人教版数学高二A版选修4-5 3.3排序不等式
2014年人教A版选修4-5课件 3.排序不等式

证明: a1≤a2≤…≤an, b1≤b2≤…≤bn 是两组实数, c1, c2, …, cn 是 b1, b2, …, bn 的任一排列.
则不同的 c1, c2, …, cn 有 n! 个. 乱序和 S=a1c1+a2c2+…+ancn ①
(1) 若 c1b1, 而 ck=b1 (k>1), 则交换 c1, ck 得 S=a1ck+a2c2+…+akc1+…+ancn (ck≤c1). ② ②-①得 ≥0, S S =a ch = =( (a ah a a2)( )(c c2 c ch)) 2 ≥0, S S = a2c ch+ +a ahc c2 a a2c c2 a ahc
n
Ai
An
A
问题2. 如图, 在∠AOB 的边 OA 上依次取 n 个点 A1, A2, …, An, OB 上也依次取 n 个点 B1, B2, …, Bn. 选取 Ai (i=1, 2, …, n) 与 Bj (j=1, 2, …, n) 连接 起来, 这样连成了 n 个三角形 AiOBj. 如何连接, 这 些三角形的面积之和最大或最小? Bn B 设 OA1=a1, OA2=a2, …, Bj OAn=an; OB1=b1, OB2=b2, B2 …, OBn=bn; ∠AOB=a. B1 1 S1 = sina (a1bn + a2bn1 + + anb1 ); 2 O Ai An A 1 A1 A2 S2 = sina (a1b1 + a2b2 + + anbn ). 2 由猜想得 a1bn+a2bn1+…+anb1<a1b1+a2b2+…+anbn. (问: 由问题 1 和问题 2, 你能得出什么样的猜想?)
高二数学人教A版选修4-5课件:3.3排序不等式

【例 1】 某班学生要开联欢会,需要买价格不同的礼品 4 件,5 件及 2 件,现在选择商品中单价为 3 元,2 元和 1 元的礼 品,问至少要花多少钱?最多要花多少钱?
【解】 由题意可知,(a1,a2,a3)=(2,4,5),(b1,b2,b3) =(1,2,3),则花钱最少为:1×5+2×4+3×2=19(元);
花钱最多为:1×2+2×4+3×5=25(元).
规律技巧 利用排序原理解答相关问题,必须构造出相应 的两个数组,并且要排列出大小顺序,这是解决问题的关键.
【变式训练 1】 设 a1,a2,a3 为正数,且 a1+a2+a3=1, 求a1a2+a2a3+a3a1的最小值.
a3 a1 a2
解 不妨设 a3>a1>a2>0,则a13<a11<a12, 所以 a1a2<a2a3<a3a1. 设乱序和 S=aa1a33+aa1a12+aa3a22=a1+a2+a3=1, 顺序和 S′=a1a2+a2a3+a3a1.
思考探究 使用排序不等式的关键是什么? 提示 使用排序不等式,关键是出现有大小顺序的两列数 (或者代数式)来探求对应项的乘积的和的大小关系.
1.排序原理的本质含义 两组实数序列同方向单调(同时增或同时减)时所得两两乘 积之和最大,反方向单调(一增一减)时所得两两乘积之和最 小.等号成立的条件是其中至少有一组序列为常数序列.
3.3 排序不等式
必修4-5
本节目标
1.了解排序不等式并理解乱序和、反序和、顺序和的概念. 2.掌握排序不等式的推导和证明过程. 3.会利用排序不等式解决简单的不等式问题.
预习反馈
1.已知 x≥y,M=x4+y4,N=x3y+y3x,则 M 与 N 的大小关系是( )
高中数学第三讲三排序不等式学案含解析新人教A版选修4_5

三排序不等式考纲定位重难突破1.了解排序不等式的数学思想和背景.2.了解排序不等式的结构与基本原理.3.理解排序不等式的简单应用.重点:排序不等式的结构与基本原理.难点:排序不等式的简单应用.授课提示:对应学生用书第32页[自主梳理]一、顺序和、乱序和、反序和的概念设a1≤a2≤a3≤…≤a n,b1≤b2≤b3≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则称a i与b i(i=1,2,…,n)的相同顺序相乘所得积的和a1b1+a2b2+…a n b n为顺序和,和a1c1+a2c2+…+a n c n为乱序和,相反顺序相乘所得积的和a1b n+a2b n-1+…+a n b1为反序和.二、排序不等式(排序原理)设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和,此不等式简记为反序和≤乱序和≤顺序和.[双基自测]1.已知a,b,c∈R+,则a5+b5+c5与a3b2+b3c2+c3a2的大小关系是()A.a5+b5+c5>a3b2+b3c2+c3a2B.a5+b5+c5≥a3b2+b3c2+c3a2C.a5+b5+c5<a3b2+b3c2+c3a2D.a5+b5+c5≤a3b2+b3c2+c3a2解析:取两组数a3,b3,c3和a2,b2,c2,由排序不等式,得a5+b5+c5≥a3b2+b3c2+c3a2.答案:B2.设两组数1,2,3,4和4,5,6,7的顺序和为A,反序和为B,则A=________,B=________.解析:A=1×4+2×5+3×6+4×7=4+10+18+28=60.B=1×7+2×6+3×5+4×4=7+12+15+16=50.答案:60503.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s,4 s,3 s,7 s ,每个人接完水后就离开,则他们等候的总时间最短为________ s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:41授课提示:对应学生用书第32页探究一 利用排序不等式证明不等式[例1] 设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .[证明] 由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知 ab ×1c +ac ×1b +bc ×1a≥ab ×1b +ac ×1a +bc ×1c,即所证不等式bc a +ca b +abc ≥a +b +c 成立.1.利用排序不等式证明不等式时,若已知条件中已给出两组量的大小关系,则需要分析清楚顺序和、乱序和及反序和.利用排序不等式证明即可.2.若在解答数学问题时,涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序.那么在解答问题时,我们可以利用排序原理将它们按一定顺序排列起来,继而用不等关系来解题.1.设a ,b ,c 为正数,求证:a 12bc +b 12ac +c 12ab ≥a 10+b 10+c 10.证明:不妨设a ≥b ≥c >0,则a 12≥b 12≥c 12, 1bc ≥1ac ≥1ab>0, ∴由顺序和≥乱序和,得a 12bc +b 12ac +c 12ab ≥a 12ab +b 12bc +c 12ac =a 11b +b 11c +c 11a .①又∵a 11≥b 11≥c 11,1c ≥1b ≥1a ,∴由乱序和≥反序和,得a 11b +b 11c +c 11a ≥a 11a +b 11b +c 11c =a 10+b 10+c 10,②由①②两式得:a 12bc +b 12ac +c 12ab≥a 10+b 10+c 10.探究二 利用排序不等式求最值[例2] 设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.[解析] 不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b ,由排序不等式得,ab +c +b c +a +c a +b ≥b b +c +c c +a +a a +b a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b 上述两式相加得: 2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3, 即ab +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时, ab +c +b c +a +c a +b 取最小值32.利用排序不等式求最值的方法利用排序不等式求最值时,先要对待证不等式及已知条件仔细分析,观察不等式的结构,明确两个数组的大小顺序,分清顺序和、乱序和及反序和,由于乱序和是不确定的,根据需要写出其中的一个即可.一般最值是顺序和或反序和.2.设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解析:令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bc a (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .∴S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=ca (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=ba (b +c )+c b (a +c )+a c (a +b ),两式相加得:2S ≥1a +1b +1c ≥3·31abc=3.∴S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.探究三 利用排序不等式解决实际问题[例3] 若某网吧的3台电脑同时出现了故障,对其维修分别需要45 min,25 min 和30 min ,每台电脑耽误1 min ,网吧就会损失0.05元.在只能逐台维修的条件下,按怎么样的顺序维修,才能使经济损失降到最小?[解析] 设t 1,t 2,t 3为25,30,45的任一排列,由排序原理知3t 1+2t 2+t 3≥3×25+2×30+45=180(min),所以按照维修时间由小到大的顺序维修,可使经济损失降到最小.利用排序不等式解决实际问题的关键是将实际问题转化为数学问题,构造排序不等式的模型.3.某座大楼共有n 层,在每层有一个办公室,每个办公室的人员步行上下楼,他们的速度分别为v 1,v 2,…,v n (他们各不相同),为了能使得办公室的人员上下楼梯所用的时间总和最小,应该如何安排?(假设每两层楼的楼梯长都一样)解析:设两层楼间的楼梯长为s ,则第一层需要走的路程为s ,第二层需要走的路程为2s ,…,第n 层需要走的路程为ns .不妨设v ′1>v ′2>…>v ′n 为v 1,v 2,…,v n 从大到小的排列,显然1v ′1<1v ′2<…<1v ′n ,由排序不等式,可得ns 1v ′1+(n -1)s 1v ′2+…+s 1v ′n的和最小,所以将速度快的放在高层,速度慢的放在低层,可使上下楼的时间最短.在运用排序不等式时不能准确找到相应有序数组致误[典例] 一般地,对于n 个正数a 1,a 2,…,a n ,几何平均数G n =na 1a 2…a n ,算术平均数A n =a 1+a 2+…+a nn,利用排序不等式可以判断G n ,A n 的大小关系为________.[解析] 令b i =a iG n (i =1,2,…,n ),则b 1b 2…b n =1,故可取x 1≥x 2≥…≥x n >0,使得b 1=x 1x 2,b 2=x 2x 3,…,b n -1=x n -1x n ,b n =x nx 1.由排序不等式有:b 1+b 2+…+b n =x 1x 2+x 2x 3+…+x n x 1≥x 1·1x 1+x 2·1x 2+…+x n ·1x n=n ,当且仅当x 1=x 2=…=x n 时取等号,所以a 1G n +a 2G n +…+a nG n ≥n ,即a 1+a 2+…+a n n ≥G n ,即A n ≥G n . [答案] A n ≥G n[规律探究] (1)利用排序不等式的关键是正确地寻找两组有序实数组,构造的恰当是正确解题的前提,如本例中构造的两组数,恰好能够解决反序和为n ,使得问题得以解决.(2)利用排序不等式求解完成后,一定要说明等号成立的条件,若取不到等号也应该说明原因,使得解题更加清晰和准确.(3)运用排序不等式的解题步骤是①构造两组有序数组使之满足排序不等式的条件;②运用排序不等式得到不等关系;③找出等号成立的条件并以此得出证明的结论.[随堂训练] 对应学生用书第34页1.设正实数a 1,a 2,a 3的任一排列为a ′1,a ′2,a ′3,则a 1a ′1+a 2a ′2+a 3a ′3的最小值为( )A .3B .6C .9D .12解析:设a 1≥a 2≥a 3>0,则1a 3≥1a 2≥1a 1>0,由排列不等式可知a 1a ′1+a 2a ′2+a 3a ′3≥a 1a 1+a 2a 2+a 3a 3=3. 当且仅当a ′1=a 1,a ′2=a 2,a ′3=a 3时等号成立. 答案:A2.设a 1,a 2,a 3为正数,E =a 1a 2a 3+a 2a 3a 1+a 3a 1a 2,F =a 1+a 2+a 3,则E ,F 的大小关系是( ) A .E <F B .E ≥F C .E =FD .E ≤F解析:不妨设a 1≥a 2≥a 3>0,于是1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2.由排序不等式:顺序和≥乱序和,得a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2=a 3+a 1+a 2,即a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3. ∴E ≥F . 答案:B3.已知a ,b ,x ,y ∈R +,且1a >1b ,x >y ,则x x +a ________yy +b (填“>”或“<”).解析:∵1a >1b ,a >0,b >0,∴b >a >0,又x >y >0,∵bx >ay , ∴bx -ay >0, 又x +a >0,y +b >0,∴x x +a -yy +b =bx -ay (x +a )(y +b )>0, 即xx +a >y y +b . 答案:>。
人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计
一、课程目标
1.1 掌握柯西不等式的概念及其意义;
1.2 学会在实际问题中应用柯西不等式;
1.3 掌握排序不等式的概念及应用;
1.4 学会在实际问题中应用排序不等式。
二、教学内容
2.1 柯西不等式的概念与应用;
2.2 排序不等式的概念与应用;
2.3 利用柯西不等式、排序不等式解决实际问题。
三、教学重点与难点
3.1 教学重点:柯西不等式、排序不等式的概念及应用。
3.2 教学难点:如何在实际问题中应用柯西不等式、排序不等式。
四、教学过程设计
教学环节教学内容教学目标与要
求
教师活动与学生活动
1。
2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

三排序不等式1.顺序和、乱序和、反序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,称a1b1+a2b2+…+a n b n为这两个实数组的顺序积之和(简称顺序和),称a1b n+a2b n-1+…+a n b1为这两个实数组的反序积之和(简称反序和),称a1c1+a2c2+…+a n c n为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,等号成立(反序和等于顺序和)⇔a1=a2=…=a n或b1=b2=…=b n.排序原理可简记作:反序和≤乱序和≤顺序和.已知a,b,c为正数,且a≥b≥c,求证:b3c3+c3a3+a3b3≥a+b+c.分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵a≥b>0,∴1a ≤1b.又c>0,从而1bc ≥1 ca.同理1ca≥1ab,从而1bc≥1ca≥1ab.又由于顺序和不小于乱序和,故可得a5 b3c3+b5c3a3+c5a3b3≥b5b3c3+c5c3a3+a5a3b3=b2c3+c2a3+a2b3⎝⎛⎭⎪⎫∵a2≥b2≥c2,1c3≥1b3≥1a3≥c2c3+a2a3+b2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin β·cos β+sin γcos γ=12(sin2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n.由排序原理,得12+x 2+x 4+…+x 2n≥1·x n +x ·x n -1+…+xn -1·x +x n·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理,得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,得x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加,得1+x +x 2+…+x 2n≥(2n +1)x n.在△ABC 中,试证:3≤a +b +c.可构造△ABC 的边和角的有序数列,应用排序不等式来证明. 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ),得aA +bB +cC a +b +c ≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a1c1+a2c2+…+ancn ≥n .证明:不妨设0<a 1≤a 2≤…≤a n ,则1a1≥1a2≥…≥1an. 因为1c1,1c2,…,1cn 是1a1,1a2,…,1an 的一个排列,由排序原理,得a 1·1a1+a 2·1a2+…+a n ·1an ≤a 1·1c1+a 2·1c2+…+a n ·1cn ,即a1c1+a2c2+…+an cn≥n .4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a1a2+a2a3+…+an -1an.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c1>1c2>…>1cn -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a1a2+a2a3+…+an -1an ≥b1c1+b2c2+…+bn -1cn -1≥12+23+…+n -1n . ∴原不等式成立.课时跟踪检测(十一)1.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:选B 由排序不等式,顺序和≥乱序和≥反序和知:A ≥C ≥B .2.若A =x 21+x 2+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1,其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A ≤B解析:选C 序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.由排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 2+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.3.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R=R (sin C +sin A +sin B )=P =a +b +c2. 4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________元.( )A .76B .20C .84D .96解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28. 答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s 、4 s 、3 s 、7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB≥aB+bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ). 答案:aA +bB ≥π4(a +b ) 8.设a ,b ,c 都是正数,求证:a +b +c ≤a4+b4+c4abc .证明:由题意不妨设a ≥b ≥c >0.由不等式的性质,知a 2≥b 2≥c 2,ab ≥ac ≥bc . 根据排序原理,得a 2bc +ab 2c +abc 2≤a 3c +b 3a +c 3b .① 又由不等式的性质,知a 3≥b 3≥c 3,且a ≥b ≥c .再根据排序不等式,得a 3c +b 3a +c 3b ≤a 4+b 4+c 4.②由①②及不等式的传递性,得a 2bc +ab 2c +abc 2≤a 4+b 4+c 4.两边同除以abc 得证原不等式成立.9.设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.解:不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b .由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b, 以上两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,∴a b +c +b c +a +c a +b ≥32, 即当且仅当a =b =c 时, a b +c +b c +a +c a +b 的最小值为32.10.设x ,y ,z 为正数,求证:x +y +z ≤x2+y22z +y2+z22x +z2+x22y. 证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y, x 2·1x+y 2·1y+z 2·1z≤x 2·1y+y 2·1z+z 2·1x,将上面两式相加,得2(x +y +z )≤x2+y2z +y2+z2x +z2+x2y ,于是x +y +z ≤x2+y22z +y2+z22x +z2+x22y.本讲高考热点解读与高频考点例析考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验(陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤3+4-t+t=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.1122n n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.由柯西不等式⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2⎝ ⎛ 1b2+1c2+⎭⎪⎫1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2, 于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da.①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a⇔b a =c b =d c =ad ⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.关的不等式问题,利用排序不等式解决往往很简便.设a ,b ,c 为实数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c,再次由排序不等式:反序和≤乱序和,得 a11a +b11b +c11c ≤a11b +b11c +c11a .② 由①②得a12bc +b12ca +c12ab≥a 10+b 10+c 10.理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.解:∵⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332 ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b ,即a =38,b =58时,等号成立.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x21x2+x22x3+…+x2n -1xn +x2nx1的最小值.不妨设0<x 1≤x 2≤…≤x n , 则1x1≥1x2≥…≥1xn>0,且0<x 21≤x 2≤…≤x 2n . ∵1x2,1x3,…,1xn ,1x1为序列⎩⎨⎧⎭⎬⎫1xn 的一个排列, 根据排序不等式,得F =x21x2+x22x3+…+x2n -1xn +x2nx1≥x 21·1x1+x 2·1x2+…+x 2n ·1xn=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时,等号成立.即F =x21x2+x22x3+…+x2n -1xn +x2n x1的最小值为P .。
高中数学选修4-5第三讲排序不等式

所以 a1c1+a2c2+…+a5c5 的最大值为 304,最小值为 212.
类型 3 排序不等式的实际应用
[典例 3] 某座大楼共有 n 层,在每层有一个办公室, 每个办公室的人员步行上下楼,他们的速度分别为 v1, v2,…,vn(他们各不相同),为了能使得办公室的人员上 下楼梯所用的时间总和最小,应该如何安排(假设每两层 楼的楼梯长都一样)?
利用排序不等式,有aa12+aa23+…+aan-n 1≥bc11+bc22+… +bcnn--11≥12+23+…+n-n 1.
所以原不等式成立.
归纳升华 1.在不等式的证明方法中,配凑法比较常见,如在 运用基本不等式、柯西不等式时,常常先将不等式的一侧 (或已知等式的一侧)进行配凑,使之满足基本不等式或柯 西不等式的应用条件.在运用排序不等式时,常常根据题 目条件,配凑构造出所需要的有序数组.
解析:由基本概念知(1)(2)正确,(3)不正确,因为乱 序和也可能是 35 或其他等.由排序不等式可知(4)正确.
答案:(1)√ (2)√ (3)× (4)√
2.有两组数 1,2,3 与 10,15,20,它们的顺序和、
反序和分别是( )
A.100,85
B.100,80
C.95,80
D.95,85
所以将速度快的放在高层,速度慢的放在低层,可使 上下楼的时间最短.
归纳升华 在解决一些规划预算问题时,往往只需确定最小值与 最大值,以进行合理规划与正确预算,结合排序不等式 “顺序和最大,反序和最小”,可以方便快捷地处理,方 法巧妙,步骤灵活,过程简单.
[变式训练] 某网吧的 3 台电脑同时出现了故障,对 其维修分别需要 45 min,25 min 和 30 min,每台电脑耽 误 1 min,网吧就会损失 0.05 元.在只能逐台维修的条 件下,按怎样的顺序维+a2c2+…+a5c5 的最大值 为 a1b1+a2b2+a3b3+a4b4+a5b5=2×3+7×4+8×6+9 ×10+12×11=304.
人教A版选修4-5 3.3排序不等式 作业

课后导练基础达标1若A=x 12+x 22+…+x n 2,B=x 1x 2+x 2x 3+…+x n-1x n +x n x 1, 其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系是( )A.A>BB.A<BC.A ≥BD.A ≤B解析:依序列{x n }的各项都是正数,不妨设x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n }的一个排列.依排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 12+x 22+…+x n 2≥x 1x 2+x 2x 3+…+x n x 1. 答案:C2设a,b 都是正数,P=(b a )2+(a b )2,Q=b a +ab,则( ) A.P ≥Q B.P ≤Q C.P>Q D.P<Q 解析:∵a,b 都是正数,∴a b 、b a 22与b 1,a 1顺序相同.∴b a 2·b 1+a b 2·a 1≥b a 2·a 1+a b 2·b1. ∴(b a )2+(a b )2≥b a +ab,即P ≥Q. 答案:A3设a,b,c ∈R ,则cabb ca a bc ++____________a+b+c. 解析:设a ≥b ≥c ≥0,则bc ≤ca ≤ab,a 1≤b 1≤c1,∴c ab b ca a bc ++≥ac ·c 1+a ab +bbc =a+b+c. 答案:≥4若△ABC 的三内角为A,B,C,三边为a,b,c,则c b a cC bB aA ++++___________3π.解析:设a ≤b ≤c,A ≤B ≤C.作序列a,a,a,b,b,b,c,c,c,A,A,A,B,B,B,C,C,C. aA+aA+aA+bB+bB+bB+cC+cC+cC ≥(aA+aB+aC)+(bA+bB+bC)+(cA+cB+cC), ∴3(aA+bB+cC)≥(a+b+c)(A+B+C),即c b a cC bB aA ++++≥3C B A ++=3π.答案:≥5设a,b,c ∈R ,求证:a a b b c c ≥(abc)3c b a ++.证明:∵a,b,c ∈R ,∴lg(a a b b c c )=alga+blgb+clgc, lg(abc)3cb a ++=3cb a ++(lga+lgb+lgc). 设a ≤b ≤c,作序列a,a,a,b,b,b,c,c,c,lga,lga,lga,lgb,lgb,lgb,lgc,lgc,lgc. 3(alga+blgb+clgc)≥a(lga+lgb+lgc)+b(lga+lgb+lgc)+c(lga+lgb+lgc), 即alga+blgb+clgc ≥3cb a ++(lga+lgb+lgc), ∴a a b bc c ≥(abc)3c b a ++.综合运用6设a,b,c 是某三角形的三边长,证明a 2b(a-b)+b 2c(b-c)+c 2a(c-a)≥0,并问何时取等号? 证明:不妨设a ≥b ≥c,此时 a(b+c-a)≤b(c+a-b)≤c(a+b-c),于是由排序不等式可得c 1·a(b+c-a)+a 1·b(c+a-b)+b1·c(a+b-c)≤a 1·a(b+c-a)+b1·b ·(c+a-b)+c 1·c(a+b-c)=a+b+c,即c 1a(b-a)+a 1b(c-b)+b1c(a-c)≤0, a 2b(a-b)+b 2c(b-c)+c 2a(c-a)≥0, 上式当且仅当a 1=b 1=c1,或者a(b+c-a)=b(c+a-b)=c(a+b-c),即a=b=c 时取等号. 7已知a 1,a 2,…,a n 是n个两两互不相等的正整数,求证:a 1+n na a a n 1312113222322++++≥+++ΛΛ.证明 :注意到22221312111n≥≥≥≥Λ,所以2232232n a a a n +++Λ可以看作一个乱序和,将a 1,a 2,…,a n 排序后就可以利用排序原理.因为a 1,a 2,…,a n 是n 个两两互不相等的正整数,可将它们从小到大排列,不妨设b 1<b 2<…<b n ,从而b k ≥k(k 为正整数),由排序不等式可得2232232n a a a n +++Λ≥b 1+2232232nb b b n +++Λ nn n 13121133221222++++≥++++≥ΛΛ 8设x i ,y i 是实数(i=1,2,…,n),且x 1≥x 2≥…≥x n ,y 1≥y 2≥…≥y n ,又z 1,z 2,…,z n 是y 1,y 2,…,y n 的任一排列,证明2121)()(∑∑==-≤-ni i i ni i iz x y x.证明:由排序不等式,得∑∑==≥ni iini iizx y x 11,则∑∑==-≤-ni i i ni ii z x yx 1122.又∵∑∑∑∑====+=+ni i ni i ni i ni i z x y x 12121212,∴∑∑∑∑∑∑======+-≤+-ni i i n i i ni i n i ni i i i ni iz z x x y y x x121121121222,即2121)()(∑∑==-≤-ni i i ni i iz x y x.拓展探究9若α,β,γ均为锐角,且满足cos 2α+cos 2β+cos 2γ=1, 求证:cot 2α+cot 2β+cot 2γ≥23. 证明:∵cos 2α+cos 2β+cos 2γ=1, cos 2α=1-sin 2α, ∴sin 2α+sin 2β+sin γ=2. 又sin α2+cos 2α=1, ∴1+cot 2α=α2sin 1. ∴3+cot 2α+cot 2β+cot 2γ =γβα222sin 1sin 1sin 1++, (sin 2α+sin 2β+sin 2γ)(γβα222sin 1sin 1sin 1++) ≥[sin α·γγββαsin 1sin sin 1sin sin 1•+•+]2=9, 即2·(γβα222sin 1sin 1sin 1++)≥9(柯西不等式). ∴3+cot 2α+cot 2β+cot 2γ≥29.∴cot 2α+cot 2β+cot 2γ≥23. 备选习题10设a,b,c 是某三角形的三边长,证明a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤3abc. 证明:不妨设a ≥b ≥c,容易验证a(b+c-a)≤b(c+a-b)≤c(a+b-c),由排序不等式可得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤ba(b+c-a)+cb(c+a-b)+ac(a+b-c),① 及a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤ca(b+c-a)+ab(c+a-b)+bc(a+b-c),②①+②并化简即得a 2(b+c-a)+b 2(c+a-b)+c 2(a+b-c)≤3abc.11设a,b,c 均为正数,求证:a+b+c ≤abcc b a 444++.证明:不妨设a ≥b ≥c>0,则有a 2≥b 2≥c 2,ab ≥ac ≥bc,由排序不等式得a 2bc+ab 2c+abc 2≤a 3c+b 3a+c 3b.又a 3≥b 3≥c 3且a ≥b ≥c,再由排序不等式得a 3c+b 3a+c 3b ≤a 4+b 4+c 4. 从而a 2bc+ab 2c+abc 2≤a 4+b 4+c 4,两边同除以abc 即得所证不等式.12设a k 是两两互异的自然数(k=1,2,…),证明对任意自然数n,均有∑∑==≥nk nk k kk a 1121.证明:设b 1,b 2,…,b n 是a 1,a 2,…,a n 的一个排列,使b 1<b 2<…<b n ,则从条件知对每个1≤k≤n,b k ≥k,于是由排序不等式可得∑∑∑===≥≥nk n k k nk k kk b k a 112121.13已知x i ∈R (i=1,2,…,n;n ≥2)满足∑=ni i x 1||=1,∑=ni i x 1=0,求证:|∑=ni i i x 1≤21-n21.证明:设i 1,i 2,…,i s ,j 1,j 2,…,j t 是1,2,…,n 的一个排列,且使得t s j j j i i i x x x x x x ≥≥≥>≥≥≥≥ΛΛ21210.又设a=i i i i x x x +++Λ21,b=-(t j j j x x x +++Λ21),根据已知条件,有a-b=0,a+b=1,所以=b=21. 不妨设∑=ni i i x 1≥0,(否则,若∑=ni i i x1<0,取y i =-x i ,i=1,2,…,n,此时y 1,y 2,…,y n 仍满足∑=ni iy1||=1,∑=ni i y 1=0,且|∑=ni i i x 1|=∑=ni i iy1>0)由排序不等式,有 1·x 1+21·x 2+…+n 1·x n ≤1·1i x +21·2i x +…+s 1s i x +11+s ·1j x +21+s ·2j x +…+n1·t j x ≤(1i x +2i x +…+s i x )+n 1(1j x +2j x +…+t j x )=21-n21.从而|∑=ni i i x 1|≤21-n21.。
(部编本人教版)最新版高中数学 第三章 柯西不等式与排序不等式 3.3 排序不等式试题 新人教A版选修4-5【必

三排序不等式课后篇巩固探究A组1.顺序和S、反序和S'、乱序和S″的大小关系是()A.S≤S'≤S″B.S≥S'≥S″C.S≥S″≥S'D.S≤S″≤S'.2.设x,y,z均为正数,P=x3+y3+z3,Q=x2y+y2z+z2x,则P与Q的大小关系是()A.P≥QB.P>QC.P≤QD.P<Qx≥y≥z>0,则x2≥y2≥z2,则由排序不等式可得顺序和为P,乱序和为Q,则P≥Q.3.若a<b<c,x<y<z,则下列各式中值最大的一个是()A.ax+cy+bzB.bx+ay+czC.bx+cy+azD.ax+by+cza<b<c,x<y<z,由排序不等式得反序和≤乱序和≤顺序和,得顺序和ax+by+cz最大.故选D.4.若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.a1b1+a2b2+a1b2+a2b1=(a1+a2)(b1+b2)=1,a1b1+a2b2-a1b2-a2b1=(a1-a2)(b1-b2)>0,∴a1b1+a2b2>a1b2+a2b1.且a1b1+a2b2>>a1b2+a2b1.又1=a1+a2≥2,∴a1a2≤.∵0<a1<a2,∴a1a2<.同理b1b2<,∴a1a2+b1b2<.∴a1b1+a2b2>>a1a2+b1b2,∴a1b1+a2b2最大.5.已知a,b,c∈R+,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)()A.大于零B.大于或等于零C.小于零D.小于或等于零a≥b≥c>0,则a3≥b3≥c3,根据排序原理,得a3×a+b3×b+c3×c≥a3b+b3c+c3a.因为ab≥ac≥bc,a2≥b2≥c2,所以a3b+b3c+c3a≥a2bc+b2ca+c2ab.所以a4+b4+c4≥a2bc+b2ca+c2ab,即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.6.设a1,a2,a3,a4是1,2,3,4的一个排序,则a1+2a2+3a3+4a4的取值范围是.2+22+32+42=30,最小值为反序和1×4+2×3+3×2+4×1=20.1+2a2+3a3+4a4的最大值为顺序和17.如图所示,在矩形OPAQ中,a1≤a2,b1≤b2,若阴影部分的面积为S1,空白部分的面积之和为S2,则S1与S2的大小关系是.,S1=a1b1+a2b2,而S2=a1b2+a2b1,根据顺序和≥反序和,得S1≥S2.S21≥8.若a,b,c为正数,求证a3+b3+c3≥3abc.a≥b≥c>0,则a2≥b2≥c2>0,由排序不等式,得a3+b3≥a2b+ab2,c3+b3≥c2b+cb2,a3+c3≥a2c+ac2,三式相加,得2(a3+b3+c3)≥a(b2+c2)+b(a2+c2)+c(a2+b2).因为a2+b2≥2ab,c2+b2≥2cb,a2+c2≥2ac,所以2(a3+b3+c3)≥6abc,即a3+b3+c3≥3abc(当且仅当a=b=c时,等号成立).9.设a,b均为正数,求证.a≥b>0,则a2≥b2>0,>0,由不等式性质,得>0.则由排序不等式,可得,即.10.设a,b,c都是正数,求证a+b+c≤.a≥b≥c>0.由不等式的性质,知a2≥b2≥c2,ab≥ac≥bc.根据排序原理,得a2bc+ab2c+abc2≤a3c+b3a+c3b.①又由不等式的性质,知a3≥b3≥c3,且a≥b≥c.再根据排序原理,得a3c+b3a+c3b≤a4+b4+c4.②由①②及不等式的传递性,得a2bc+ab2c+abc2≤a4+b4+c4.两边同除以abc,得a+b+c≤(当且仅当a=b=c时,等号成立).B组1.设a,b,c>0,则式子M=a5+b5+c5-a3bc-b3ac-c3ab与0的大小关系是()A.M≥0B.M≤0C.M与0的大小关系与a,b,c的大小有关D.不能确定a≥b≥c>0,则a3≥b3≥c3,且a4≥b4≥c4,则a5+b5+c5=a·a4+b·b4+c·c4≥a·c4+b·a4+c·b4.又a3≥b3≥c3,且ab≥ac≥bc,∴a4b+b4c+c4a=a3·ab+b3·bc+c3·ca≥a3bc+b3ac+c3ab.∴a5+b5+c5≥a3bc+b3ac+c3ab.∴M≥0.2.若0<α<β<γ<,F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ),则()A.F>0B.F≥0C.F≤0D.F<00<α<β<γ<,所以0<sin α<sin β<sin γ,0<cos γ<cos β<cos α,由排序不等式可知,sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ, 而F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ)=sin αcos β+sin βcos γ+sin γcos α-(sin αcos α+sin βcos β+sin γcos γ)>0.3.导学号26394057车间里有5台机床同时出了故障,从第1台到第5台的修复时间依次为4 min、8 min、6 min、10 min、5 min,每台机床停产1 min损失5元,经合理安排损失最少为()A.420元B.400元C.450元D.570元1台到第5台的修复时间依次为t1,t2,t3,t4,t5,若按照从第1台到第5台的顺序修复,则修复第一台需要t1分钟,则停产总时间为5t1,修复第2台需要t2分钟,则停产总时间为4t2,…,修复第5台需要t5分钟,则停产总时间为t5,因此修复5台机床一共需要停产的时间为5t1+4t2+3t3+2t4+t5,要使损失最小,应使停产时间最少,亦即使5t1+4t2+3t3+2t4+t5取最小值.由排序不等式可知,当t1<t2<t3<t4<t5时,5t1+4t2+3t3+2t4+t5取最小值,最小值为5×4+4×5+3×6+2×8+10=84分钟,故损失最小为84×5=420元.4.导学号26394058在△ABC中,∠A,∠B,∠C所对的边依次为a,b,c,试比较的大小关系.a≥b≥c,则有A≥B≥C.由排序不等式,可得aA+bB+cC≥aA+bC+cB,aA+bB+cC≥aB+bA+cC,aA+bB+cC≥aC+bB+cA.将以上三个式子两边分别相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=(a+b+c)π.所以.5.导学号26394059设x>0,求证1+x+x2+…+x2n≥(2n+1)x n.x≥1时,因为1≤x≤x2≤…≤x n,所以由排序原理得1·1+x·x+x2·x2+…+x n·x n≥1·x n+x·x n-1+…+·x+x n·1,即1+x2+x4+…+≥(n+1)x n.①又x,x2,…,x n,1为序列1,x,x2,…,x n的一个排列,所以1·x+x·x2+…+x n-1x n+x n·1≥1·x n+x·x n-1+…+x n-1·x+x n·1,因此x+x3+…++x n≥(n+1)x n, ②①+②,得1+x+x2+…+≥(2n+1)x n.③当0<x<1时,1>x≥x2≥…≥x n,①②仍成立,故③也成立.综上,原不等式成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后训练
1.已知a ,b ,c ∈R +,则a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )的正负情况是( ). A .大于零 B .大于或等于零 C .小于零 D .小于或等于零
2.在△ABC 中,∠A ,∠B ,∠C 所对的边依次为a ,b ,c 则aA bB cC a b c ++++__________π
3
.(填
“≥”或“≤”)
3.已知a ,b ,c 都是正数,则
a b c
b c c a a b
≥+++++________. 4.设x ,y ,z ∈R +,求证:
222222
0z x x y y z x y y z z x
≥---+++++. 5.设a ,b ,c 为某三角形三边长,求证:a 2(b +c -a )+b 2(c +a -b )+c 2(a +b -c )≤3abc. 6.设a ,b ,c 是正实数,求证:3
()
a b c
a b c
a b c abc ≥++.
7.设a ,b ,c 都是正实数,用排序不等式证明:2222
a b c a b c
b c c a a b ≥+++++++. 8.设a 1,a 2,…,a n ;b 1,b 2,…,b n 为任意两组实数,如果a 1≤a 2≤…≤a n ,且b 1≤b 2≤…≤b n ,
求证:
11221212n n n n
a b a b a b a a a b b b n n n
≥⨯
+++++++++当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,等号成立.
设a ,b ,c ∈R +,求证:222222222
222a b b c c a a b c a b c c a b bc ca ab
≤
≤+++++++++.
参考答案
1. 答案:B
解析:设a ≥b ≥c >0,所以a 3≥b 3≥c 3,
根据排序原理,得a 3×a +b 3×b +c 3×c ≥a 3b +b 3c +c 3a . 又知ab ≥ac ≥bc ,a 2≥b 2≥c 2,
所以a 3b +b 3c +c 3a ≥a 2bc +b 2ca +c 2ab . 所以a 4+b 4+c 4≥a 2bc +b 2ca +c 2ab , 即a 2(a 2-bc )+b 2(b 2-ac )+c 2(c 2-ab )≥0. 2. 答案:≥
解析:不妨设a ≥b ≥c ,则有A ≥B ≥C.由排序不等式可得 aA +bB +cC ≥aA +bB +cC ,
aA +bB +cC ≥aB +bC +cA , aA +bB +cC ≥aC +bA +cB.
将以上三个式子两边分别相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=(a +b +c )π,
所以
π
3aA bB cC a b c ≥++++.
3. 答案:3
2
解析:设a ≥b ≥c >0, 所以
111
b c c a a b
≥≥
+++. 由排序原理,知
a b c b c a
b c c a a b b c c a b a ≥++++
++++++,① a b c c a b
b c c a a b b c c a a b
≥++++
++++++.② ①+②,得3
2
a b c b c c a a b ≥+++++.
4. 证明:所证不等式等价于222z y x x y x z y z +++++222
x y z x y y z z x
≥+++++. 不妨设x ≤y ≤z , 则x 2≤y 2≤z 2, x +y ≤x +z ≤y +z . 则
111
x y x z y z
≥≥+++. 于是上式的左边为顺序和,右边为乱序和,由排序不等式知此式成立. 5. 证明:不妨设a ≥b ≥c >0.
易证a (b +c -a )≤b (c +a -b )≤c (a +b -c ). 根据排序原理,得
a 2(
b +
c -a )+b 2(c +a -b )+c 2(a +b -c )
≤a ×b (c +a -b )+b ×c (a +b -c )+c ×a (b +c -a )≤3abc.
6. 证明:不妨设a ≥b ≥c >0,则lg a ≥lg b ≥lg c ,据排序不等式,有 a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c , a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c , 且a lg a +b lg b +c lg c =a lg a +b lg b +c lg c , 以上三式相加整理,得
3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ), 即lg(a a b b c c )≥
lg 3
a b c
⋅++(abc ). 故3
()
a b c a b c
a b c abc ≥++.
7. 证明:不妨设a ≥b ≥c ,则a 2≥b 2≥c 2,且
111
b c c a a b
≥≥
+++,由排序原理,得
222
a b c b c c a a b
+++++ 222b c a b c c a a b
≥++,+++ 222a b c b c c a a b +++++222
c a b b c c a a b
≥+++++, 两式相加得2222a b c b c c a a b ⎛⎫ ⎪⎝⎭
+++++222222
b c c a a b b c c a a b ≥
++++++++.(*) 又由柯西不等式得(1·b +1·c )2
≤(12+12)(b 2+c 2),
∴222
b c b c
b c ≥+++. 同理,222222
c a c a a b a b
c a a b ≥≥++++,++. 因此,代入(*)式得2222a b c b c c a a b ⎛⎫
⎪⎝⎭
+++++
≥a +b +c ,
因此,不等式得证.
8. 证明:由题设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n , 则由排序原理得a 1b 1+a 2b 2+…+a n b n
=a 1b 1+a 2b 2+…+a n b n ,a 1b 1+a 2b 2+…+a n b n ≥a 1b 2+a 2b 3+…+a n b 1,a 1b 1+a 2b 2+…+a n b n ≥a 1b 3+a 2b 4+…+a n -1b 1+a n b 2,…
a 1
b 1+a 2b 2+…+a n b n ≥a 1b n +a 2b 1+…+a n b n -1. 将上述n 个式子相加,两边同除以n 2,得:
11221212n n n n
a b a b a b a a a b b b n n n
≥⨯
+++++++++当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,等号成立.
9. 证明:不妨设a ≥b ≥c >0,于是a 2≥b 2≥c 2,111
c b a
≥≥, 应用排序不等式,得
a 2×
1a +b 2×1b +c 2×1c ≤a 2×1b +b 2×1c +c 2×1a , a 2×1a +b 2×1b +c 2×1c ≤a 2×1c +b 2×1a +c 2×1b
.
以上两个同向不等式相加再除以2,
即得
222222
222
a b b c c a
a b c
c a b
≤
+++
++++.再由数组a3≥b3≥c3>0,
111
bc ca ab
≥≥,
仿上可证
2222
22
a b b c
c a
++
+
22222
2
c a a b c
b b
c ca ab
≤
+
+++.
综上,可证
222222222
222
a b b c c a a b c
a b c
c a b bc ca ab
≤≤
+++
++++++.。