两条直线的平行与垂直教案

合集下载

数学《两条直线平行与垂直的判定》教案

数学《两条直线平行与垂直的判定》教案

数学《两条直线平行与垂直的判定》教案一、教学目标:1. 确定两条直线是否平行或垂直。

2. 掌握平行线和垂直线的特征和性质。

3. 培养学生观察、分析和判断的能力。

二、教学重难点:1. 两条直线平行与垂直的判定方法。

2. 如何运用这些方法来分析和解决实际问题。

三、教学步骤:1. 导入新知识:解释平行线和垂直线的概念,引导学生思考如何确定两条直线是否平行或垂直。

2. 学习重点:(1)两条直线平行的判定方法:①第一种方法:两条直线的斜率相等,且不相交。

②第二种方法:两条直线的两个任意向量相乘的内积等于 0。

(2)两条直线垂直的判定方法:两条直线的斜率的乘积等于 -1。

3. 学习难点:如何运用判定方法来解决实际问题。

4. 教学过程:(1)两条直线平行的判定例:如图所示,判断直线 AB 和直线 CD 是否平行。

分析:因为直线 AB 的斜率为 2,而直线 CD 的斜率也为 2,且两条直线不相交,所以直线 AB || 直线 CD。

(2)两条直线垂直的判定例:如图所示,判断直线 AB 和直线 CD 是否垂直。

分析:直线 AB 的斜率为 1/2,直线 CD 的斜率为 -2,而 1/2 ×(-2) = -1,因此直线 AB 和直线 CD 垂直。

5. 练习与拓展:(1)练习一:判断两条直线是否平行:①直线 y = 2x + 3 和直线 y = -2x - 1。

②直线 y = 3x + 1 和直线 y = -6x + 6。

(2)练习二:判断两条直线是否垂直:①直线 y = 2x + 3 和直线 y = -2x - 1。

②直线 y = 3x + 1 和直线 2x - y = 4。

6. 总结与归纳:对判定两条直线平行或垂直的方法进行总结归纳,帮助学生理清思路,掌握知识点。

四、教学板书设计:两条直线平行的判定方法:①两条直线的斜率相等,且不相交。

②两条直线的两个任意向量相乘的内积等于 0。

两条直线垂直的判定方法:两条直线的斜率的乘积等于 -1。

2024四年级数学《平行与垂直》教案设计

2024四年级数学《平行与垂直》教案设计

•教学目标与要求•教材内容与特点•学情分析与教学策略•教学方法与手段选择•课堂活动设计与实施•评价方式与标准制定•课后作业布置及辅导安排目录01教学目标与要求使学生理解平行与垂直的基本概念,能准确判断两条直线是否平行或垂直。

让学生掌握平行线、垂线的画法,培养学生的绘图能力。

引导学生理解平行与垂直在现实生活中的应用,如建筑、交通等领域。

知识与技能目标过程与方法目标培养学生的空间观念和几何直觉,发展学生的数学素养。

引导学生在探究过程中体验成功的喜悦,增强自信心和意志力。

激发学生的学习兴趣和好奇心,使学生对数学产生积极的情感态度。

情感态度与价值观目标教学重点与难点教学重点教学难点02教材内容与特点《平行与垂直》知识点概述平行的概念01垂直的概念02平行线与垂直线的性质和应用03图文并茂循序渐进重视实践030201教材编排特点及意图与前后知识点联系前置知识点后续知识点联系与区别03学情分析与教学策略学生已经掌握了直线、线段和射线的基本概念。

学生已经了解了角的基本概念,包括角的分类和度量。

学生已经初步了解了平面内两条直线的位置关系,如相交、平行等。

学生已有知识经验分析学生学习困难及原因预测学生对平行和垂直概念的理解可能存在困难,因为这两个概念比较抽象。

学生在判断两条直线是否平行或垂直时,可能会受到视觉上的干扰,导致判断错误。

学生在应用平行和垂直的知识解决实际问题时,可能会感到无从下手。

针对性教学策略制定通过生动的实例和直观的演示,帮助学生理解平行和垂直的概念。

提供丰富的练习题目,让学生在实践中掌握判断两条直线是否平行或垂直的方法。

引导学生将平行和垂直的知识应用到实际生活中,如测量、建筑等领域,激发学生的学习兴趣。

04教学方法与手段选择启发式教学法应用举例通过提问引导学生思考利用学生已有知识经验从学生熟悉的生活中的平行与垂直现象入手,如铁轨、斑马线等,引导学生感知和理解平行与垂直的概念。

直观演示法辅助理解概念使用教具进行演示通过多媒体课件展示小组合作探究法培养能力分组讨论将学生分成小组,让他们讨论生活中的平行与垂直现象,并尝试用自己的语言描述平行与垂直的概念。

四年级上册数学教案-《平行与垂直》人教新课标(2023秋)

四年级上册数学教案-《平行与垂直》人教新课标(2023秋)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行与垂直的基本概念。平行线是指在同一个平面内,永不相交的两条直线;垂直线则是相交成90度角的两条直线。它们在几何图形中具有非常重要的作用。
2.案例分析:接下来,我们来看一个具体的案例。通过观察黑板上的长方形,我们可以发现对边是平行的,相邻边是垂直的,这个案例展示了平行与垂直在实际中的应用。
还有一点让我印象深刻的是,在总结回顾环节,学生们能够主动提出自己在学习过程中遇到的问题,这说明他们具备一定的自主学习能力。作为教师,我要继续鼓励学生提问,培养他们的问题意识,提高课堂互动效果。
在今后的教学中,我认为可以从以下几个方面进行改进:
1.加强课堂引导,让学生在学习过程中更加主动地思考和探索平行与垂直的性质。
二、核心素养目标
《平行与垂直》课程的核心素养目标主要包括:1.培养学生的几何直观能力,使其能够通过观察、操作、推理等手段认识和理解平行与垂直的概念;2.提升学生的逻辑思维能力,学会运用分类、比较、归纳等方法,判断和证明两条直线的关系;3.增强学生的空间观念,了解平行与垂直在实际生活中的应用,提高解决实际问题的能力;4.培养学生的创新意识,鼓励他们在探索平行与垂直性质的过程中,提出新观点,发现新规律。通过本节课的学习,使学生在掌握知识的同时,全面提升数学学科核心素养。
3.重点难点解析:在讲授过程中,我会特别强调平行线的传递性和垂直线的性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行与垂直相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。使用直尺和量角器在纸上绘制平行线和垂直线,演示其基本原理。

《平行与垂直》教学设计(10篇)

《平行与垂直》教学设计(10篇)

《平行与垂直》教学设计(10篇)《平行与垂直》公开教学设计【教学目标】1.通过观察、操作等活动建立平行与垂直的概念,能正确判断平行、垂直、相交这几种位置关系。

2.经历画直线并根据两条直线的位置关系分类的过程,进一步理解平行、垂直这两种位置关系的特征。

(尤其是对看似不相交而实际上是相交现象的理解)和对“同一平面”的正确理解。

3.在经历理解概念的过程中发展学生的分析能力,在经历符号化的过程中,体会数学的简洁性,在活动中体会数学与生活的联系。

【教学重点】通过观察、操作等活动建立平行与垂直的概念,能正确判断平行、垂直、相交这几种位置关系。

【教学难点】通过操作、探究活动深化对平行、垂直概念的理解【教学准备】教师:磁条4根、三角板、多媒体课件等、长方体(不同一平面)学生:双色水彩笔、白纸一张、尺子、三角板、多媒体【教学过程】一、猜谜导入 --复习直线特征师:听说我们班的孩子猜谜语都特别厉害,有始有终、无始无终、有始无终。

猜猜谜底吧!生:无始无终是直线。

因为可以向两边无限延长。

师:在同一平面内,如果再出现一条直线,它们会是什么样子呢?它会和第一条直线产生什么关系?这就是我们今天要探究的内容:同一平面两条直线的位置关系。

(板书)二、探究新知(一)画图感知、研究两条直线在同一平面内的位置关系。

1.请同学们自己尝试着用手中的彩色笔画一画,收集图形,进行分类2.请你的同桌欣赏一下你的作品。

(选出几张有代表性的作品贴到黑板上)3.仔细观察,你们画的一样吗?如果不一样,可以上来补充!(如果学生没有把所有的情况都想到教师给予补充)4.同学们的想象力可真丰富,画出了这么多种情况,我们为这些作品标上序号。

5.想一想,你能给它们分分类吗?现在小组讨论交流,你是怎么分的?并把你们的分法记录下来。

6. (课件出示)小组活动:你是怎么分的?在小组中交流交流。

7. 各小组注意做好记录。

8. 三类(相交、不相交、即将相交)二类(相交、不相交)9. 即将相交的两条直线最终会怎么样呢?尝试着延长画一画。

两条直线的平行与垂直 教案

两条直线的平行与垂直 教案

两条直线的平行与垂直教学目标(一)知识教学理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.(二)能力训练通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力.(三)学科渗透通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式.现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出:α1=90°+α2.L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证.转动时, 可使α1为锐角,钝角等).例题例1已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5,,因为k1=k2=0.5, 所以直线BA∥PQ.例2已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想:四边形ABCD是平行四边形,再通过计算加以验证)解同上.例3已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2,因为k1·k2 = -1 所以AB⊥PQ.例4已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想:三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习P94 练习 1. 2.课后小结(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.布置作业P94 习题3.1 5. 8.板书设计。

《两条直线平行与垂直的判定》教学设计

《两条直线平行与垂直的判定》教学设计

《两条直线平行与垂直的判定》教学设计一:教学目标:1:知识与技能通过本节课的学习,学生掌握用代数的方法判定两直线平行或垂直的方法,并能熟练运用。

2:过程与方法利用两条直线平行,倾斜角相等这一性质,推出两条直线平行的判定方法,即∥又利用两条直线垂直时,倾斜角的关系“和几何画板进行验证得到两条直线垂直的判定方法,即并且对特殊情况进行研究3:情感、态度与价值观通过本节课的学习,可以增强我们用“联系”的观点看问题,进一步增强代数与几何的联系,培养学生学好数学的信心。

二:教学重难点重点:揭示“两条直线平行(垂直)”与“斜率”之间的关系难点:“两条直线平行(垂直)”与“斜率”之间关系的探究三:授课类型:新授课四:教学方法与教学手段教学方法:启发探究式教学教学手段:黑板和多媒体相结合,利用几何画板等教学工具演示五:课时安排:1课时六:教学过程环节一:设置情境,尝式探究设计意图:学生在初中已经学习了两条直线平行(垂直)的判断方法,本节课直接从直线的斜率入手引问是否能判定两条直线的位置关系,使学生很自然的进入今天学习的内容问题:我们在初中已经学习了同一平面内两条直线的位置关系并且学习两条直线平行(垂直)的判定方法,为了在平面直角坐标系内表示直线的倾斜程度,我们引入了直线倾斜角与斜率的概念,并导出了计算斜率的公式,即把几何问题转化为代数问题。

那么,我们能否通过直线的斜率k1、k2来判断两条直线的位置关系呢?(说明:我们约定:若没有特别说明,说“两条直线与”时,一般是指两条不重合的直线)环节二:两条直线平行的探究设计意图;此环节通过学生观察两条直线平行倾斜角相等探究两条直线平行与斜率之间的关系,学生通过观察,探究与讨论的方式,调动了学生的积极性,激发学生的思维,体会解析几何的思想。

在平面直角坐标系中任意做两条平行直线与探究1:这两条直线的倾斜角有什么关系?由此我们可以得到怎样的结论?∥探究2:这两条直线的斜率有什么关系?∥活动:教师指出如何利用学习的知识证明这个结论?学生以小组为单位探究讨论完成证明并且展示结果,互相做出评价由∥反之∥问题:上面的结论恒成立吗?有没有特例?学生探究画出图形:问题:那么上面的结论需要添加什么条件?活动:学生以小组为单位探究,教师给予指导,学生展示结果,并且相互评价结论1:如果与不重合,且两条直线都存在斜率,∥2:与可能重合时且两条直线都存在斜率,∥或与重合环节三:两条直线垂直的探究设计意图:学生从熟知的两条直线垂直的图形,利用三角形的外角和定理,找到两条直线的倾斜角之间的关系,探究出两条直线垂直与斜率之间的关系。

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)垂直,是指一条线与另一条线相交并成直角,这两条直线相互垂直。

通常用符号“⊥”表示。

设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的,以下是为大家整理的关于平行与垂直教案4篇, 供大家参考选择。

平行与垂直教案4篇【篇一】平行与垂直教案第四单元平行四边形和梯形第____课时总序第____个教案编写时间:____年____月____日执行时间:____年____月____日【篇二】平行与垂直教案垂直与平行教学内容:人教版《义务教育课程标准试验教科书·数学》四年级上册64~65页的内容。

教学目标:1.引导学生通过视察、探讨感知生活中的垂直与平行的现象。

2.协助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步相识垂线和平行线。

3.造就学生的空间观念及空间想象实力,引导学生树立合作探究的学习意识。

4、在分析、比拟、综合的视察与思维中渗透分类的思想方法。

教学重点:正确理解“相交”“相互平行”“相互垂直”等概念,开展学生的空间想象实力。

教学难点:相交现象的正确理解〔尤其是对看似不相交而事实上是相交现象的理解〕教学过程:一、画图感知,探究两条直线的位置关系同学们,前面我们相识的直线,知道了直线的特点是可以向两端无限延长,这节课咱们接着探究和直线有关的学问!首先教师向学生出示一个魔方,说怎么玩?生:把一样颜色的方块转到同一个平面上。

然后教师又拿出一张白纸,我们把这张白纸看成一个平面,闭上眼睛想象在这个平面上出现了一条直线,又出现了一条直线,你想象的这两条直线是什么样儿呢?睁开眼睛!把他们用直尺和彩色笔画在纸上!〔生画直线,师巡察〕二、视察分类,了解平行的特征师:好多同学都已经画完坐端正了,你们都画完了吗?好!刚刚教师收集了几幅作品,我们贴黑板上吧!师:你们看,同学们的想象真丰富,我们在同一个平面内想象两条直线,竟然出现了这么多不同的样子,真不简洁!师:细致看看,能不能给他们分分类呢?好!为了大家表达起来便利,咱们给他们编上号,一起来吧!师:下面请你把分类的状况写在练习本上,用序号表示〔小组合作完成〕〔起先吧!〕师:都分好了吗?谁情愿到前面来分给大家看看!给大家说说你分的理由!1、教学相交师:这个同学把黑板上的分成了两类!对于这样的分发你有没有不同的想法?这个同学的观点认为4号是穿插的,你们认为呢?为什么?谁能再说说理由?大家说能再画长一些吗?〔能〕师小结:也就是说这幅作品把穿插的局部没画出来,它穿插了吗?〔穿插了〕嗯!它看似不穿插实际却是穿插了的!此时此刻我们可以把它放到哪一类?〔穿插的一类〕师总结:好!大家看,我们把黑板上的作品分成了两类,这一类是两条直线相互穿插了,这一类就是相交〔板书:相交〕2、教学相互平行师:那这一类相交了吗?是不是因为这两条直线画的太短了呢?那是为什么?你从哪儿看出来再画也不会相交呢?师:也就是说这边的宽窄和这边儿的宽窄一样,对吗?那你用什么方法证明这两边的宽窄一样呢?〔用尺子量〕谁情愿上来量?这一幅谁来量?师:这两个同学量了这边儿是3厘米,这边儿也是3厘米,这幅这边是2厘米,这边儿也是2厘米,把它们画的再长些,这两条直线会相交吗?为什么?谁能再说说理由!师小结:也就是说这两条直线之间必需一样宽窄!那么像这样在同一平面内的两条直线画的再长、再长也不会相交。

两条直线的平行与垂直

两条直线的平行与垂直

两条直线的平行与垂直教学目标(一)知识教学理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.(二)能力训练通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力.(三)学科渗透通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即 k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°, 0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2. L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等). 例题例1 已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5,直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,因为 k1=k2=0.5, 所以直线BA∥PQ.2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想: 四边形ABCD是平行四边形,再通过计算加以验证)解同上.例3 已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2,因为 k1·k2 = -1 所以 AB⊥PQ.例4 已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习P94 练习 1. 2.课后小结(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.布置作业P94 习题3.1 5. 8.板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标
1、掌握用斜率判定两条直线平行和垂直的方法,感受用代数方法研究几何图形性质的思想;
2、通过分类讨论、数形结合等数学思想的运用,培养学生思维的严谨性、辩证性.
教学重难点
重点:两条直线平行和垂直的条件
难点:把两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题
教学过程
(一)温故知新
1、回顾什么是倾斜角、斜率?斜率的公式?
2、平面上两直线位置关系有哪几种?
(二)两条直线的平行
1、当两条直线都有斜率且不重合
思考: 如果L 1∥L 2,则α1 α2,k 1 k 2.
若两条直线的斜率相等: 即k 1=k 2,则α1 α2,它 们的位置关系 是 .
结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率 ;反之,如果它们的斜率相等,那么它们 ,

前提: .
2、当不重合的两直线L 1和L 2的斜率都不存在,那么它们的倾斜角都是 ,它们的位置关系是 .
例题解析
形。

四点所得的四边形是梯,,),,(),,(、求证:顺次连接例)44(),32(27-53-21 D C B A
例2、求过点A(2,-3)且与直线2x+y-5=0平行的直线的方程.
(三)两条直线垂直.-
思考:当两条直线的斜率都存在
1、如果L 1⊥L 2,这时α1与α2满足什么关系?斜率满足什么关系?
2、若k 1·k 2 = -1,则α1与α2满足什么关系?两直线有什么位置关系?
结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率 ; 反之,如果它们的斜率互为负倒数,那么它们 ,
即⇔⊥21l l (前提: )
3、思考:如果两直线L 1,L 2中的一条斜率不存在,那么这两条直线什么时候互相垂直?
.,),1,0(),2,3(,4
3)2(;
),116(4-36,103,5)1(3212211的值求实数且经过点直线的斜率已知直线求证:,),,(),(),(已知四点、例a l l a B a A l k l CD AB D C B A ⊥+-=⊥-
例4、如图,已知三角形的顶点为A(2,4),B(1,-2),C(-2,3),
求BC 边上的高AD 所在直线方程.
思考题:已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.
小结与思考
教学设计说明:
本节课是在学生学习了直线的斜率、直线方程后学习的,主要研究两条直线平行与垂直的条件。

因此,在本节课的开始,我设计了温故知新这一板块,复习直线的倾斜角、斜率及公式,让学生从原有的知识过度到新知识,有所铺垫。

在讲解两直线平行与斜率的关系前,我设计了一个问题:两条直线有哪几种位置关系?通过这样的思考,自然而然地引导学生去探索两直线平行与垂直和斜率之间的关系。

在讲解新知时,我尽量让学生自主去探索,得到结论。

由于学生目前还没学习逻辑关系等内容,因此等价于这个关系对学生来说还有一定的困难。

要让学生明白,等价于这个关系需要从正反两方面去说明,因此两方面的证明是需要花比较多的精力和时间。

特别是垂直,我让学生在学习了平行的关系后,自己试着去证明出这个结论。

因为本节课是学生学习两直线平行与垂直的第一课时,因此例题的选取我选择了两方面:一方面是对平行与垂直的条件的直接应用,起到巩固作用。

另外一方面,我设计了两个求直线方程的例题,将平行与垂直与直线方程结合起来。

相关文档
最新文档