气体实验定律

合集下载

问题1三大气体实验定律内容是什么

问题1三大气体实验定律内容是什么
主页
理想气体的状态方程
例题2: 一水银气压计中混进了空气,因而在27℃,外
界大气压为758mmHg时,这个水银气压计的读数为 738mmHg,此时管中水银面距管顶80mm,当温度降 至-3℃时,这个气压计的读数为743mmHg,求此时的 实际大气压值为多少毫米汞柱? (1)该题研究对象是什么? (2)画出该题两个状态的示意图:
末态:p′A=?,V′A=2V/3 根据玻意耳定律:pAVA=p′AV′A得 p′A=1.5×105 Pa.
(2)对B部分气体,其p、V、T均发生变化: 初态:pB=2.0×105 Pa,VB=V,TB=300 K 末态:p′B=2.5×105 Pa V′B=4V/3 ,T′B=? 由理想气体状态方程: pAVA / TA=p′AV′A/T′B 解得T′B=500 K.
主页
理想气体的状态方程
我的收获 1、什么是理想气体?
2、理想气体的状态方程 3、应用理想气体状态方程解题的一 般步骤
主页
山东省临沂第一中学
学以致用
(3)分别写出两个状态的状态 参量:
主页
理想气体的状态方程
解:以混进水银气压计的空气为研究对象 初状态: T1=273+27=300 K P 1 P 0 gh 1 20mmHg ,V 1 l1S 80S 末状态: P 2 P gh2 (h2 743mmHg ),V2 l2 S 75S T2=270K p1V1 p2V2 由理想气体状态方程得:
主页
理想气体的状态方程
学 以 致 用
一圆柱形汽缸直立在地面上,内有一个具有质 量、无摩擦的绝热活塞,把汽缸分成容积相同的 A、B 两部分,如图所示.两部分气体的温度相同,均为 T0 =27 ℃,A 部分气体的压强 pA=1.0×105 Pa,B 部分气 体的压强 pB=2.0×105 Pa,现对 B 部分气体加热,使活 塞上升,保持 A 部分气体的温度不变,体积减小为原来 2 的 .求此时: 3 (1)A 部分气体的压强. (2)B 部分气体的温度

气体三大定律公式

气体三大定律公式

气体三大定律公式
气体是物质的一种形式,它有着独特的物理性质和化学性质,在物理和化学实验中经常拿来做实验以研究它们的性质。

气体的研究,最重要的就是气体三大定律,它们是:热力学第一定律、热力学第二定律和热力学第三定律。

接下来我们将从三大定律介绍它们的定律公式。

热力学第一定律,也叫开普勒第一定律或热守恒定律,定义了热能的守恒定律,即热能的总量是恒定的,它的定律公式如下:
Q_0=Q
其中,Q_0是初始热能,Q是最终热能。

热力学第二定律,也叫吉布斯定律,定义了热机的运行原则,即热能转换成工作的本质,它的定律公式如下:
Q = W +U
其中,Q表示热能,W表示系统做出的功,ΔU表示系统内部能量变化。

最后一个定律是热力学第三定律,也叫临界温度第三定律,它定义了温度变化是热力学反应的关键因素。

它的定律公式是:
T_0 S_0 = T S
其中,T_0表示初始温度,S_0表示初始熵,T表示最终温度,S 表示最终熵。

从气体实验的角度来看,上述的三大定律公式是不可缺少的,它们是研究气体的关键部分。

气体的变化受到上述三大定律的约束,只
有理解其三大定律公式,才能根据实验结果,对气体的变化现象正确解释。

气体的研究,除了研究气体的变化现象外,还有通过实验探索气体的基本特性,如温度、压力等等。

实验中,在运用上述三大定律公式的同时,既要探究系统内部的能量变化,又要研究气体的流动性。

气体的变化影响着它的性质,也会影响它的环境,因此理解气体的变化至关重要,而上述三大定律公式可以帮助我们正确地对气体的变化现象作出解释,并且可以为我们研究气体的本质特性提供更多有价值的信息。

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律第一定律:博伊尔定律在研究理想气体性质时,博伊尔定律是一个重要的实验定律。

它表明,在一定温度下,理想气体的体积与压强成反比,即当温度不变时,气体的体积与压强呈现出明显的正相关关系。

当我们将理想气体装入一个可变体积的容器中,通过改变容器的体积,可以观察到气体压强的变化。

实验证明,当容器体积减小时,气体压强增加;反之,当容器体积增加时,气体压强减小。

这种反比关系可以用博伊尔定律来描述,即P与V成反比关系。

第二定律:查理定律理想气体的第二个重要特性是查理定律,它描述了理想气体在一定压强下的体积与温度的关系。

实验结果表明,当气体的压强不变时,气体的体积与温度成正比关系,即当温度升高时,气体的体积也会相应增加。

通过改变理想气体的温度,我们可以观察到气体体积的变化。

实验结果显示,当温度升高时,气体分子的平均动能增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。

这种正比关系可以用查理定律来描述,即V与T成正比。

第三定律:盖吕萨克定律盖吕萨克定律是理想气体的第三个重要特性。

它描述了理想气体在一定温度和压强下的体积与物质的量的关系。

实验结果表明,在相同的温度和压强下,理想气体的体积与物质的量成正比,即当物质的量增加时,气体的体积也会相应增加。

通过改变理想气体的物质的量,我们可以观察到气体体积的变化。

实验结果显示,当物质的量增加时,气体分子的数量增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。

这种正比关系可以用盖吕萨克定律来描述,即V与n成正比。

以上就是理想气体遵循的三大实验定律:博伊尔定律、查理定律和盖吕萨克定律。

这些定律为我们研究理想气体的性质提供了重要的实验基础,也为我们理解气体行为的规律提供了重要的理论依据。

通过这些实验定律,我们可以更好地理解理想气体的特性,探索气体的性质和行为规律。

在工程、化学、物理等领域,这些定律的应用也是非常广泛的。

例如,在工业生产中,通过控制温度、压强和物质的量,可以实现气体的压缩、膨胀、混合等过程,从而实现各种化学反应和工艺操作。

气体实验定律图象

气体实验定律图象

气体实验定律图象过程 两条图线等温变化 等温变化在pV远离原点的等温线对应的温度就高,即等温变化在直线,由与温度成正比,所以等容变化等容变化在-同一气体压强越大,气体的体积就越小,所以等容变化在的直线,由时图线斜率小,所以等压变化等压变化在-273.15 一气体体积越大,所以等压变化在的直线,由大时斜率小,所以1.理想气体状态方程与气体实验定律的关系2.几个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT(3)理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+…… 1.一定质量理想气体的状态经历了如图所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( ) A .ab 过程中不断增加 B .bc 过程中保持不变 C .cd 过程中不断增加 D .da 过程中保持不变【解析】 由图象可知a →b 温度不变,压强减小,所以体积增大,b →c 是等容变化,体积不变,因此A 、B 正确.2.(多选)一定质量的理想气体经历如图所示的一系列过程,ab 、bc 、cd 和da 这四段过程在p -T 图上都是直线段,ab 和dc 的延长线通过坐标原点O ,bc 垂直于ab ,由图可以判断( )A .ab 过程中气体体积不断减小B .bc 过程中气体体积不断减小C .cd 过程中气体体积不断增大D .da 过程中气体体积不断增大解析:选BD.在p -T 图上,过原点的倾斜直线表示气体做等容变化,体积不变,故有V a =V b ,V c =V d ,而图线的斜率越大,气体的体积越小,故有V a =V b >V c =V d ,可判断B 、D 选项正确.3.如图所示,两端封闭、粗细均匀的细玻璃管,中间用长为h 的水银柱将其分为两部分,分别充有空气,现将玻璃管竖直放置,两段空气柱长度分别为L 1、L 2,已知L 1>L 2,如同时对它们均匀加热,使之升高相同的温度,这时出现的情况是( ) A .水银柱上升 B .水银柱下降 C .水银柱不动 D .无法确定【解析】假定两段空气柱的体积不变,即V 1,V 2不变,初始温度为T ,当温度升高ΔT 时,空气柱1的压强由p 1增至p ′1,Δp 1=p ′1-p 1,空气柱2的压强由p 2增至p ′2,Δp 2= p ′2-p 2.由查理定律得:Δp 1=p 1T ΔT ,Δp 2=p 2TΔT ,因为p 2=p 1+h >p 1,所以Δp 1<Δp 2,即水银柱应向上移动.所以正确答案为A. 4. 如图所示,一圆柱形容器竖直放置,通过活塞封闭着摄氏温度为t 的理想气体.活塞的质量为m ,横截面积为S ,与容器底部相距h .现通过电热丝给气体加热一段时间,结果活塞又缓慢上升了h ,若这段时间内气体吸收的热量为Q ,已知大气压强为p 0,重力加速度为g ,不计器壁向外散失的热量及活塞与器壁间的摩擦,求:(1)容器中气体的压强;(2)这段时间内气体的内能增加了多少? (3)这段时间内气体的温度升高了多少?【解析】(1)p =⎝⎛⎭⎪⎫p 0+mg S (2)气体对外做功为W =pSh =⎝⎛⎭⎪⎫p 0+mg S Sh =(p 0S +mg )h由热力学第一定律得:ΔU =Q -W =Q -(p 0S +mg )h (3)由盖—吕萨克定律得:V 1T 1=V 2T 2,hS 273.15+t =2hS273.15+t ′解得:t ′=273.15+2t Δt =t ′-t =273.15+t 12.(2013·南昌模拟)(1)用力拉活塞,使封闭在汽缸内的气体的体积迅速增大为原来的两倍,若汽缸不漏气,那么此时汽缸内气体压强p 2和原来的压强p 1相比较有________.A .p 2=p 1/2B .p 2>p 1/2C .p 2<p 1/2D .无法确定(2)内壁光滑的导热汽缸竖直浸入在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为1.0×105 Pa ,体积为2.0×10-3 m 3的理想气体,现在活塞上缓慢倒上沙子,使封闭气体的体积变为原来的一半.①求汽缸内气体的压强;②若封闭气体的内能仅与温度有关,在上述过程中外界对气体做功145 J ,封闭气体吸收还是放出热量?热量是多少?解析:(1)迅速拉活塞可看做绝热膨胀过程,由于气体对外做功,内能减小,温度降低,将体积加倍,代入pVT=恒量,故p 2<p 1/2,故C 正确.(2)①导热汽缸中的气体缓慢变化,可认为温度保持0 ℃不变,由p 1V 1=p 2V 2得:p 2=p 1V 1V 2=1.0×105×11/2Pa =2.0×105 Pa②温度不变,ΔU =0,由Q +W =0得 Q =-W =-145 J ,即放出热量145 J.答案:(1)C (2)①2.0×105 Pa ②放出热量145 J气体实验定律图象过程 两条图线等温变化 等温变化在pV远离原点的等温线对应的温度就高,即等温变化在直线,由与温度成正比,所以等容变化等容变化在-273.15 ℃的直线.在同一温度下,同一气体压强越大,气体的体积就越小,所以等容变化在的直线,由时图线斜率小,所以等压变化等压变化在-273.15 一气体体积越大,所以等压变化在的直线,由大时斜率小,所以1.理想气体状态方程与气体实验定律的关系2.几个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT(3)理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+…… 1.一定质量理想气体的状态经历了如图所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( ) A .ab 过程中不断增加 B .bc 过程中保持不变 C .cd 过程中不断增加 D .da 过程中保持不变2.(多选)一定质量的理想气体经历如图所示的一系列过程,ab、bc、cd和da这四段过程在p-T图上都是直线段,ab和dc的延长线通过坐标原点O,bc垂直于ab,由图可以判断( )A.ab过程中气体体积不断减小B.bc过程中气体体积不断减小C.cd过程中气体体积不断增大D.da过程中气体体积不断增大3.如图所示,两端封闭、粗细均匀的细玻璃管,中间用长为h的水银柱将其分为两部分,分别充有空气,现将玻璃管竖直放置,两段空气柱长度分别为L1、L2,已知L1>L2,如同时对它们均匀加热,使之升高相同的温度,这时出现的情况是( )A.水银柱上升 B.水银柱下降C.水银柱不动 D.无法确定4. 如图所示,一圆柱形容器竖直放置,通过活塞封闭着摄氏温度为t的理想气体.活塞的质量为m,横截面积为S,与容器底部相距h.现通过电热丝给气体加热一段时间,结果活塞又缓慢上升了h,若这段时间内气体吸收的热量为Q,已知大气压强为p0,重力加速度为g,不计器壁向外散失的热量及活塞与器壁间的摩擦,求:(1)容器中气体的压强;(2)这段时间内气体的内能增加了多少?(3)这段时间内气体的温度升高了多少?5.(2013·南昌模拟)(1)用力拉活塞,使封闭在汽缸内的气体的体积迅速增大为原来的两倍,若汽缸不漏气,那么此时汽缸内气体压强p2和原来的压强p1相比较有________.A.p2=p1/2B.p2>p1/2C.p2<p1/2 D.无法确定(2)内壁光滑的导热汽缸竖直浸入在盛有冰水混合物的水槽中,用不计质量的活塞封闭压强为1.0×105Pa,体积为2.0×10-3m3的理想气体,现在活塞上缓慢倒上沙子,使封闭气体的体积变为原来的一半.①求汽缸内气体的压强;②若封闭气体的内能仅与温度有关,在上述过程中外界对气体做功145 J,封闭气体吸收还是放出热量?热量是多少?。

13.2-气体实验定律1

13.2-气体实验定律1

试在P-1/V 图上、 P-T图上、
V-T图上分别画出相应的状态变
p
化曲线。
1、P-1/V图 P
1 0
2 V
0
1/V
2、P-T图 P
1 2
0
T
3、V-T图
V 2
1
0
T
练习1、如图所示,水平放置的玻管被h=5cm的水银柱封闭的 空气柱长L1=16cm,当开口向上竖直放置时,空气柱L2多长?( 已知大气压为75cmHg)
L1
h
(1)
h
L2
(2)
练习2、内壁光滑的水平放置的气缸被质量为m的活塞封闭 了体积为V1的空气,当气缸按如图所示放置时,被封空气体 积为V2 。求大气压强(已知活塞的横截面积为S)。


5、图象 P-V图 p
1 O
2 V
(1)在p-V图上,等温线的特征:双曲线;
(2)曲线上的每一点表示一个状态;
p T1 T2<T3
o
v
(3)一定质量的某种气体在不同温度下的等温线 是不同的,温度越高,双曲线顶点离坐标原点越远。
例1、在温度不变的情况下,把一根100cm的上端封闭的 粗细均匀的玻璃管竖直插入水银槽中,管口跟槽内水银面的距 离为管长的一半,如图所示。水银进入管中的深度为25cm,求: 大气压强是多少?
13.2 气体实验定律
(一)玻意耳定律
1、内容:一定质量的某种气体在温度不变的情况下压 强P与体积V成反比
2、公式:p 1/V 写成等式为 PV=C(恒量)
或 P1V1=P2V2 或P1/P2=V2/V1
3、条件:1)质量一定。2)温度不变。
4、等温过程(变化)——气体在温度不变的情况下,发 生的状态变化。

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律1. 定律一:波义尔定律(Boyle's Law)波义尔定律是理想气体的第一个基本定律,描述了在恒温条件下,理想气体的压力与体积之间的关系。

根据波义尔定律,当温度不变时,气体的压力与其体积成反比关系。

换句话说,当气体的体积增加时,其压力会减小,反之亦然。

这个定律可以用以下公式表示:P₁V₁= P₂V₂,其中P₁和V₁表示初始状态下的压力和体积,P₂和V₂表示变化后的压力和体积。

2. 定律二:查理定律(Charles's Law)查理定律是理想气体的第二个基本定律,描述了在恒压条件下,理想气体的体积与温度之间的关系。

根据查理定律,当压力保持不变时,理想气体的体积与其温度成正比关系。

简而言之,当气体的温度增加时,其体积也会增加,反之亦然。

这个定律可以用以下公式表示:V₁/T₁= V₂/T₂,其中V₁和T₁表示初始状态下的体积和温度,V₂和T₂表示变化后的体积和温度。

3. 定律三:盖-吕萨克定律(Gay-Lussac's Law)盖-吕萨克定律是理想气体的第三个基本定律,描述了在恒体积条件下,理想气体的压力与温度之间的关系。

根据盖-吕萨克定律,当体积保持不变时,理想气体的压力与其温度成正比关系。

简单来说,当气体的温度增加时,其压力也会增加,反之亦然。

这个定律可以用以下公式表示:P₁/T₁= P₂/T₂,其中P₁和T₁表示初始状态下的压力和温度,P₂和T₂表示变化后的压力和温度。

这三大实验定律为理想气体提供了基本的物理规律。

它们的发现和理解对于理解和预测气体行为以及工程和科学应用非常重要。

然而,需要注意的是,这些定律只适用于理想气体的近似模型,而在实际情况中,气体的行为可能会受到其他因素的影响,例如压力过高或温度过低等。

因此,在特定的条件下,这些定律可能需要结合其他因素进行修正。

气体实验定律

气体实验定律

)A D
A . 两次管中气体压强相等
B . T1时管中气体压强小于T2时管中气体压强
C . T1<T2 D . T1>T2
MN A
4.对于一定质量的理想气体,可能发生的过程是 ( C)
A.压强和温度不变,体积变大 B.温度不变,压强减少,体积减少 C.体积不变,温度升高,压强增大, D.压强增大,体积增大,温度降低
• (1)等容线:一定质量的某种气体在等容变化过
程中,压强p跟热力学温度T的正比关系p-T在直
角坐标系中的图象叫做等容线.
• (2)一定质量气体的等容线p-T图象,其延长线
经过坐标原点,斜率反映体积大小,如图所示.
• (3)一定质量气体的等容线的物理意义.
• ①图线上每一个点表示气体一个确定的状 态,同一根等容线上各状态的体积相
一、等容过程
• 1.等容过程:气体在体积不变 的情况下发生的状态变化过程叫 做等容过程.
• 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
• 3.盖·吕萨克定律:一定质量的某种气 体, 在压强不变的情况下,体积V与热力学温度成 正比( V T ).
可写成 V1 V2 或 V C
T1 T2
T
(1)盖·吕萨克定律是实验定律,由法国科学家 盖·吕萨克通过实验发现的.
(2)成立条件:气体质量一定,压强不变.
• (3)在 V/t=C 中的C与气体的种类、质量、压 强有关.
• (2)一定质量气体的等压线的V-T图象,其

气体实验定律-PPT课件

气体实验定律-PPT课件

C.气体分子平均速率变大
D.单位时间单位面积器壁上受到气体分子撞击的次 数减少
小结:
• 一定质量的气体在等容变化时,遵守查理定 律. 一定质量的气体在等压变化时,遵守盖 · 吕萨 克定律.

气体实验定律(Ⅱ)
一、等容过程
1.等容过程:气体在体积不变的情况下发 生的状态变化过程叫做等容过程. 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
4.等容线 ( l )等容线:一定质量的某种气体在等容变化 过程中,压强p跟热力学温度 T的正比关系 p- T在直角坐标系中的图象叫做等容线. (2)一定质量气体的等容线 p- T图象,其延长 线经过坐标原点,斜率反映体积大小,如图所 示.
(3)一定质量气体的等容线的物理意义. ①图线上每一个点表示气体一个确定的状态 ,同一根等容线上各状态的体积相 ②不同体积下的等容线,斜率越大,体积越 小(同一温度下,压强大的体积小)如图所 示,V2<V1.
查理定律的微观解释:
一定质量(m)的气体的总分子数(N) 是一定的,体积(V)保持不变时,其单 位体积内的分子数(n)也保持不变,当 温度(T)升高时,其分子运动的平均速 率(v)也增大,则气体压强(p)也增大; 反之当温度(T)降低时,气体压强(p) 也减小。
二、等压过程
1 .等压过程:气体在压强不变的情况下发 生的状态变化过程叫做等压过程. 2.一定质量气体的等压变化.
可得到,气体温度升 高,压强增大;气体 温度降低,压强减小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体实验定律
气体实验定律
教学目标
知识目标
1、知道什么是等温变化,知道玻意耳定律的实验装置和实验过程,掌握玻意耳定律的内容与公式表达.
2、知道什么是等容变化,了解查理定律的实验装置和实验过程,掌握查理定律的内容与公式表达.
3、掌握三种基本图像,并能通过图像得到相关的物理信息.
能力目标
通过实验培养学生的观察能力和实验能力以及分析实验结果得出结论的能力.
情感目标
通过实验,培养学生分析问题和解决问题的能力,同时树立理论联系实际的观点.
教学建议
教材分析
本节的内容涉及三个实验定律:玻意耳定律、查理定律和盖·吕萨克定律.研究压强、体积和温度之间的变化关系,教材深透了一般物理研究方法——“控制变量法”:在研究两个以上变量的关系时,往往是先研究其中两个变量间的关系,保持其它量不变,然后综合起来得到所要研究的几个量之间的关系,在牛顿第二定律、力矩的平衡、单摆周期确定等教学中,我们曾经几次采用这种方法.
教法建议
通过演示实验,及设定变量的方法得到两个实验定律;注意定律成立的条件.提高学生对图像的分析能力.
教学设计方案
教学用具:验证玻意耳定律和查理定律的实验装置各一套.
教学主要过程设计:在教师指导下学生认识实验并帮助记录数据,在教师启发下学生自己分析总结、推理归纳实验规律.
课时安排:2课时
教学步骤
(一)课堂引入:
教师讲解:我们学习了描述气体的三个物理参量——体积、温度、压强,并知道对于一定质量的气体,这三个量中一个量变化时,另外两个量也会相应的发生变化,三个量的变化是互相关联的,那么,对于一定质量的气体,这三个量的变化关系是怎样的呢?这节课,我们便来研究一下!
(二)新课讲解:
教师讲解:在物理学中,当需要研究三个物理量之间的关系时,往往采用“保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系”,我们研究一定质量的气体温度、体积、压强三者的关系,就可以采用这种方法.首先,我们设定温度不变,研究气体体积和压强的关系.
1、气体的压强与体积的关系——玻意耳定律
演示实验:一定质量的气体,在保持温度不变的情况下改变压强,研究压强与体积的关系.让学盛帮助记录数据.
压强 Pa
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
体积V/L
8.0
4.0
2.7
2.0
1.6
1.3
1.1
1.0
4.0
4.0
4.05
4.0
4.0
3.9
3.85
4.0
以横坐标表示气体的体积,纵坐标表示气体的压强,作出压强p 与体积的关系如图所示.
可见,一定质量的气体,在体积不变的情况,压强P随体积V的关系图线为一双曲线,称为等温线.①见等温线上的每点表示气体的一个状态.②同一等温线上每一状态的温度均相同.③对同一部分气体,在不同温度下的等温线为一簇双曲线,离坐标轴越近的等温线的温度越高.
通过实验得出,一定质量的某种气体,在温度保持不变的情况下,压强p与体积V的乘积保持不变,即:常量
或压强p与体积V成反比,即:
这个规律叫做玻意耳定律,也可以写成:或
例如:一空气泡从水库向上浮,由于气泡的压强逐渐减小,因此体积逐渐增大.
例题1:如图所示,已知:,求:和
解:根据图像可得:
∵ 封闭在管中的气体质量、温度均不变.
即:
解得:
2、气体的压强与温度的关系——查理定律
演示实验:一定质量的气体,在体积保持不变的情况下改变温度,研究压强与温度的关系.让学生帮助记录数据.
压强 Pa
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
温度T/K
300
330
360
390
420
450
480
510
以横坐标表示气体的温度,纵坐标表示气体的压强,作出压强p 与温度T的关系如图所示.
可见,一定质量的气体,在体积不变的情况下,压强p与热力学温度的关系,图线为通过原点的一条直线,称为等容线.
①等容线上的每一点表示气体的一个状态.②同一等容线上每一状态的体积均相同.③对同一部分气体,在不同体积下的等容线为一
簇通过原点的直线,离横轴越远的等容线的体积越大().通过实验得出,一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T之比保持不变,即:常量
或压强p与热力学温度T成正比,即:
这个规律叫做查理定律,也可以写成:或
例如:乒乓球挤瘪后,放在热水里泡一会儿,由于球内气体温度升高,压强增大,就把乒乓球挤回球形.
例题2:一定质量的某种气体在20℃时的压强是 Pa,保持体积不变,温度升高到50℃,压强是多少?温度降到-17℃时,压强是多少?
解:∵因气体的质量和体积均不变


3、气体的体积和温度的关系——盖·吕萨克定律
教师讲解:由前面我们得到:;;
则可以得到:
也就是说:一定质量的气体,在压强不变的情况下,体积与热力学温度成正比,即:,
这个规律叫做盖·吕萨克定律,也可以写成:或
一定质量的气体,在压强不变的情况下,体积V与热力学温度的关系图线为通过原点的直线,称为等压线.
①等压线上每一点表示气体的一个状态.②同一等压线上每一状态的压强相等.③对同一部分气体,在不同压强下的等压线为一簇通过原点的直线,离横轴越远的等压线的压强越大().
教师总结:理想气体的状态方程是由实验定律推证出来的,我们也可以把玻意耳定律、查理定律、盖·吕萨克定律分别看成是在温度、体积、压强不变的情况下理想气体状态方程的特殊情况,或者说,理想气体的状态方程包括了三个实验定律.
(三)板书设计
二、气体实验定律
1、气体的压强与体积的关系——玻意耳定律
内容:图像:
表达式:
2、气体的压强与温度的关系——查理定律
内容:图像:
表达式:
3、气体的温度与体积的关系——盖·吕萨克定律:内容:图像:
表达式:
气体实验定律。

相关文档
最新文档