全国优秀案例任意角的三角函数教学设计案例)
高中数学《任意角的三角函数》公开课优秀教学设计

高中数学《任意角的三角函数》公开课优秀教学设计1、任意角的三角函数定义的建构;2、学生对三角函数值在各个象限符号的确定的理解;3、学生理解和掌握三角函数的周期性特点(公式一).五、教学过程设计1、引入(5分钟):通过回顾初中锐角三角函数的定义,引出任意角三角函数的定义的必要性和重要性.2、讲解(30分钟):通过引入直角坐标系和单位圆,建立锐角终边上点的坐标表示锐角的三角函数值的概念,从而引导学生注意到在单位圆中,锐角和单位圆上的点有对应关系,进而形成任意角的三角函数的概念.同时,讲解三角函数值在各个象限内的符号确定方法和三角函数的周期性特点(公式一).3、例题演练(15分钟):通过例题演练,加强对概念的理解和应用.4、小组合作探究(20分钟):将学生分成小组,让他们自主探究任意角正弦函数的定义,并类比得到余弦函数和正切函数的定义,培养学生类比分析的能力和团队合作的意识.5、总结(5分钟):对本节课的重点难点进行总结,巩固学生的研究成果.六、教学反思本节课通过引入直角坐标系和单位圆,建立锐角终边上点的坐标表示锐角的三角函数值的概念,引导学生形成任意角的三角函数的概念,同时讲解了三角函数值在各个象限内的符号确定方法和三角函数的周期性特点(公式一).通过例题演练和小组合作探究,加强了学生对概念的理解和应用,培养了学生类比分析和团队合作的能力.但是,本节课还可以在教学过程中加入更多的互动环节,激发学生的研究兴趣和积极性,提高教学效果.问题4我们已经知道了任意角的三角函数是以角的大小为自变量,以边的比值为函数值的函数,那么如何将任意角的三角函数与坐标系联系起来呢?设计意图:通过问题的提出,引导学生思考如何将任意角的三角函数与坐标系联系起来,从而引导学生进入到坐标法的研究中去.问题5我们已经知道了在坐标系中,点的坐标可以表示为有序数对(x,y),那么如何利用坐标系表示三角形的三个顶点呢?设计意图:通过问题的提出,引导学生思考如何利用坐标系表示三角形的三个顶点,从而引导学生进一步探究三角函数在坐标系中的应用.三)总结归纳,拓展应用在学生通过问题的探究过程中,教师及时进行总结归纳,引导学生将所学知识进行归纳整理,从而加深学生对知识的理解和掌握.同时,教师还可以通过拓展应用,让学生将所学知识运用到实际问题中去,从而提高学生对知识的应用能力.问题4:我们应该先研究锐角还是任意角?我们将以锐角三角函数为本节课的“生长点”,这样的研究符合学生的认知规律,更能够激发学生的求知欲。
任意角的三角函数教学案例(精选最新)

任意角的三角函数教学案例一、我的教学设计教学引入:前面我们学习了任意角,既然能把锐角推广到任意角,那锐角三角函数能否推广到任意角的三角函数呢?(设计意图:回顾旧知引入新知,以问题的形式来引入。
简单的一句话,能激发学生的好奇心和求知欲,也点明了本节课的主题。
)教学过程设计:问题1 本节我们研究三角函数问题。
说起三角函数并不陌生,在初中我们已学过锐角三角函数,请同学们回顾一下,锐角三角函数是怎样规定的?(设计意图: :回顾已学习的知识,为新知识做好铺垫。
)学生活动:1、指出锐角三角函数是在直角三角形中规定的。
2、说出三个锐角三角函数的定义。
问题2 我们把锐角放到直角坐标系中,你能用终边上点的坐标来表示锐角三角函数吗?(设计意图:将已有知识坐标化,分化难点。
用新的观点再认识学生的已有知识经验,使本课时的学习与学生的已有知识经验紧密联系,使知识有一个熟悉的起点。
)学生活动1:1、过点P做x轴的垂线。
2、用P点的坐标表示的三条边。
3、用P点的坐标表示三个锐角三角函数。
问题3 上述比值与点P在终边上的位置有关吗?学生活动2:利用三角形全等,可发现上述比值与点P在终边上的位置有无关。
问题4 如何将上述定义的形式化简?写出最简单的形式。
(设计意图:用数学的简洁美引导学生进行研究,为定义的拓展奠定基础。
)学生活动3:1、当时,上述定义表示最简单。
2、最简单的形式为问题5 怎样确定点P的位置使它与原点的距离为1?(设计意图:为任意角的定义做好最后的铺垫。
)学生活动4:作一个单位圆,使角的终边与单位圆的交点为P即可。
问题6:上述定义是借助于单位圆,利用角的终边与单位圆的交点的坐标给出的,它可以推广到任意角的三角函数,请写出任意角的三角函数的定义。
分小组分别写出角α的终边位于第二、三、四象限和x轴、y轴上时的三角函数。
(设计意图:具体认识任意角的三角函数,突现本课时的研究重点。
如果问题太一般化,如设计为:上述定义可以推广到任意角的三角函数,请写出任意角的三角函数的定义。
《任意角的三角函数第一课时》教学案例

《任意角的三角函数第一课时》教学案例一、教学内容人教版职高数学(必修)下册8.2.1 《任意角的三角函数》第一课时.二、学生分析09工艺美术学生的数学基础比较差,但他们非常的认真,喜欢学习,大部分学生能在老师的启发帮助下,能够接受基本的新知识,完成学习任务.学生在学习本节内容之前已经学习角的概念的推广和锐角的三角函数,已经积累了相关的学习经验,且具备了思考问题的方法,能够就新的内容展开思考,而且在情感上也具备了学习新知识的渴求.但是学生的接受和反应能力比较有限,所以在教学内容的容量上做了非常大的调整,本节只讲六个三角函数中的前三个.三、教学目标1、认知目标:(1)掌握任意角的正弦、余弦、正切的定义;(2)会根据任意角的三角函数的定义求特殊角的三角函数值;(3)会根据任意角的三角函数的定义求任意角的三角函数值.2、能力目标:在学生在原有知识的基础上,通过启发、引导学生发现和得出任意角的三角函数的定义,培养学生观察、分析、探索、归纳、类比及解决问题的能力.3、情感目标:(1)利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识;(2)让学生明白数学源于生活,生活中处处蕴含数学,学习数学很有用.四、教学重点、难点教学重点:任意角的正弦、余弦、正切的定义;教学难点:直角坐标系下用坐标比值定义的观念转换以及对坐标定义的合理性的理解;五、教学策略以惑激学、以景激情、师生共同探讨.这样既能尊重学生的主体地位,又能充分发挥教师的主导作用,让学生亲历数学发现过程,能调动学生学习的积极性与主动性.同时,通过几何画板的动态演示功能创建情景,从认知冲突入手,引起学生学习兴趣,激发其求知欲,点燃其思维火花,力求让学生的知识和能力与时俱进.六、教学过程与设计意图1、设置情境,激发兴趣.师:同学们坐过摩天轮吗?生:当然啦!师:今天,我们的数学之旅就从摩天轮开始.请看问题1.问题1:如图,摩天轮的半径为20m,中心o离地面为24m,现在小明坐上了摩天轮,并从点p开始以每秒1度的速度逆时针转动,当转动30秒后小明离地面的高度是多少?图1 图2设计意图:(1)通过呈现自然合理的问题,贴近生活,许多学生有亲身的体验,兴趣极高.(2)因为摩天轮的转动与角的终边转动一致,转轮的周期性与角的任意性也一致.所以通过直观的感知,自然引出本节的课题-------任意角的三角函数.2、自主探索,化解难点.师:初中同学们已经学过了锐角的三角函数,请问锐角的余弦,正弦,正切是如何定义的?生:在rt△omp中,设角0为,对边为pm,邻边为om,锐角的正弦,余弦,正切依次为(图2):师:根据在直角坐标系中研究角的做法,把锐角的顶点与坐标原点重合,锐角的始边与x轴的非负半轴重合.要得到锐角三角函数值,则要构造直角三角形,如图3,在角的终边上取一点p,过点p作x轴的垂线pm,怎样表示锐角的三角函数呢?图3 图4生:没多少人有反应.大多数同学摇头.师:如果设终边上的点p的坐标为(x,y)呢?生(思考片刻):这样好像可以,得先计算出op的长度.师:那么op的长度是多少呢?生:.师:如果设r=,那么角的余弦,正弦,正切值呢?生:师:那就是说锐角的三角函数可以用锐角的终边上一点p的坐标来表示哦.师生共同总结:锐角三角函数的坐标定义:把锐角的顶点与坐标原点重合,始边与x轴的正半轴重合,在其终边上任取一点p(x,y),设点p到原点的距离为r(),则师:初中学习的锐角三角函数是用直角三角形的边的比值来定义,受直角三角形的约束,不能类似地定义钝角及任意角的三角函数.但角终边上的点的坐标来定义锐角三角函数,不受直角三角形的约束,那么任意角的三角函数是否可类似地用坐标来定义?师生:(请几位同学上来做演示)几何画板演示,观察任意角的终边分别位于不同位置时,三个比值的变化情况.师:随着的终边在轴上及各象限内变化,三个比值也随着变化;且对于任何一个确定的角,每一个比值都是唯一确定的(终边在y轴上时,y/x除外),根据函数的定义,它们实际上构成了以角为自变量、以比值为函数值的函数.我们把它们分别叫做任意角的余弦、正弦、正切函数.师:实际上数学家欧拉就是用这种方法来定义任意角的三角函数的,这也正是我们本节课要学习的任意角的三角函数的定义:已知以上三种函数统称三角函数.师:至此我们将锐角的三角函数推广到任意角的三角函数.3、归纳总结,任务延续.(1)小结:本节课主要学习了任意角的三角函数的定义。
高中数学《任意角的三角函数》公开课优秀教学设计

....2.. “任意角的三角函数”第一课时教学设计一、教学内容解析1、本节课是人教 A 版《数学 4》第一章“三角函数”中的“任意角的三角函数(第一 课时)”,其重点内容是任意角的三角函数概念的建构.通过引入直角坐标系,实现用锐角终 边上点的坐标表示锐角的三角函数值(坐标化);随着单位圆的引入(形式优化),进而引导 学生注意到在单位圆中,锐角 和单位圆上的点有对应关系,因为角的集合与实数集之间 可以建立一一对应的关系,从而发现锐角的弧度数和单位圆上点的坐标之间形成函数关系 (函数化);最终形成任意角的三角函数的概念(一般化)之后,通过例题闯关,应用了概 念,加强了对概念的理解(概念理解强化).2、任意角的三角函数是三角学内容的基础,是后续内容学习的思维起点,是整个三角 学认知结构的生长点.它的学习既是学科系统内部知识发展的需要,又是坐标思想、数形结 合思想的载体,更是对函数概念理解和认识的一次升华.学习过程中的认知冲突,容易激发 学生思维的积极性,有助于探究、创新能力的培养.由锐角三角函数的定义到任意角三角函 数的定义是学生认识上的突破,也是体会特殊到一般思想的良好素材 二、教学目标设置1、知识与技能:①借助单位圆让学生认识和理解任意角的三角函数的定义②让学生能 根据定义判定三角函数的符号③让学生知道公式一,并由此体会三角函数的周期性特点2、过程与方法:①通过回忆初中的锐角三角函数定义,发现角概念推广后其局限性, 必须寻找其它方式定义;②在形成新的锐角三角函数定义的过程中领悟坐标法的优越性,加 深对函数概念的理解;③由特殊到一般的思想推广到任意角的三角函数定义;④通过探究任 意角正弦函数定义,类比得到任意角的余弦函数和正切函数,培养学生类比分析的能力;⑤ 通过对三角函数值在各个象限符号的确定,培养学生利用规律解决问题的意识;⑥通过对公 式一的学习,培养学生数形结合的意识,让学生体会三角函数的周期性3、情感态度与价值观:①培养学生在运动变化的过程中认识知识的发生和发展,体会 知识之间的内在联系,感悟知识的整体性;②通过小组合作交流,倡导学生主动参与课堂, 培养学生团队合作的意识;③通过对新知识的探究,培养学生分析解决问题的能力和理性思 维的能力.三、教学重点1、对任意角的三角函数定义的理解; 、正弦、余弦、正切函数值在各个象限内符号的 确定;3、三角函数的周期性特点(公式一).四、教学难点任意角的三角函数概念的建构过程.五、学生学情分析学生在初中学习的锐角三角函数是以锐角为自变量,以边的比值为函数值的函数,以及 高中学习过的函数的定义和任意角及弧度制,这些是学生学习任意角的三角函数知识的基础 和依据.本节课从研究锐角三角函数的概念出发,更容易激发学生学习的热情,从而催生学 生创造性思维.在概念建构的过程中,学生必需经历由特殊到一般的认识过程以及把新的概 念纳入到一般函数的结构之中,这是认知过程的一道坎,又是认知的一次升华 六、教学策略分析本课采用“引”“探”相结合的方式,将问题以问题串的形式展现,让学生在愤悱中形 成认知冲突,体会、感悟数学研究的一般思路和方法 课堂中以学生为主体,将学生分成若 干小组,使学生全员参与课堂,通过学生之间合作交流,教师间或参与学生的讨论,对有困..惑的小组或者个别学生进行帮助和引导,培养学生主动探究新知识的能力 .此外,为了提高 教学效果,使课堂教学更生动形象,利用多媒体课件进行教学 七、教学过程(一)创设情境,导入新课(问题 1 到问题 2 是温故知新化过程)问题 1 初中我们在直角三角形中学习过锐角三角函数,你能回忆出初中锐角的正弦、余弦、 正切函数是怎样定义的吗?你能说出它们的自变量是什么,又以什么为函数值呢?自变量的 范围是什么?设计意图:要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况 开始,因此对锐角三角函数的复习是必不可少的.将锐角三角函数融入学生已有的函数知识 结构中,容易为学生建立起任意角的三角函数获取心理逻辑的自然 问题 2 在高中,随着角的概念的推广和弧度制的引入,角的范围变成了全体实数R ,那么 对于任意角 α ,比如当α 为钝角时,角α 的“斜边”这种说法还存在吗?那么任意角的三 角函数该如何定义呢?设计意图:利用角 α 的变化作为思维的切入点,打破学生已有的认知结构的平衡,感受学 习新知识的必要性,即角的范围扩大了,初中锐角三角函数的定义也应该与时俱进,这有利 于将探究的主动权交给学生.(二)提出问题,探求新知(问题 3 到问题 5 是定义坐标化过程)问题 3 中国有句古话说的好,“工欲善其事,必先利其器”.随着角的概念推广和弧度制的 引入,我们一般借助什么工具来研究角?设计意图:依托学生已有的经验,启发学生联想,触发学生的灵感,为坐标法的实施奠定研 究的基础.问题 4 我们先研究哪种角呢?是直接研究任意角的情形还是先研究锐角的情形呢?设计意图:以锐角三角函数的研究为本节课知识的“生长点”,这样的研究符合学生的认知 规律,学生有思考的落脚点,更能够激发学生的求知欲,由特殊到一般的思想突破本节课任 意角三角函数概念的建构这一教学难点.问题 5 对于任意角α 都有始边和终边.在直角坐标系中,如何放置锐角α 可以方便研究?在锐角 α 的终边上任取一点 P(a, b ) ,它与原点 O 的距离为 r ,你能用点 P 的坐标及 r 来表示锐角 α 的三角函数吗?设计意图:把锐角 α 放在直角坐标系下对学生来说比较简单,构造直角三角形也是一目了 然的,这样可以把复习的初中的锐角三角函数的定义纳入直角坐标系,将边长的比变成坐标 关系,为任意角的三角函数定义的给出做好铺垫.提及“始边”、“终边”也是为了概念一般 化做铺垫.(问题 6 到问题 7 是表达式形式优化过程)问题 6 当锐角 α 确定,如果改变α 的终边上的 P 点位置,角 α 的正弦值会发生改变吗? 设计意图:问正弦值这一种情况,方便师生研究.余弦值和正切值可以类比得到,更方便学 生理解(下面有类似问法也是同样考虑);由三角形相似,说明在终边上任意取点不影响三 角函数值. 这是为单位圆定义的提出做好铺垫.问题 7 数学追求“简洁美”,既然这三个比值与终边上点 P 的位置无关,那么当 P 点选在 何处时, sin α和 c os α 的形式最简单?设计意图:通过问题的形式过渡,自然得出单位圆的概念.由此便可顺势得出 s in α和 c os α 的 简化形式,体现了数学的“简洁美”.同时也明确在单位圆的背景下,锐角和单位圆上 P 点.有对应关系.(问题 8 到问题 10 是函数化过程)问题 8 当锐角 α 发生变化时, P 点的坐标会发生相应的改变吗?(追问)当锐角α 确定 了, P 点的坐标是否唯一确定?(配合动画演示) 教师板书:任意锐角α (实数)→唯一 实数 b ;任意锐角 α (实数)→唯一实数 a .)设计意图:初中学生对函数理解还比较肤浅,这里提出的问题扣准了函数概念的内涵,突出 了变量之间的依赖关系及对应关系,是从一般函数知识演绎到三角函数知识的重要环节,是 准确理解三角函数概念的关键.问题 9 你能给这个函数(任意锐角α (实数)→唯一实数 b )命名吗?设计意图:只单问一个函数,可以方便学生思考,也方便师生共同总结,还可以让学生在自 行总结任意角的三角函数概念时有参照对象.问题 10 既然是函数,你能说出锐角α 正弦函数的自变量吗?以什么为函数值呢?设计意图:让学生能更好的理解锐角三角函数的定义,同时为总结任意角三角函数定义打好 基础.(问题 11 到问题 12 是特殊到一般化过程)问题 11 我们现在得到的锐角三角函数的定义和初中所学锐角三角函数定义有什么区别? 设计意图:加强学生对新的定义方式的理解,让学生意识到任意角没有“斜边”,但是有“始 边”、“终边”,从而发现对于任意角,如果始边放在 x 轴非负半轴上,其终边定与单位圆有 唯一交点,从而能形成函数关系.为归纳任意角三角函数概念扫清心理障碍.问题 12 由特殊到一般的思想,你能给任意角的三角函数下一个定义吗?(教师在与学生 交流中,板书定义)设计意图:利用类比、迁移的认知规律,学生容易给出任意角的三角函数定义 .学生可以意 识到锐角三角函数是任意角三角函数的特例,任意角三角函数是锐角三角函数的自然延伸 (三)分析思考,加深理解(下列问题是概念理解强化过程)问题 13 既然它们是函数,就要注意其定义域,它是函数的“生命之域”,那么正弦、余弦、 正切函数的定义域分别是什么?设计意图:因为角的集合与实数集之间可以建立一一对应的关系,故三角函数也可以看成实 数为自变量的函数,强调了其函数属性.问题 14 当 α 为锐角时, sin α ,cos α , tan α 的值都是正数,当α 的终边落在各个象限时,它们分别取什么符号?设计意图:对比锐角三角函数,让学生再次回忆任意角三角函数的定义,培养学生利用规律 解决问题的意识.设置一个阅读环节,让学生阅读“三角函数名称由来简史”.设计意图:通过三角知识简史的阅读,让学生有新奇感,同时提高课堂的数学文化感,让学 生感知数学是源于生活的.以此,进一步激发学生的学习热情.(四)强化训练,巩固双基第一关 求5π 3 的正弦、余弦和正切的值.设计意图:将例题以闯关的形式呈现,和综艺节目设置相似,寓教于乐,能激发学生的学习 热情;明确已知角的终边,要求其三角函数值,可以先求终边与单位圆的交点坐标,通过运 用概念,巩固对概念的理解.4 ) ; . ..问题 15 (追问)求11π 3 的正弦、余弦和正切的值.设计意图:引起学生发现这两个角的终边是重合的,所以它们与单位圆的交点坐标相同,由 任意角三角函数的定义可知,终边相同的角的同一三角函数值是相等的 .让学生体验到公式 一的作用和三角函数的周期性.第二关 确定下列三角函数值的符号:(1) cos 260 ; (2) sin(-π (3) tan(-700 ) ; (4) tan3 π .第三关 求下列三角函数值:9π 11π (1)sin(-1050 ) ; (2) cos ; (3) tan(- ) .4 6 设计意图:判断三角函数值的正负符号,是本节课的教学目标之一,引导学生抓住定义、数 形结合判断三角函数值的正负符号,同时应用终边相同的角的同一三角函数值是相等的这一 结论.第四关 已 知 角 α 的 终 边 经 过 点 P (-3, -4), 求 角 α 的 正 弦 , 余 弦 和 正 切 值 . 0P (-3a, -4a)(a ≠ 0), 情况又如何?0 设计意图:该点不在单位圆上,与例题 1 的解法对比;为课后探究“角 α 终边上任一点 Q( x , y) ,求角 α 的正弦、余弦和正切的值.”这一问题作铺垫;增加了一个问题,加强了学生对任意角三角函数定义的理解,同时渗透了分类讨论的思想(五)课堂小结,升华提高知识与技能:任意角三角函数的定义(单位圆);能根据定义判定三角函数的符号;公式一 (终边相同的角的同一三角函数值相等)即三角函数的周期性特点 思想与方法:坐标法、特殊到一般、数形结合、类比、转化、分类讨论设计意图:让学生自己总结,教师补充,并且提醒学生知识重要,探究的思想与方法更重要,体现了教学应以学生为主体,教师为主导的新课标理念.(六)作业布置:1、课本 15 页练习 2、3、5.2、假设角 α 的顶点是直角坐标系的原点,始边与 x 轴的非负半轴重合,已知角 α 终边上任一点 Q ( x , y) ,求角 α 的正弦、余弦和正切函数值.3、通过本节课学习,你对任意角三角函数有哪些新的认识?利用定义你能解决哪些问题?你还有哪些不明白的地方?请把它写下来.设计意图:体现作业的多样性,鼓励学有余力的同学课后探究,因材施教,多元发展.教师和学生同唱励志歌曲《奔跑》,课堂在歌声中结束.设计意图:拉近师生关系,也鼓励学生不畏艰难,在学习过程中保持奔跑的态度.在数学课堂也可以渗透品德教育.“任意角的三角函数”教学课例点评一堂好的数学课,必须蕴含丰富的数学内涵,能够激发学生思考的热情,使学生经历“百思不得其解的困惑——茅塞顿开的激动——问题解决的愉悦”的过程,从中品味思考的乐趣,发展思维的能力,获得数学的思想方法.这样的课才既有内容又有思想,既见树木又见森林.蔡老师将本节课设计成问题串的形式,通过问题串诱发、引导学生完成本节课的探究过程(温故知新化过程——定义坐标化过程——表达式形式优化过程——函数化过程——特殊到一般化过程——概念理解强化过程).整个教学过程层层递进,线索清晰,突出了教学重点,突破了教学难点.问题的设计能让学生产生认知需求,享受在领悟、感知中探求新方法和学习新知识的乐趣.此外,例题以闯关的形式出现,寓教于乐,是学生喜闻乐见的.本节课在知识的学习中很好的渗透了数学的思想和方法.比如,单位圆的引入渗透了数形结合的思想;由锐角的三角函数到任意角的三角函数体现了从特殊到一般的思想;将任意角的正弦函数的定义类比到了任意角的余弦函数和正切函数定义等等.本节课融入了数学文化、数学育人的精神.比如,通过三角函数名称简史的阅读,渗透了数学文化,提高课堂的数学文化厚度,让学生感知数学是源于生活的;在单位圆的引入体现数学“简洁美”时,蔡老师提到为人应当“简简单单,堂堂正正”;通过对新知识的探究,培养学生分析解决问题的能力和理性思维的能力;在课堂结尾时,教师鼓励学生在学习过程中要保持奔跑的态度,师生同唱立志歌曲《奔跑》等等,这些都体现了立德树人的教育理念.。
全国高中数学优质课 任意角的三角函数教学设计

“任意角三角函数的概念”的教学设计一、教学内容解析这是一节关于任意角的三角函数的概念课。
三角函数是高中范围内即指数函数、对数函数和幂函数之后的最后学习的函数,是函数的一个下位概念,与指对数函数、幂函数属于同一抽象(概括)层次。
它是一种重要的基本初等函数,是解决实际问题的重要工具,也是学习数学中其他知识内容的基础。
在初中,学生已学过锐角三角函数,知道直角三角形中锐角三角函数等于相应边长的比值。
在此基础上,随着角的概念的推广,引入弧度制,相应地将锐角三角函数推广为任意角的三角函数,此时它与三角形已经没有什么关系了。
任意角的三角函数是研究一个实数集(角的弧度数构成的集合)到另一个实数集(角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系。
认识它需要借助单位圆、角的终边以及两者的交点这些几何图形的直观帮助,这里体现了数形结合的思想,由锐角三角函数到坐标表示的锐角三角函数,再到单位圆上的点的坐标表示的锐角三角函数,直至得到任意角的三角函数的定义,体现了合情推理的思想方法。
本节课将围绕任意角三角函数的概念展开,任意角三角函数的概念是本节课的重点,能够利用单位圆认识这个概念是解决教学重点的关键二、教学目标设置1、借助终边上一点的坐标理解任意角三角函数的定义:(1)能利用直角坐标系中角的终边上一点的坐标表示锐角三角函数;(2)能利用直角坐标系中角的终边上一点的坐标表示任意角的三角函数;2、借助单位圆理解任意角三角函数的定义:(3)能利用直角坐标系中角的终边与单位圆交点的坐标表示锐角三角函数;(4)能利用直角坐标系中角的终边与单位圆交点的坐标表示任意角的三角函数;3、知道三角函数是研究一个实数集(角的弧度数构成的集合)到另一个实数集(角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系,正弦、余弦和正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数。
4、在借助单位圆认识任意角三角函数概念的过程中,体会数学结合思想,并利用这一思想解决有关定义应用的问题。
任意角的三角函数(教案)

任意角的三角函数(教案)一、教学内容本节课的教学内容来自于高中数学必修一的第四章第一节,主要内容包括任意角的三角函数的定义、正弦函数、余弦函数和正切函数的图像与性质。
二、教学目标1. 让学生理解任意角的三角函数的定义,掌握正弦函数、余弦函数和正切函数的图像与性质。
2. 培养学生运用三角函数解决实际问题的能力。
3. 培养学生合作学习、探究学习的能力。
三、教学难点与重点1. 教学难点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的理解和应用。
2. 教学重点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的掌握。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板。
五、教学过程1. 实践情景引入:让学生观察教室的布置,找出角的度量单位,引出角的概念。
2. 任意角的三角函数的定义:通过多媒体展示正弦函数、余弦函数和正切函数的定义,让学生理解并掌握它们的定义。
4. 例题讲解:出示例题,让学生独立解答,然后讲解答案,讲解过程中强调解题思路和方法。
5. 随堂练习:出示随堂练习题,让学生独立完成,然后批改并讲解答案。
8. 布置作业:布置相关的作业题目,让学生巩固所学知识。
六、板书设计1. 任意角的三角函数的定义2. 正弦函数、余弦函数和正切函数的图像与性质七、作业设计1. 题目:已知一个角的度数为30°,求它的正弦值、余弦值和正切值。
答案:正弦值:1/2余弦值:√3/2正切值:√3/32. 题目:画出角α的正弦函数、余弦函数和正切函数的图像。
答案:见附图。
八、课后反思及拓展延伸1. 课后反思:本节课的教学过程中,学生对任意角的三角函数的定义掌握较好,但在正弦函数、余弦函数和正切函数的图像与性质的理解上还有待加强。
2. 拓展延伸:让学生研究任意角的三角函数在实际问题中的应用,如测量大树的高度、计算物体在斜面上的速度等。
重点和难点解析一、任意角的三角函数的定义任意角的三角函数的定义是本节课的核心内容,学生需要理解并掌握正弦函数、余弦函数和正切函数的定义。
《任意角的三角函数》 教学设计

《任意角的三角函数》教学设计一、教学目标1、知识与技能目标(1)理解任意角三角函数(正弦、余弦、正切)的定义。
(2)掌握三角函数在各象限的符号。
(3)能根据任意角的终边上的点坐标,求出该角的三角函数值。
2、过程与方法目标(1)通过单位圆,经历从锐角三角函数推广到任意角三角函数的过程,体会数学中的从特殊到一般、从具体到抽象的思维方法。
(2)通过三角函数定义的应用,提高学生的数学运算能力和逻辑推理能力。
3、情感态度与价值观目标(1)让学生在探索任意角三角函数定义的过程中,感受数学的严谨性和科学性,激发学生对数学的兴趣。
(2)通过合作学习,培养学生的团队合作精神和交流能力。
二、教学重难点1、教学重点(1)任意角三角函数的定义。
(2)根据角的终边上的点坐标求三角函数值。
2、教学难点(1)任意角三角函数定义的理解。
(2)三角函数值在各象限的符号。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课(1)回顾锐角三角函数在初中,我们学习了锐角三角函数,如正弦、余弦和正切。
对于锐角α,设其对边为 a,邻边为 b,斜边为 c,则正弦sinα = a/c,余弦cosα = b/c,正切tanα = a/b。
(2)提出问题如果角不再是锐角,而是任意角,那么三角函数的定义又该如何呢?2、讲授新课(1)单位圆的引入在平面直角坐标系中,以原点 O 为圆心,以单位长度 1 为半径作圆,这个圆称为单位圆。
(2)任意角三角函数的定义设α是一个任意角,它的终边与单位圆交于点 P(x,y),则:正弦函数:sinα = y余弦函数:cosα = x正切函数:tanα = y/x(x≠0)(3)三角函数值在各象限的符号通过分析单位圆中角的终边所在象限,以及对应的 x、y 的正负,得出三角函数值在各象限的符号。
3、例题讲解例1:已知角α的终边经过点P(3, -4),求sinα、cosα、tanα的值。
解:因为点 P 的坐标为(3, -4),所以 x = 3,y =-4,r =√(3²+(-4)²) = 5则sinα = y/r =-4/5cosα = x/r = 3/5tanα = y/x =-4/3例 2:判断下列三角函数值的符号:① sin 180°② cos(-200°)③ tan 250°解:① sin 180°= 0② cos(-200°)= cos 200°< 0③ tan 250°= tan(180°+ 70°)= tan 70°> 04、课堂练习(1)已知角α的终边经过点 P(-1, 2),求sinα、cosα、tanα的值。
【新课标必修】《任意角的三角函数(一)》教学案例

课题任意角的三角函数(1)教学目标:知识目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:1.理解并掌握任意角的三角函数的定义;2.树立映射观点,正确理解三角函数是以实数为自变量的函数;3.通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
情感态度与价值观:1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点难点:1.重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。
2.难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。
教法与学法:1.教法选择:研究性学习方式——“设置问题情境,探索辨析,归纳应用,延伸拓展”;2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展。
教学过程:一、设置情境,激发探索二、归纳总结,变式演练三、归纳小结,课堂延展2π间角的三角函数值问题.巩固作业:、已知角α()5A.-5教学设计说明1.教材地位分析:任意角的三角函数第一课时。
本节课是初中锐角三角函数的继承和延伸。
本节课主要学习任意角的三角函数的定义以及应用定义判断三角函数值的符号。
三角函数是描述客观世界中周期性变化规律的重要数学模型,在数学和其他领域中都具有重要的作用。
任意角的三角函数的概念是三角函数的一个核心内容,它为后续更加深入地学习三角函数奠定了坚实的基础。
2.学生现实分析:学生已经学习过了任意角和弧度制,已经具备了学习本节课的知识基础,并且他们在初中已经学习了锐角三角函数,这也为本节课的学习奠定了方法与经验基础。
所以在锐角三角函数的基础上,推广到任意角的三角函数,便于学生理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角的三角函数陈正泉一、教学内容解析这是一堂关于任意角的三角函数的概念课.在初中,学生已学过锐角三角函数,知道直角三角形中锐角的三角函数等于相应边长的比值.在此基础上,随着本章将角的概念推广,以及引入弧度制后,这里相应地也要将锐角三角函数推广为任意角的三角函数,但它与解三角形已经没有什么关系了.任意角的三角函数是研究一个实数集(角的弧度数构成的集合)到另一个实数集(角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系,认识它需要借助单位圆、角的终边以及二者的交点这些几何图形的直观帮助,这中间体现了数形结合的思想.三角函数是又一种基本初等函数,它作为描述周期变化现象的最常见、最基本的数学模型,不仅在高中数学中有广泛的应用,而且在其他领域中也具有广泛的应用.而任意角三角函数的概念又是整个三角函数内容的基础,所以它不仅是三角函数内容的核心概念,同时在高中数学中还占有重要的地位.本节课将围绕任意角三角函数的概念展开,任意角三角函数的定义是这节课的重点,能够利用单位圆认识该定义是解决教学重点的关键.二、教学目标解析1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义:(1)能用直角坐标系中角的终边与单位圆交点的坐标来表示锐角三角函数;(2)能用直角坐标系中角的终边与单位圆交点的坐标来表示任意角的三角函数;(3)知道三角函数是研究一个实数集(角的弧度数构成的集合)到另一个实数集(角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系,正弦、余弦和正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.2.在借助单位圆认识任意角三角函数的定义的过程中,体会数形结合的思想,并利用这一思想解决有关定义应用的问题.三、教学问题诊断分析1.学生在理解用终边上任意一点的坐标来表示锐角三角函数时可能会出现障碍,原因是学生在此之前都是研究直角三角形中锐角的三角函数,并习惯了直观地用有关边长的比值来表示锐角三角函数.要克服这一困难,关键是帮助学生建立终边上点的坐标的比值与直角三角形有关边长的比值的联系.2.学生在理解将终边上任意一点取在终边与单位圆的交点这一特殊位置上时,又可能会出现障碍,原因是他们可能会认为这一特殊点不具有任意性.针对这一问题,应引导学生利用相似三角形的知识来认识,明白对于一个确定的角,其三角函数值也就唯一确定了,表示其三角函数的比值不会随终边上所取点的位置的改变而改变.3.学生在将用单位圆定义锐角三角函数推广到定义任意角的三角函数时,还可能会出现障碍,主要原因还是受初中锐角三角函数定义的影响,仍然局限在直角三角形中思考问题.要帮助学生克服这一困难,就要让学生知道,借助单位圆,用终边与单位圆交点的坐标来表示三角函数,就是为了很好地解决在直角三角形中不能定义任意角的三角函数的问题,用单位圆统一定义三角函数,不仅没有改变初中锐角三角函数定义的本质,同时还能定义任意角的三角函数.四、教学支持条件分析为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维.五、教学过程设计(一)教学基本流程(二)教学情景1 •复习锐角三角函数的定义问题1:在初中,我们已经学过锐角三角函数•如图1,在直角△POM中, /M是直角,那么根据锐角三角函数的定义,/ O的正弦、余弦和正切分别是什么?P图1设计意图:帮助学生回顾初中锐角三角函数的定义.师生活动:教师提出问题,学生回答.2 •认识任意角三角函数的定义问题2:在上节教科书的学习中,我们已经将角的概念推广到了任意角,现在所说的角可以是任意大小的正角、负角和零角.那么任意角的三角函数又该怎样定义呢?设计意图:引导学生将锐角三角函数推广到任意角三角函数.师生活动:在教学中,可以根据学生的实际情况,利用下列问题引导学生进行思考:(1)能不能继续在直角三角形中定义任意角的三角函数?以此来引导学生在平面直角坐标系内定义任意角的三角函数.如果学生仍然不能想到借助平面直角坐标系来定义,那么可以进一步提出下列问题来启发学生进行思考:(2)在上节教科书中,将锐角的概念推广到任意角时,我们是把角放在哪里进行研究的?进一步引导学生在平面直角坐标系内定义任意角的三角函数•在此基础上,组织学生讨论:(3)如图2,在平面直角坐标系中,如何定义任意角a的三角函数呢?如果学生仍用直角三角形边长的比值来定义,则可以作下列引导:(4)终边是0P的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如图3,如果角a的终边不在第I象限又该怎么办?(5)我们知道,借助平面直角坐标系,就可以把几何问题代数化,比如把点用坐标表示,把线段的长用坐标算出来.我们还是回到锐角三角函数的问题上,大家能不能用平面直角坐标系中角的终边上的点的坐标来表示定义式中的三条边长呢?渗透数形结合的思想.(6)利用平面直角坐标系中角的终边上的点的坐标来定义有什么好处?问题3:大家有没有办法让所得到的定义式变得更简单一点?设计意图:为引入单位圆进行铺垫.师生活动:教师提出问题后,可组织学生展开讨论.在学生不能正确回答时, 可启发他们思考下列问题:(1)我们在定义1弧度的角的时候,利用了一个什么图形?所用的圆与半径大小有关吗?用半径多大的圆定义起来更简单易懂些?(2)对于一个三角函数,比如y = sin a,它的函数值是由什么决定的?那么当一个角的终边位置确定以后,能不能取终边上任意一点来定义三角函数?取哪一点可以使得我们的定义式变得简单些?怎样取?加强与几何的联系.问题4:大家现在能不能给出任意角三角函数的定义了?设计意图:引导学生在借助单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.师生活动:由学生给出任意角三角函数的定义,教师进行整理.问题5:根据任意角三角函数的定义,要求角a的三个三角函数值其实就是分别是求什么?设计意图:让学生从中体会,用单位圆上点的坐标定义三角函数不仅简化了定义式,还更能突出三角函数概念的本质.师生活动:在学生回答问题的基础上,引导学生利用定义求三角函数值.例1已知角a的终边经过点P (1,—鱼),求角a的正弦、余弦和正切2 2值.设计意图:从最简单的问题入手,通过变式,让学生学习如何利用定义求不同情况下函数值的问题,进而加深对定义的理解,加强定义应用中与几何的联系,体会数形结合的思想.师生活动:在完成本题的基础上,可通过下列变式引导学生对三角函数的概念作进一步的认识:变式1:求5的正弦、余弦和正切值.3变式2:已知角a的终边经过点P (—3,—4),求角a的正弦、余弦和正切值.3. 进一步理解任意角三角函数的概念问题6:你能否给出正弦、余弦、正切函数在弧度制下的定义域?设计意图:研究一个函数,就要研究其三要素,而三要素中最本质的则是对应法则和定义域.三角函数的对应法则已经由定义式给出,所以在给出定义之后就要研究其定义域.通过利用定义求定义域,既完善了三角函数概念的内容,同时又可帮助学生进一步理解三角函数的概念.师生活动:学生求出定义域,教师进行整理.问题7:上述三种函数的值在各象限的符号会怎样?设计意图:通过定义的应用,让学生了解三种函数值在各象限的符号的变化规律,并从中进一步理解三角函数的概念,体会数形结合的思想.师生活动:学生回答,教师整理.例2:求证:(1)当不等式组Si^ 0,成立时,角B为第三象限角;[ta>0sin°< 0(2)当角B为第三象限角时,不等式组丿口’成立.、tan日>0设计意图:通过问题的解决,熟悉和记忆函数值在各象限的符号的变化规律,并进一步理解三角函数的概念.师生活动:在完成本题的基础上,可视情况改变题目的条件或结论,作变式训练.问题8:既然我们知道了三角函数的函数值是由角的终边的位置决定的,那 么角的终边每绕原点旋转一周,它的大小将会怎样变化?它所对应的三角函数值 又将怎样变化?设计意图:引出公式一,突出函数周期变化的特点,以及数形结合的思想. 师生活动:在教师引导下,由学生讨论完成.例3:先确定下列三角函数值的符号,然后再求出它们的值:9 n f 11(1) sin 一 ;(2) cos 3 n (3) tan ———丨; (4) cos (-672。
). 4 < 6 )设计意图:将确定函数值的符号与求函数值这两个问题合在一起,通过应用 公式一解决问题,让学生熟悉和记忆公式一,并进一步理解三角函数的概念.师生活动:先完成题(1),再通过改变函数名称和角,逐步完成其他各题.4. 练习1 .填表:2. 设a 是三角形的一个内角,在 sin a, cos a ,tan a, tan?中,有可能2 取负值的是__________________________ .3. 选择“〉”,“<”,“二”填空:广 17(1) cos (—450°) 0 ; (2) tan --- i 0;< 8丿 4. 选择①sin 00,② sin «0,③cos 00,④ cos «0,⑤ tan 00,⑥tan X 0中适当的关系式的序号填空:(1) ________________________________ 当角B 为第一象限角时, ,反之也对;(2) ________________________________ 当角B 为第二象限角时, ,反之也对;(3) ________________________________ 当角B 为第三象限角时, ,反之也对;(4) ________________________________ 当角B 为第四象限角时, ,反之也/ c 、 . 4 n ' -(3) sin ———I 0 ; (4) tan 556 ° _0_对.5 .求75的正弦、余弦和正切值.66•已知角B的终边经过点P (- 12, 5),求角B的正弦、余弦和正切值.7.求下列三角函数值(求非特殊角的三角函数值可用计算器):19 n( 31(1) cos 1 109° ; (2) ta门也;(3) sin(—1 050。
);(4) ta n _ — i.3 I 4丿设计意图:通过应用三角函数的定义,熟悉和记忆特殊角的三角函数值、三角函数值的符号、公式一,以及求三角函数值,加强对三角函数概念的理解.师生活动:根据教学的实际情况,对练习题的数量和内容作具体调整.5. 小结问题9:锐角三角函数与解直角三角形直接相关,初中我们是利用直角三角形边的比值来表示其锐角的三角函数. 通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广,但它与解三角形已经没有什么关系了. 我们是利用单位圆来定义任意角的三角函数,借助直角坐标系中的单位圆,我们建立了角的变化与单位圆上点的变化之间的对应关系,进而利用单位圆上点的坐标或坐标的比值来表示圆心角的三角函数.你能再回顾一下我们是如何借助单位圆给出任意角三角函数的定义吗?设计意图:回顾和总结本节课的主要内容.师生活动:在学生给出定义之后,教师进一步强调用单位圆定义三角函数的优点.问题10:今天我们不仅学习了任意角三角函数的定义,还接触了定义的一些应用.你能不能归纳一下,今天我们利用定义解决了哪些问题?设计意图:回顾和总结三角函数定义在本节课中的应用.师生活动:在学生回顾与总结的基础上,教师有意识地引导学生体会定义应用过程中所蕴含的数形结合思想.6. 作业教科书P.20习题1.2A组第1, 2, 3 (1)、(3),4 (1)、(3),5,6 (1)、(2)、(3),7 (1)、(3),8 (1)、(3),9题.设计意图:根据本节课所涉及到的三角函数定义应用的几个方面,从教科书中选择作业题.试图通过作业,让学生进一步理解三角函数的概念,并从中评价学生对三角函数概念理解的情况.。