.10
若向量组A可由向量组B线性表示,则
r(A) ≤ r(B)。 推论 若向量组A与向量组B等价,则 r(A) = r(B)。
10
回顾
α1 α2
αm
矩阵A既对应一个行向量组,又对应一 个列向量组: 其中 i ( a i 1 , a i 2 , , a in ), i 1, , m a1 j 1 a2 j 2 j 1, 2, , n
28
23
则r 1 1 , 2 2 , , n n r t r ( A) r ( B) r ( A B) r ( A) r ( B)
r i 1 , i 2 , ir , j 1 , j 2 , jt

矩阵的秩及向量组的极大无关组求法

矩阵的秩及向量组的极大无关组求法

位于k行k列交叉位置上的k2个元素,按原有的次序组成的k阶行列
式,称为A的k阶子式. 如矩阵
1 A 1
1 1
0 2
2 1
0 0 3 2
第1,3行及第2,4列交叉位置上的元素组成的一个二阶子式为
12
三阶子式共有4个
02
1 10
1 12
102 1 02
1 1 2 1 1 1
1 2 1 1 2 1
0 4 4
0 4 4
3 0 6
0 3 3
3 21 2 3 2 1 2
《线性代数》
返回
下页
结束
矩阵A2
矩阵A3
矩阵B
1 0
1 4
1 (1/ 4)r2 1
4
0
1 1
1 1
r3 3r2
1 0
1 1
1 1
r1 r2 1
0
0 1
2 1
0 3 3
0 3 3
0 0 0
0 0 0
二、单选题
1.设A是n阶方阵且|A|=0,则( ) . 1) A中必有两行(列)元素对应成比例. 2) A中至少有一行(列)的元素全为0 . 3) A中必有一行(列)向量是其余各行(列)向量的线性组合. 4) A中任意一行(列)向量是其余各行(列)向量的线性组合.
《线性代数》
返回
下页
结束
2.设n阶矩阵A的秩为r,则结论( )成立. ①|A| ≠0; ② |A| =0; ③ r>n; ④ r≤n.
00
c1n
c2n
crn
0
0
结论:行阶梯形矩阵Br的非零行的个数,即为矩阵A的秩.
《线性代数》
返回

线性代数解题技巧及典型题解析01-向量组的秩及极大线性无关组的求法_12

线性代数解题技巧及典型题解析01-向量组的秩及极大线性无关组的求法_12

1 0 0 2
A 1 2 3 4
行变换
B
行变换
0
0
1 0
0 1
6
,
5
故4 21 62 53.
0
0
0
0
求向量组 1 (1,2,3,1),2 ( 1, 2, 3, 1),3 ( 1,1,1,1),4 (0,2,4,1),
5 (3,4,5,8), 6 ( 1,2,3,2)的秩及向量组的极大无关组,并将其余向量用该
极大无关组. 由题设 j1,, js 可由i1,,is 线性表示,设表示式为
j1 a11 a1s i1
,
js
as1
ass is
1. 两向量组的秩相同,不能断言两向量组等价,但附加一定的 条件后可以等价. 因此,一定要注意:向量组的等价仅由秩相 等是不够的,这一点与矩阵等价不一样.
B=
0
0
1
2
2
0
行变换
0
0
10
4
2
,
0 0 0 3 9 3
0 0 0 1 3 1
0
0
0
0
0
0
0
0
00
0
0
2 = 1 ,5 71 43 34 ,6 1 23 4 .
此题若不利用向量组做是很困难的,我们经常以矩阵做工具来解决向量组的 问题,从这个例题中可看出:我们也可用向量组来解决矩阵的问题. r(AB)min{r(A) , r(B)}是一个很有用的公式.
例6 设矩阵 A (1,2,3,4 ) 经过初等行变换得到矩阵 B,且
1 0 0 2
0
1
0
3
B 2
因此1,2 ,,s , 与 1,2 ,,s , 等价. 从而

3-3 向量组的秩和极大线性无关组

3-3 向量组的秩和极大线性无关组

显然 Rn的最大无关组很多 任何n个线性无关的n维向量 都是Rn的极大无关组
Henan Agricultural University
3.性质
(1)只含零向量的向量组没有极大无关组 规定它的秩为0 (2)一个线性无关向量组的极大线性无关组是向量组本身. (3)向量组的极大无关组一般不是唯一的。 例如 a1(1 1 1)T a2(0 2 5)T a3(2 4 7)T 因为a1 a3和a2 a3都是线性无关组 而a1 a2 a3线性相关 所以a1 a3和a2 a3都是向量组a1 a2 a3的极大无关组
k11 k (b1, b2, , bl ) (a1, a2, , am ) 21 km1 k12 k22 km 2 k1l k2l km l
B =AK

bj k1ja1k2ja1 kmjam
的极大无关组提供了方法。 Henan Agricultural University
四、向量组极大线性无关组的求法
矩阵A经行初等变换化为B,则A的列向量组与 B对应的列向量组有相同的线性组合关系.
1.把向量组按列排成矩阵A; 2.用初等行变换把A化为简化的行阶梯形矩阵C; 3.求出C的列向量组的一个极大线性无关组; 4.与其相应的A中的列就是A的列向量组的一个极大线性无关组.
Henan Agricultural University
例2 求矩阵A的列向量组的 一个极大无关组 并把不属于 极大无关组的列向量用极大 无关组线性表示 其中
2 1 1 1 1 1 2 1 A 4 6 2 2 3 6 9 7 2 4 4 9
可见B中1,2,4列有单位矩 阵,对应B的一个最高阶(三 阶)非零子式,即B中1,2,4 列为B的一个极大线性无关组。 相应地,A的1、2、4列 为A的一个极大无关组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于用初等变换求向量组的极大无关组的方法在研究中,研究者经常需要通过求解向量组的极大无关组来实现向量组元素的排序,以便于更好地研究和进一步分析该类数据。

由于向量组的极大无关组的求解相对比较严格,因此需要考虑到更加效率的求解方法。

于此,本文将针对用初等变换求解向量组的极大无关组进行深入分析,旨在为研究者提供一种更有效的求解方法。

首先,本文确定了初等变换方法的具体运用,即在向量组矩阵中,每行对应1个向量,每列对应1个属性,对应元素为该属性对应的分量值。

通过行列式的性质,可以把行列式分解为一系列的初等变换,将原矩阵变换为“阶梯”矩阵。

其次,本文做出了一个重要的假设:向量组全部元素均不相同,也即矩阵中没有相同的行或列。

借助这一假设,初等变换就变得更加方便,且可快速完成。

紧接着,本文提出了一种很简单、快捷的解法,即将矩阵拆分成多个不同的小矩阵,每个小矩阵分别求解一组极大无关组,最后将求得的多组无关组合并,获得最终的极大无关组。

最后,本文总结了用初等变换求解向量组的极大无关组的方法,包括原矩阵的行列式的分解,基于假设的初等变换,以及将矩阵拆分成多个不同的小矩阵求解等步骤。

此外,本文还指出,经过多次的实验和验证,该方法在求解向量组的极大无关组时候比传统方法效率更高,具有很强的可行性。

本文提出用初等变换求向量组的极大无关组的方法,为研究者提
供了一种更有效的求解方案。

未来,可以进一步深入探索初等变换方法在求解向量组的极大无关组这一领域的应用,以及在此基础上深入研究出更多种方法,从而给研究者提供更多的求解选项。

相关文档
最新文档