液压系统-文献翻译

合集下载

液压系统液压传动和气压传动毕业论文中英文资料对照外文翻译文献综述

液压系统液压传动和气压传动毕业论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译文献综述液压系统液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫•布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。

1905年将工作介质水改为油,又进一步得到改善。

第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。

液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。

1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。

20 世纪初康斯坦丁•尼斯克(G•Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。

第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。

应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。

在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。

近20~30 年间,日本液压传动发展之快,居世界领先地位。

液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。

一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。

200T液压机液压系统设计英文文献

200T液压机液压系统设计英文文献

封面作者:Pan Hongliang仅供个人学习HydraulicHydraulic systemA complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, auxiliary parts and hydraulicoil.The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump.Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement.Control components (that is,the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid,flow rate and direction. According to the different control functions, hydraulic valves can be divided into the village of force control valve, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve, one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve.Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars.Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories. Hydraulic principleIt consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called"hydraulic press"; the said oil-filled"hydraulic machine."Each of the two liquid a sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's law, small piston to the pressure of the pressure through the liquid passed to the large piston, piston top will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P=F1/SI, Can be the same size in all directions to the transmission of liquid." By the large piston is also equivalent to the inevitable pressure P.If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2=P×S2 Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of a smaller force, the piston will be in great force, for which the hydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel.History of the development of hydraulicHydraulic and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 Joseph (JosephBraman,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved.World War I (1914-1918) after the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F·Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century Constantine (G·Constantimsco) fluctuations of the energy carried out by passing theoretical and practical research;in 1910 on the hydraulic transmission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development.The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for nearly 20 years later. Before and after in 1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader.Hydraulic transmission applicationThere are many outstanding advantages, it is widely used, such as general workers. Plastic processing industry, machinery, pressure machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment,such as roller adjustment device; civil water projects with flood control the dam gates and devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship deck crane (winch), the bow doors, bulkhead valves, such as the stern thruster; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti-rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.液压液压系统一个完整地液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油.动力元件地作用是将原动机地机械能转换成液体地压力能,指液压系统中地油泵,它向整个液压系统提供动力.液压泵地结构形式一般有齿轮泵、叶片泵和柱塞泵.执行元件(如液压缸和液压马达)地作用是将液体地压力能转换为机械能,驱动负载作直线往复运动或回转运动.控制元件(即各种液压阀)在液压系统中控制和调节液体地压力、流量和方向.根据控制功能地不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀.压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等.根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀.辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等.液压油是液压系统中传递能量地工作介质,有各种矿物油、乳化液和合成型液压油等几大类.液压原理它是由两个大小不同地液缸组成地,在液缸里充满水或油.充水地叫“水压机”;充油地称“油压机”.两个液缸里各有一个可以滑动地活塞,如果在小活塞上加一定值地压力,根据帕斯卡定律,小活塞将这一压力通过液体地压强传递给大活塞,将大活塞顶上去.设小活塞地横截面积是S1,加在小活塞上地向下地压力是F1.于是,小活塞对液体地压强为P=F1/SI,能够大小不变地被液体向各个方向传递”.大活塞所受到地压强必然也等于P.若大活塞地横截面积是S2,压强P在大活塞上所产生地向上地压力F2=PxS2截面积是小活塞横截面积地倍数.从上式知,在小活塞上加一较小地力,则在大活塞上会得到很大地力,为此用液压机来压制胶合板、榨油、提取重物、锻压钢材等.液压传动发展史液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出地液体静压力传动原理而发展起来地一门新兴技术,1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机地形式将其应用于工业上,诞生了世界上第一台水压机.1905年将工作介质水改为油,又进一步得到改善.第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速.液压元件大约在19世纪末20世纪初地20年间,才开始进入正规地工业生产阶段.1925年维克斯(F·Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动地逐步建立奠定了基础.20世纪初康斯坦丁·尼斯克(G·Constantimsco)对能量波动传递所进行地理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面地贡献,使这两方面领域得到了发展.第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动.应该指出,日本液压传动地发展较欧美等国家晚了近20多年.1955年前后,日本在迅速发展液压传动,1956年成立了“液压工业会”.近20~30年间,日本液压传动发展之快,居世界领先地位.液压传动应用液压传动有许多突出地优点,因此它地应用非常广泛,如一般工业用地塑料加工机械、压力机械、机床等;行走机械中地工程机械、建筑机械、农业机械、汽车等;钢铁工业用地冶金机械、提升装置、轧辊调整装置等;土木水利工程用地防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用地甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用地巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用地火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架地收放装置和方向舵控制装置等.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。

液压英文文献及翻译

液压英文文献及翻译

液压英文文献及翻译液压系统1.绪论液压站称液压泵站,是独立的液压装置。

它是按逐级要求供油。

并控制液压油流方向、压力和流量,适用在主机与液压装置可分离的各种液压机械上面。

用户在购后只要将液压站与主机上执行机构(油缸或油马达)用不同的油管相连,液压机械即实现各种规定的动作与工作循环。

液压站是由集成块、泵装置或阀组合、电气盒、油箱电气盒组合而成。

各个部件功能为:泵装置——上装有电机和油泵,其是液压站的动力源,能将机械能转化为液压油压力能。

阀组合--其板式阀装在立板上,板后管连接,与集成块的功能相同。

油集成块--是由液压阀及通道体组装而成。

其对液压油实行压力、方向和流量调节。

箱--是板焊的半封闭容器,上面还装有滤油网、空气滤清器等,是用来储油与油的冷却及过滤。

电气盒--分两种型式:一种是设置外接引线的端子板;一种是配置了全套控制电器。

液压站工作原理:电机带动油泵转动,然后泵从油箱中吸油并供油,将机械能转化为液压站压力能,液压油通过集成块(或阀组合)实现方向、压力、流量调节后经过外接管路并至液压机械里的油缸或油马达中,从而控制液动机方向变换、力量的大小及速度的快慢,来推动各种液压机械做功。

(1)液压的发展历程在我国液压(含液力,下同)、气动和密封件工业的发展历程,大致可分成三个阶段,即:在20世纪50年代初到60年代初是起步阶段;60-70年代为专业化生产体系的成长阶段;80-90年代为快速发展阶段。

在其中,液压工业始于50年代初从机床行业生产的仿苏的磨床、拉床、仿形车床等液压传动来起步,液压元件由机床厂里的液压车间生产,自产自用。

在进入60年代后,液压技术应用从机床逐渐推广到农业机械与工程机械等领域,原来附属于主机厂里的液压车间有些独立出来,成为液压件的专业生产厂。

在60年代末、70年代初,随着生产机械化的不断发展,特别是在为第二汽车制造厂等提供了高效、自动化设备的带动下,液压元件制造业出现了不断迅速发展的局面,一批中小企业也开始成为液压件专业制造厂。

液压系统外文文献翻译、中英文翻译、外文文献翻译

液压系统外文文献翻译、中英文翻译、外文文献翻译

附录Hydraulic SystemHydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 •Barman Joseph (Joseph Barman, 1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved.After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vickers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G • Constantia scofluctuations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development.The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries fornearly 20 years later. Before and after in 1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader.Hydraulic transmission There are many outstanding advantages, it is widely used, such as general industrial use of plastics processing machinery, the pressure of machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flood control and dam gate devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship from the deck heavy machinery (winch), the bow doors, bulkhead valve, stern thruster, etc.; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti- rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, auxiliary components and hydraulic oil.The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydra- ulic pump gears are generally pump, vane pump and piston pump.Implementation of components (such as hydraulic cylinders and hydraulic motors) which isthe pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement.Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic pressure control valve can be divided into valves, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve.Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars.Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories.The role of the hydraulic system is to help humanity work. Mainly by the implementation of components to rotate or pressure into a reciprocating motion.Hydraulic system and hydraulic power control signal is composed of two parts, the signal control of some parts of the hydraulic power used to drive the control valve movement.Part of the hydraulic power means that the circuit diagram used to show the differentfunctions of the interrelationship between components. Containing the source of hydraulic pump, hydraulic motor and auxiliary components; hydraulic control part contains a variety of control valves, used to control the flow of oil, pressure and direction; operative or hydraulic cylinder with hydraulic motors, according to the actual requirements of their choice.In the analysis and design of the actual task, the general block diagram shows the actual operation of equipment. Hollow arrow indicates the signal flow, while the solid arrows that energy flow.Basic hydraulic circuit of the action sequence - Control components (two four-way valve) and the spring to reset for the implementation of components (double-acting hydraulic cylinder), as well as the extending and retracting the relief valve opened and closed. For the implementation of components and control components, presentations are based on the corresponding circuit diagram symbols, it also introduced ready made circuit diagram symbols.Working principle of the system, you can turn on all circuits to code. If the first implementation of components numbered 0, the control components associated with the identifier is 1. Out with the implementation of components corresponding to the identifier for the even components, then retracting and implementation of components corresponding to the identifier for the odd components. Hydraulic circuit carried out not only to deal with numbers, but also to deal with the actual device ID, in order to detect system failures.DIN ISO1219-2 standard definition of the number of component composition, which includes the following four parts: device ID, circuit ID, component ID and component ID.The entire system if only one device, device number may be omitted.Practice, another way is to code all of the hydraulic system components for numbers at this time, components and component code should be consistent with the list of numbers. This method is particularly applicable to complex hydraulic control system, each control loop are the corresponding number with the systemWith mechanical transmission, electrical transmission compared to the hydraulic drive has the following advantages:1. a variety of hydraulic components can easily and flexibly to layout.2. light weight, small size, small inertia, fast response.3. to facilitate manipulation of control, enabling a wide range of stepless speed regulation (speed range of 2000:1).4. to achieve overload protection automatically.5. the general use of mineral oil as a working medium, the relative motion can be self-lubricating surface, long service life;6. it is easy to achieve linear motion .7. it is easy to achieve the automation of machines, when the joint control of the use of electro-hydraulic, not only can achieve a higher degree of process automation, and remote control can be achieved.The shortcomings of the hydraulic system:1. as a result of the resistance to fluid flow and leakage of the larger, so less efficient. If not handled properly, leakage is not only contaminated sites, but also may cause fire and explosion.2. vulnerable performance as a result of the impact of temperature change, it would be inappropriate in the high or low temperature conditions.3. the manufacture of precision hydraulic components require a higher, more expensive and hence the price.4. due to the leakage of liquid medium and the compressibility and can not be strictly the transmission ratio.5. hydraulic transmission is not easy to find out the reasons for failure; the use and maintenance requirements for a higher level of technology.In the hydraulic system and its system, the sealing device to prevent leakage of the work of media within and outside the dust and the intrusion of foreign bodies. Seals played the role of components, namely seals. Medium will result in leakage of waste, pollution and environmental machinery and even give rise to malfunctioning machinery and equipment for personal accident. Leakage within the hydraulic system will cause a sharp drop in volumetric efficiency, amounting to less than the required pressure, can not even work. Micro-invasive system of dust particles, can cause or exacerbate friction hydraulic component wear, and further lead to leakage.Therefore, seals and sealing device is an important hydraulic equipment components. The reliability of its work and life, is a measure of the hydraulic system an important indicator of good or bad. In addition to the closed space, are the use of seals, so that two adjacent coupling surface of the gap between the need to control the liquid can be sealed following the smallest gap. In the contact seal, pressed into self-seal-style and self-styled self-tight seal (ie, sealed lips) two.The three hydraulic system diseases1. as a result of heat transmission medium (hydraulic oil) in the flow velocity in various parts of the existence of different, resulting in the existence of a liquid within the internal friction of liquids and pipelines at the same time there is friction between the inner wall, which are a result of hydraulic the reasons for the oil temperature. Temperature will lead to increased internal and external leakage, reducing its mechanical efficiency. At the same time as a result of high temperature, hydraulic oil expansion will occur, resulting in increased com- pression, so that action can not be very good control of transmission. Solution: heat is the inherent characteristics of the hydraulic system, not only to minimize eradication. Use a good quality hydraulic oil, hydraulic piping arrangement should be avoided as far as possible the emergence of bend, the use of high-quality pipe and fittings, hydraulic valves, etc.2. the vibration of the vibration of the hydraulic system is also one of its malaise. As a result of hydraulic oil in the pipeline flow of high-speed impact and the control valve to open the closure of the impact of the process are the reasons for the vibration system. Strong vibration control action will cause the system to error, the system will also be some of the more sophisticated equipment error, resulting in system failures. Solutions: hydraulic pipe should be fixed to avoid sharp bends. To avoid frequent changes in flow direction, can not avoid damping measures should be doing a good job. The entire hydraulic system should have a good damping measures, while avoiding the external local oscillator on the system.3. the leakage of the hydraulic system leak into inside and outside the leakage. Leakagerefers to the process with the leak occurred in the system, such as hydraulic piston-cylinder on both sides of the leakage, the control valve spool and valve body, such as between the leakage. Although no internal leakage of hydra- ulic fluid loss, but due to leakage, the control of the established movements may be affected until the cause system failures. Outside means the occurrence of leakage in the system and the leakage between the external environment. Direct leakage of hydraulic oil into the environment, in addition to the system will affect the working environment, not enough pressure will cause the system to trigger a fault. Leakage into the environment of the hydraulic oil was also the danger of fire. Solution: the use of better quality seals to improve the machining accuracy of equipment.Another: the hydraulic system for the three diseases, it was summed up: "fever, with a father拉稀" (This is the summary of the northeast people). Hydraulic system for the lifts, excavators, pumping station, dynamic, crane, and so on large-scale industry, construction, factories, enterprises, as well as elevators, lifting platforms, Deng Axle industry and so on.Hydraulic components will be high-performance, high-quality, high reliability, the system sets the direction of development; to the low power, low noise, vibration, without leakage, as well as pollution control, water-based media applications to adapt to environmental requirements, such as the direction of development; the development of highly integrated high power density, intelligence, macaronis and micro-light mini-hydraulic components; active use of new techniques, new materials and electronics, sensing and other high-tech.---- Hydraulic coupling to high-speed high-power and integrated development of hydraulic transmission equipment, development of water hydraulic coupling medium speedand the field of automotive applications to develop hydraulic reducer, improve product reliability and working hours MTBF; hydraulic torque converter to the development of high-power products, parts and components to improve the manufacturing process technology to improve reliability, promote computer-aided technology, the development of hydraulic torque converter and power shift transmission technology supporting the use of ; Clutch fluid viscosity should increase the quality of products, the formation of bulk to the high-power and high-speed direction.Pneumatic Industry:---- Products to small size, light weight, low power consumption, integrated portfolio of development, the implementation of the various types of components, compact structure, high positioning accuracy of the direction of development; pneumatic components and electronic technology, to the intelligent direction of development; component performance to high-speed, high-frequency, high-response, high-life, high temp- erature, high voltage direction, commonly used oil-free lubrication, application of new technology, new technology and new materials.1. Used high-pressure hydraulic components and the pressure of continuous work to reach 40Mpa, the maximum pressure to achieve instant 48Mpa;2. Diversification of regulation and control;3. To further improve the regulation performance, increase the efficiency of the power train;4. Development and mechanical, hydraulic, power transmission of the composite portfolio adjustment gear;5. Development of energy saving, energy efficient system function;6. To further reduce the noise;7. Application of Hydraulic Cartridge Valves thread technology, compact structure, to reduce the oil spill.液压系统液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫•布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。

毕业论文中英文文献翻译液压专业毕业论文[管理资料]

毕业论文中英文文献翻译液压专业毕业论文[管理资料]

本科毕业论文--外文原文学院(系):年级专业:液压学生姓名:指导教师:完成日期:Why decompression is necessary in hydraulic systemsHydraulics & PneumaticsJun. 11, 2008 12:00amWhy decompression is necessary in hydraulic systemsIn high-pressure circuits with large-bore, long-stroke cylinders -- and the accompanying large pipes and/or hoses -- there is a good chance for system shock. In circuits with large components, when high-pressure oil rapidly discharges to tank, decompression shock results.Decompression shock is one of the greatest causes of damage to piping, cylinders, and valves in hydraulically powered machines. The energy released during decompression breaks pipes, blows hoses, and can instantly displace cylinder seals. Damage from decompression shock may take time to show up because the energy released by a single shock may be small. After repeated shocks however, weaker parts in the circuit start to fail.The potential for decompression shock is usually easy to determine beforehand and the design can be revised to avoid it. Shock from decompression normally occurs at the end of a pressing cycle when valves shift to stop pressing and retract the cylinder. The compressibility of the oil in the circuit, cylinder tube expansion, and the stretching of machine members -- all add to stored energy. The more energy stored, the worse the effects of decompression. Any time stored energy is a problem in a hydraulic system, a simple decompression circuit will add reliability and extend the system’s service life.One type of decompression shock that is hard to overcome occurs when a cylinder builds tonnage, then breaks through the work. Because pressure is resistance to flow, once the resistance is removed, the oil expands and decompresses rapidly. Such is the case when punching holes in a part. Punching a pplications pose one of the worse shock conditions any hydraulic circuit meets. To help reduce this type shock, keep piping as short as possible and anchor it rigidly. Some manufacturers offer resisting cylinders that slow the workingcylinder’s movement at breakthrough. These special cylinders may reduce or eliminate decompression shock.Another type of shock occurs when oil flowing at high velocity comes to a sudden stop. This might happen when a cylinder bottoms out or when a directional valve shifts to a blocked condition. Whatever the cause, the effect is the same as trying to stop a solid mass moving at high speed. Use an accumulator or deceleration valve to control shock caused by a sudden flow stop. (See Chapter 1 on accumulators.)The ensuing text describes applications where decompression shock might cause a problem. Also shown is the operation of some typical decompression circuits.When using a decompression circuit, cycle time becomes longer. Instead of the cylinder immediately retracting after finishing its working stroke, there is a short delay while stored energy dissipates. (It may be possible to arrange to decrease cylinder traverse time to make up for decompression time.) In any case, the added cycle time, if necessary, will decrease down time and maintenance problems.Press circuit without decompressionFigure 7-1 shows a schematic diagram for a typical medium- to large-bore cylinder without provision for decompression. A cylinder always needs a decompression circuit -- while cylinders with bores under 10 in. may get by without one. The main criteria are the volume and pressure of the stored fluid. The more high-pressure oil in a circuit, the greater the decompression shock. Long lengths of hose also cause and/or amplify decompression shock. It is best to install a decompression circuit when there is any chance it may be necessary. The expense of a decompression circuit is minimal and only adds to the cycle time if used.Fig. 7-1. Press circuit without decompression protection – at rest with the pumprunning.The circuit in Figure 7-1 has a directional valve with an all-ports-open center condition. The pump unloads to tank when the valve shifts to this center condition. The cylinder stays retracted because there is a counterbalance valve on the rod port.In Figure 7-2 the cylinder is pressing at a working pressure of 2800 psi. The 10-in. bore by 40-in. stroke cylinder holds approximately 3141 of oil. Added to this is another 800 of oil is in the pipe between the valve and the cylinder’s cap end. At a compressibility of approximately 1/2% per thousand psi, and allowing another 1/2% per thousand psi for physical expansion of the cylinder and pipe, plus frame stretch, total volume expansion could be up to 1% per thousand psi. Multiplying () X (2800 psi) X (3941 ) indicates that there are approximately 110 of extra oil in the cylinder when pressing at 2800 psi.Fig. 7-2. Press circuit without decompression protection – while extended cylinder is at full tonnage.When the directional valve shifts to retract the cylinder, a large portion of the 110 of extra oil rapidly flows to tank. Every corner this fast moving fluid turns and every restriction it meets causes system shock. The shock only lasts a few milliseconds during each cycle but the damage accumulates. In a small system like this one, the shock may not be audible or give a noticeable jerk to the pipes. However each shock adds to the last one, and the damage eventually shows up in leaking fittings or broken machine members.Press circuit with decompressionThe circuit depicted in Figure 7-4 is the same as in Figures 7-1, 7-2, and 7-3, but a decompression circuit has been added. Also, the directional valve’s center condition has ports P, B, and T interconnected, while port A is blocked. A pressure switch and a single-solenoid directional valve (the decompression valve)are added to the basic circuit to make decompression automatic and adjustable. The cylinder is at full tonnage in Figure 7-4, ready for decompression before beginning to retract.Fig. 7-3. Press circuit without decompression protection – cylinder just starting to retract.Fig. 7-4. Press circuit with decompression protection – while extended cylinder is at full tonnage.In this circuit, the signal to the retract solenoid on the directional valve passes through the normally closed contacts on the pressure switch. With a pressure switch setting of 350 psi, the retract solenoid will not be energized until pressure in the cap end of the cylinder lowers to that level and the contacts close. Set the shift pressure of the pressure switch high enough to shorten the decompression time as much as possible, yet still low enough to eliminate decompression shock.In Figure 7-5, the extend solenoid on the directional valve has just been deenergized, and a 115-V AC signal to retract the cylinder is on, but is blocked at the pressure switch’s open contacts. The 115-V AC signal does go to the decompression valve’s solenoid and that valve shi fts, opening a path to tank for any stored energy. Until pressure in the cap end of the cylinder deteriorates to the pressure switch setting, the cylinder sits still. The main flow of trapped oil in the cylinder is stopped at the directional valve’s blocke d A port. This part of the cycle completely eliminates all shock damage -- although it does add to cycle time.Fig. 7-5. Press circuit with decompression protection –while cylinder isdecompressing.Note the orifice in the line going to tank from the decompression directional valve. A fixed or adjustable orifice works equally well here. The orifice size determines the length of decompression time. If the orifice is too large, shock is less but may still be enough to cause damage. If the orifice is too small, there is no shock but cycle time may slow.When pressure in the cylinder’s cap end drops to the pressure switch setting -- as in Figure 7-6 -- the pressure switch shifts to its normal condition. The normally closed contacts on the pressure switch pass a signal to the retract solenoid on the directional valve, and the cylinder retracts.Fig. 7-6. Press circuit with decompression protection –while cylinder isretracting.Large press circuit with prefill valve and decompressionOn presses with large-bore cylinders or rams, oil compressibility is a problem. Another problem can be how to fill the ram as it approaches the work at high speeds and how to empty the ram when it retracts rapidly. The circuit in Figures 7-7 through 7--12 shows how to use a prefill valve to fill and empty a large ram. This type of prefill valve also can decompress the ram automatically without electrical controls.Fig. 7-7. Press circuit with prefill and decompression valves – at rest with pump running.Figure 7-7 shows the parts of a typical high-tonnage press. Small double-acting cylinders A (sometime called outriggers or pull-back cylinders) rapidly extend and retract the large ram. A small volume of oil cycles the outriggers for fast advance and return. Counterbalance valve B keeps the outriggers from running away and sequence valve C directs all fluid to the outriggers until the platen meets resistance. As the ram advances, vacuum opens prefill valve D, sucking fluid out of the tank to fill the large volume. Piloting the prefill valve open on retract first decompresses trapped oil, then allows free return flow to tank from the ram.附录四燕山大学本科毕业论文--外文译文文章名称:为什么减压在液压系统中是必要的学院(系):年级专业:液压学生姓名:指导教师:完成日期: 2013年6月13日为什么减压在液压系统中是必要的在高压油路和大缸径、长行程气缸——以及随之而来的大型管道和/或软管——很有可能对系统冲击。

液压系统外文文献翻译中英文

液压系统外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)英文原文Hydraulic systemW Arnold1 IntroductionThe hydraulic station is called a hydraulic pump station and is an independent hydraulic device. It is step by step to supply oil. And control the direction of hydraulic oil flow, pressure and flow, suitable for the host and hydraulic equipment can be separated on the various hydraulic machinery.After the purchase, the user only needs to connect the hydraulic station and the actuator (hydraulic or oil motor) on the mainframe with different tubings. The hydraulic machine can realize various specified actions and working cycles.The hydraulic station is a combination of manifolds, pump units or valve assemblies, electrical boxes, and tank electrical boxes. Each part function is:The pump unit is equipped with a motor and an oil pump, which is the power source of the hydraulic station and can convert mechanical energy into hydraulic oil pressure energy.V alve combination - its plate valve is mounted on the vertical plate, and the rear plate is connected with the same function as the manifold.Oil manifolds - assembled from hydraulic valves and channel bodies. It regulates hydraulic oil pressure, direction and flow.Box--a semi-closed container for plate welding. It is also equipped with an oil screen, an air filter, etc., which is used for cooling and filtering of oil and oil.Electrical box - divided into two types: one is to set the external lead terminal board; one is equipped with a full set of control appliances.The working principle of the hydraulic station: The motor drives the oil pump to rotate, then the pump sucks oil from the oil tank and supplies oil, converts the mechanical energy into hydraulic pressure energy, and the hydraulic oil passes through the manifold (or valve assembly) to adjust the direction, pressure and flow and then passes through the external tube. The way to the hydraulic cylinder or oil motor in the hydraulic machinery, so as to control the direction of the hydraulic motor, the strength of the speed and speed, to promote all kinds of hydraulic machinery to do work.(1) Development history of hydraulic pressureThe development history of hydraulics (including hydraulic power, the same below), pneumatics, and seals industry in China can be roughly divided into three stages, namely: the starting stage in the early 1950s to the early 60s; and the professional in the 60s and 70s. The growth stage of the production system; the 80-90's is a stage of rapid development. Among them, the hydraulic industry began in the early 1950s with thedevelopment of hydraulic machines such as Grinding Machines, broaching machines, and profiling lathes, which were produced by the machine tool industry. The hydraulic components were produced by the hydraulic workshop in the machine tool factory, and were produced for self use. After entering the 1960s, the application of hydraulic technology was gradually promoted from the machine tool to the agricultural machinery and engineering machinery. The original hydraulic workshop attached to the main engine plant was independent and became a professional manufacturer of hydraulic components. In the late 1960s and early 1970s, with the continuous development of mechanization of production, particularly in the provision of highly efficient and automated equipment for the second automobile manufacturing plant, the hydraulic component manufacturing industry witnessed rapid development. The batch of small and medium-sized enterprises also began to become specialized manufacturers of hydraulic parts. In 1968, the annual output of hydraulic components in China was close to 200,000 pieces. In 1973, in the fields of machine tools, agricultural machinery, construction machinery and other industries, the professional factory for the production of hydraulic parts has grown to over 100, and its annual output exceeds 1 million pieces. Such an independent hydraulic component manufacturing industry has taken shape. At this time, the hydraulic product has evolved from the original imitation Su product intoa combination of imported technology and self-designed products. The pressure has been developed towards medium and high pressures, and electro-hydraulic servo valves and systems have been developed. The application of hydraulics has been further expanded. The pneumatic industry started a few years later than hydraulics, and it was only in 1967 that it began to establish a professional pneumatic components factory. Pneumatic components began to be manufactured and sold as commodities. Its sealing industry including rubber seals, flexible graphite seals, and mechanical seals started from the production of common O-rings, oil seals, and other extruded rubber seals and asbestos seal products in the early 1950s. In the early 1960s, it began to develop and produce flexible products. Graphite seals and mechanical seals and other products. In the 1970s, a batch of batches of professional production plants began to be established one after another in the systems of the former Ministry of Combustion, the Ministry of Agriculture, and the Ministry of Agricultural Machinery, formally forming the industry, which laid the foundation for the development of the seal industry.In the 1980s, under the guidance of the national policy of reform and opening up, with the continuous development of the machinery industry, the contradiction between the basic components lags behind the host computer has become increasingly prominent and caused the attention of all relevant departments. To this end, the former Ministry of Machinesestablished the General Infrastructure Industry Bureau in 1982, and unified the original pneumatic, hydraulic, and seal specialties that were scattered in the industries of machine tools, agricultural machinery, and construction machinery, etc. The management of a piece of office, so that the industry in the planning, investment, the introduction of technology and scientific research and development and other aspects of the basic parts of the bureau's guidance and support. This has entered a period of rapid development, it has introduced more than 60 foreign advanced technology, of which more than 40 hydraulic, pneumatic 7, after digestion and absorption and technological transformation, are now mass production, and has become the industry's leading products . In recent years, the industry has intensified its technological transformation. From 1991 to 1998, the total investment of national, local, and corporate self-raised funds totaled about 2 billion yuan, of which more than 1.6 billion were hydraulic. After continuous technological transformation and technological breakthroughs, the technical level of a group of major enterprises has been further improved, and technological equipment has also been greatly improved, laying a good foundation for forming a high starting point, specialization, and mass production. In recent years, under the guidance of the principle of common development of multiple ownership systems in the country, various small and medium-sized enterprises with different ownership have rapidly emerged and haveshown great vitality. With the further opening up of the country, foreign-funded enterprises have developed rapidly, which plays an important role in raising industry standards and expanding exports. So far China has established joint ventures with famous manufacturers in the United States, Germany, Japan and other countries or directly established piston pumps/motors, planetary speed reducers, hydraulic control valves, steering gears, hydraulic systems, hydrostatic transmissions, and hydraulic components. The company has more than 50 manufacturing enterprises such as castings, pneumatic control valves, cylinders, gas processing triplets, rubber seals, and mechanical seals, and has attracted more than 200 million U.S. dollars in foreign capital.(2) Current statusBasic profileAfter more than 40 years of hard work, China's hydraulics, pneumatics and seals industry has formed a complete industrial system with a certain level of production capacity and technical level. According to the statistics of the third n ational industrial census in 1995, China’s state-owned, privately-owned, cooperative, village-run, individual, and “funded enterprises” have annual sales income of more than 1 million yuan in hydraulic, pneumatic, and seal industrial townships and above. There are a total of more than 1,300 companies, including about 700 hydraulics, and about 300 pneumatic and sealing parts. According to thestatistics of the international industry in 1996, the total output value of the hydraulic industry in China was about 2.448 billion yuan, accounting for the 6th in the world; the total output value of the pneumatic industry was about 419 million yuan, accounting for the world’s10 people.2. Current supply and demand profileWith the introduction of technology, independent development and technological transformation, the technical level of the first batch of high-pressure plunger pumps, vane pumps, gear pumps, general hydraulic valves, oil cylinders, oil-free pneumatic components and various types of seals has become remarkable. Improve, and can be stable mass production, provide guarantees for all types of host to improve product quality. In addition, certain achievements have also been made in the aspects of CAD, pollution control, and proportional servo technology for hydraulic pneumatic components and systems, and have been used for production. So far, the hydraulic, pneumatic and seal products have a total of about 3,000 varieties and more than 23,000 specifications. Among them, there are about 1,200 types of hydraulic pressure, more than 10,000 specifications (including 60 types of hydrodynamic products, 500 specifications); about 1350 types of pneumatic, more than 8,000 specifications; there are also 350 types of rubber seals, more than 5000 The specifications are now basically able to adapt to the general needs ofvarious types of mainframe products. The matching rate for major equipment sets can reach more than 60%, and a small amount of exports has started.In 1998, the domestic production of hydraulic components was 4.8 million pieces, with sales of about 2.8 billion yuan (of which mechanical systems accounted for 70%); output of pneumatic components was 3.6 million pieces, and sales were about 550 million yuan (including mechanical systems accounting for about 60%) The production of seals is about 800 million pieces, and the sales volume is about 1 billion yuan (including about 50% of mechanical systems). According to the statistics of the annual report of the China Hydraulic and Pneumatic Sealing Industry Association in 1998, the production and sales rate of hydraulic products was 97.5% (101% of hydraulic power), 95.9% of air pressure, and 98.7% of seal. This fully reflects the basic convergence of production and sales.Although China's hydraulic, pneumatic and sealing industries have made great progress, there are still many gaps compared with the development needs of the mainframe and the world's advanced level, which are mainly reflected in the variety, performance and reliability of products. . Take hydraulic products as an example, the product varieties are only 1/3 of the foreign country, and the life expectancy is 1/2 of that of foreign countries. In order to meet the needs of key hosts, imported hosts, and majortechnical equipment, China has a large number of imported hydraulic, pneumatic, and sealing products every year. According to customs statistics and relevant data analysis, in 1998, the import volume of hydraulic, pneumatic and seal products was about 200 million U.S. dollars, of which the hydraulic pressure was about 140 million U.S. dollars, the pneumatics were 30 million U.S. dollars, and the seal was about 0.3 billion U.S. dollars. The year is slightly lower. In terms of amount, the current domestic market share of imported products is about 30%. In 1998, the total demand for hydraulic parts in the domestic market was about 6 million pieces, and the total sales volume was 4 billion yuan; the total demand for pneumatic parts was about 5 million pieces, and the total sales volume was over 700 million yuan; the total demand for seals was about 1.1 billion yuan. Pieces, total sales of about 1.3 billion yuan. (3) Future developments1. The main factors affecting development(1) The company's product development capability is not strong, and the level and speed of technology development can not fully meet the current needs for advanced mainframe products, major technical equipment and imported equipment and maintenance;(2) Many companies have lagged behind in manufacturing process, equipment level and management level, and their sense of quality is not strong, resulting in low level of product performance, unstable quality,poor reliability, and insufficiency of service, and lack of user satisfaction. And trusted branded products;(3) The degree of professional specialization in the industry is low, the power is scattered, the duplication of the low level is serious, the product convergence between the region and the enterprise leads to blind competition, and the prices are reduced each other, thus the efficiency of the enterprise is reduced, the funds are lacking, and the turnover is difficult. Insufficient investment in development and technological transformation has severely restricted the overall level of the industry and its competitive strength.(4) When the degree of internationalization of the domestic market is increasing, foreign companies have gradually entered the Chinese market to participate in competition, coupled with the rise of domestic private, cooperative, foreign-funded, and individual enterprises, resulting in increasing impact on state-owned enterprises. .2. Development trendWith the continuous deepening of the socialist market economy, the relationship between supply and demand in the hydraulic, pneumatic and sealed products has undergone major changes. The seller market characterized by “shortage” has basically become a buyer’s market characterized by “structured surplus”. Replaced by. From the perspective of overall capacity, it is already in a trend of oversupply, and in particular,general low-grade hydraulic, pneumatic and seals are generally oversupply; and like high-tech products with high technological content and high value and high value-added products that are urgently needed by the host, Can not meet the needs of the market, can only rely on imports. After China's entry into the WTO, its impact may be greater. Therefore, during the “10th Five-Y ear Plan” period, the growth of the industry’s output value must not only rely on the growth of quantity. Instead, it should focus on the structural contradiction of the industry and intensify efforts to adjust the industrial structure and product structure. It should be based on the improvement of quality. Product technology upgrades in order to adapt to and stimulate market demand, and seek greater development.2. Hydraulic application on power slide(1) Introduction of Power Sliding TableUsing the binding force curve diagram and the state space analysis method to analyze and study the sliding effect and the smoothness of the sliding table of the combined machine tool, the dynamics of the hydraulic drive system of the sliding table—the self-regulating back pressure regulating system are established. mathematical model. Through the digital simulation system of the computer, the causes and main influencing factors of the slide impact and the motion instability are analyzed. What kind of conclusions can be drawn from those, if we canreasonably design the structural dimensions of hydraulic cylinders and self-regulating back pressure regulators ——The symbols used in the text are as follows:s 1 - flow source, that is, the flow rate of the governor valve outlet;S el —— sliding friction of the sliding table;R - the equivalent viscous friction coefficient of the slide;I 1 - quality of slides and cylinders;12 - self-adjusting back pressure valve core quality;C 1, c 2 - liquid volume without cylinder chamber and rod chamber;C 2 - Self-adjusting back pressure valve spring compliance;R 1, R2 - Self-adjusting back pressure valve damping orifice fluid resistance;R 9 - Self-adjusting back pressure valve valve fluid resistance;S e2——initial pre-tightening force of self-adjusting back pressure valve spring;I 4, I5 - Equivalent liquid sense of the pipeline;C 5, C 6 - equivalent liquid capacity of the pipeline;R 5, R7 - Equivalent liquid resistance of the pipeline;V 3, V4 - cylinder rodless cavity and rod cavity volume;P 3, P4—pressure of the rodless cavity and rod cavity of the cylinder;F - the slide bears the load;V - speed of slide motion;In this paper, the power bond diagram and the state space splitting method are used to establish the system's motion mathematical model, and the dynamic characteristics of the slide table can be significantly improved.In the normal operation of the combined machine tool, the magnitude of the speed of the slide, its direction and the load changes it undergoes will affect its performance in varying degrees. Especially in the process of work-in-process, the unsteady movement caused by the advancing of the load on the slide table and the cyclical change of the load will affect the surface quality of the workpiece to be machined. In severe cases, the tool will break. According to the requirements of the Dalian Machine Tool Plant, the author used the binding force curve diagram and the state space analysis method to establish a dynamic mathematical model of a self-adjusting back pressure and speed adjustment system for the new hydraulic drive system of the combined machine tool slide. In order to improve the dynamic characteristics of the sliding table, it is necessary to analyze the causes and main influencing factors of the impetus and movement of the sliding table. However, it must pass the computer's digital simulation and the final results obtained from the research.(2) Dynamic Mathematical ModelThe working principle diagram of the self-adjusting back pressure speedregulation system of the combined machine tool slide hydraulic drive system is shown in the figure. This system is used to complete the work-cycle-stop-rewind. When the sliding table is working, the three-position four-way reversing valve is in the illustrated position. The oil supply pressure of the oil pump will remain approximately constant under the effective action of the overflow valve, and the oil flow passes through the reversing valve and adjusts the speed. The valve enters the rodless chamber of the cylinder to push the slide forward. At the same time, the pressurized oil discharged from the rod chamber of the cylinder will flow back to the tank through the self-regulating back pressure valve and the reversing valve. During this process, there was no change in the operating status of both the one-way valve and the relief valve. The complex and nonlinear system of the hydraulic drive system of the self-adjusting back pressure governor system is a kind of self-adjusting back-pressure governor system. To facilitate the study of its dynamic characteristics, a simple and reasonable dynamic mathematical model that only considers the main influencing factors is established. Especially important [1][2]. From the theoretical analysis and the experimental study, we can see that the system process time is much longer than the process time of the speed control valve. When the effective pressure bearing area of the rodless cavity of the fuel tank is large, the flow rate at the outlet of the speed control valve is instantaneous. The overshoot is reflected in thesmall change in speed of the slide motion [2]. In order to further broaden and deeply study the dynamic characteristics of the system so that the research work can be effectively performed on a miniature computer, this article will further simplify the original model [2], assuming that the speed control valve is output during the entire system pass. When the flow is constant, this is considered to be the source of the flow. The schematic diagram of the dynamic model structure of this system is shown in Fig. 2. It consists of a cylinder, a sliding table, a self-adjusting back pressure valve, and a connecting pipe.The power bond graph is a power flow graph. It is based on the transmission mode of the system energy, based on the actual structure, and uses the centralized parameters to represent the role of the subsystems abstractly as a resistive element R, a perceptual element I, and a capacitive element. Three kinds of role of C. Using this method, the physical concept of modeling is clear, and combined with the state-space analysis method, the linear system can be described and analyzed more accurately. This method is an effective method to study the dynamic characteristics of complex nonlinear systems in the time domain. According to the main characteristics of each component of the self-adjusting back pressure control system and the modeling rules [1], the power bond diagram of the system is obtained. The upper half of each key in the figure represents the power flow. The two variables that makeup the power are the force variables (oil pressure P and force F) and the flow variables (flow q and velocity v). The O node indicates that the system is connected in parallel, and the force variables on each key are equal and the sum of the flow variables is zero; 1 The nodes represent the series connection in the system, the flow variables on each key are equal and the sum of the force variables is Zero. TF denotes a transformer between different energy forms. The TF subscripted letter represents the conversion ratio of the flow variable or the force variable. The short bar on the key indicates the causal relationship between the two variables on the key. The full arrow indicates the control relationship. There are integral or differential relationships between the force and flow variables of the capacitive and perceptual elements in the three types of action elements. Therefore, a complex nonlinear equation of state with nine state variables can be derived from Fig. 3 . In this paper, the research on the dynamic characteristics of the sliding table starts from the two aspects of the slide's hedging and the smoothness of the motion. The fourth-order fixed-length Runge-Kutta is used for digital simulation on the IBM-PC microcomputer.(3) Slide advanceThe swaying phenomenon of the slide table is caused by the sudden disappearance of the load acting on the slide table (such as drilling work conditions). In this process, the table load F, the moving speed V, and thepressure in the two chambers of the cylinder P3 and P4 can be seen from the simulation results in Fig. 4. When the sliding table moves at a uniform speed under the load, the oil pressure in the rodless cavity of the oil cylinder is high, and a large amount of energy is accumulated in the oil. When the load suddenly disappears, the oil pressure of the cavity is rapidly reduced, and the oil is rapidly reduced. When the high-pressure state is transferred to the low-pressure state, a lot of energy is released to the system, resulting in a high-speed forward impact of the slide. However, the front slide of the sliding table causes the pressure in the rod cavity of the oil cylinder to cause the back pressure to rise, thereby consuming part of the energy in the system, which has a certain effect on the kicking of the slide table. We should see that in the studied system, the inlet pressure of the self-adjusting back pressure valve is subject to the comprehensive effect of the two-chamber oil pressure of the oil cylinder. When the load suddenly disappears, the pressure of the self-adjusting back pressure valve rapidly rises and stably exceeds the initial back pressure value. It can be seen from the figure that self-adjusting back pressure in the speed control system when the load disappears, the back pressure of the cylinder rises more than the traditional speed control system, so the oil in the rod cavity of the cylinder absorbs more energy, resulting in the amount of forward momentum of the slide It will be about 20% smaller than traditionalspeed control systems. It can be seen from this that the use of self-adjusting back-gear speed control system as a drive system slider has good characteristics in suppressing the forward punch, in which the self-adjusting back pressure valve plays a very large role.(4) The smoothness of the slideWhen the load acting on the slide changes periodically (such as in the case of milling), the speed of the slide will have to fluctuate. In order to ensure the processing quality requirements, it must reduce its speed fluctuation range as much as possible. From the perspective of the convenience of the discussion of the problem, assume that the load changes according to a sine wave law, and the resulting digital simulation results are shown in Figure 5. From this we can see that this system has the same variation rules and very close numerical values as the conventional speed control system. The reason is that when the change of the load is not large, the pressure in the two chambers of the fuel tank will not have a large change, which will eventually lead to the self-regulating back pressure valve not showing its effect clearly.(5) Improvement measuresThe results of the research show that the dynamic performance of a sliding table with self-regulating back pressure control system as a drive system is better than that of a traditional speed control system. To reduce the amount of kick in the slide, it is necessary to rapidly increase the backpressure of the rod cavity when the load disappears. To increase the smoothness of the sliding table, it is necessary to increase the rigidity of the system. The main measure is to reduce the volume of oil. From the system structure, it is known that the cylinder has a large volume between the rod cavity and the oil discharge pipe, as shown in Fig. 6a. Its existence in terms of delay and attenuation of the self-regulating back pressure valve function, on the other hand, also reduces the rigidity of the system, it will limit the further improvement of the propulsion characteristics and the smoothness of the motion. Thus, improving the dynamic characteristics of the sliding table can be handled by two methods: changing the cylinder volume or changing the size of the self-regulating back pressure valve. Through the simulation calculation of the structural parameters of the system and the comparison of the results, it can be concluded that the ratio of the volume V4 between the rod cavity and the oil discharge pipe to the volume V3 between the rodless cavity and the oil inlet pipe is changed from 5.5 to 5.5. At 1 oclock, as shown in the figure, the diameter of the bottom end of the self-adjusting back pressure valve is increased from the original 10mm to 13mm, and the length of the damper triangle groove is reduced from the original lmm to 0.7mm, which will enable the front of the slide table. The impulse is reduced by 30%, the transition time is obviously shortened, and the smoothness of the slide motion will also be greatly improved.中文译文液压系统W Arnold1. 绪论液压站称液压泵站,是独立的液压装置。

文献翻译-液压制动系统

文献翻译-液压制动系统

附录AHydraulic Brake SystemsWhen you step on the brake pedal,you expect the vehicle to stop.The brake pedal operates a hydraulic that is used for two reasons.First,fluid under pressure can be carried to all parts of the vehicle by small hoses or metal lines without taking up a lot of room of causing routing problems.Second,the hydraulic fluid offers a great mechanical advantage-little foot pressure is required on the pedal,but a great deal of pressure is generated at the wheels.The brake pedal is linked to a piston in the brake master cylinder containing a small piston and a fluid reservoir.Modern master cylinders are actually two separate cylinders.Such a system is called a dual circuit,because the front cylinder is connected to the front brakes and the rear cylinder to the rear brakes.(Some vehicles are connected diagonally).The two cylinders are actually separated,allowing for emergency stopping power should one part of the system fail.The entire hydraulic system from the master cylinder to the wheels is full of hydraulic brake fluid.When the brake pedal is depressed,the piston in the master cylinder are forced to move,exerting tremendous force on the fluid in the lines.The fluid has nowhere to go,and forces the wheel cylinder pistons(drum brakes) orcaliper pistons(disc brakes) to exert pressure on the brake shoes or pads.The friction between the brake shoe and wheel drum or the brake pad and rotor (disc) slows the vehiche and eventually stops it.Also attached to the brake pedal si a switch that lights the brake lights as the pedal is depressed.The lights stay on until the brake pedal is released and returns to its normal position.Each wheel cylinder in a drum brake system contains two pistons,one at either end,which push outward in opposite directions.In disc brake systems,the wheel cylinders are part of the caliper (there can be as many as four or as few as one ).Whether disc or drum type,all pistons use some type of rubber seal to prevent leakage around thepiston,and a rubber dust boot seals the outer of the wheel cylinders against dirt and moisture.When the brake pedal is released,a spring pushes the master cylinder pistons back to their normal positions.Check valves in the master cylinder piston allow fluid to flow toward the wheel cylinders or calipers as the piston returns.Then as the brake shoe return springs pull the brake shoes back to the released position,excess fluid returns to the master cylinder through compensating ports,which have been uncovered as the pistons move back.Any fluid that has leaked from the system will also be replaced through the compensating ports.All dual circuit brake systems use a switch to activate a light,warning of brake failure.The switch si located in a valve mounted near the master cylinder.A piston in the valve reveives pressure on each end from the front and rear brake circuits.When the pressures are balanced,the piston remains stationary,but when one circuit has a leak,greater pressure during the application of the brakes will force the piston to one side or the other,closing the switch and activating the warning light.The light can also be activated by the ignition switch during engine starting or by the parking brake.Front disc,rear drum brake systems also have a metering valve to prevent the front disc brakes from engaging before the rear brakes have contacted the drums.This ensures that the front brakes will not normally be used alone to stop the vehicle.A proportioning valve is also used to limit pressure to the rear brakes to prevent rear wheel lock-up during hard braking.Brake shoes and pads are constructed in a similar.The pad or shoe is composed of a metal backing plate and a priction lining.The lining is either bonded(glued) to the metal,or riveted.Generally,riveted linings provide superior performance,but good quality bonded linings are perfectly adequate.Friction materials will vary between manufacturers and type of pad and the material compound may be referred to as asbestos,organic,semi-metallic,metallic.The difference between these compounds lies in the types and percentages of friction materials used,material binders and performance modifiers.Generally speaking,organic and non-metallic asbestos compound brakes are quiet,easy on rotors and provide good feel.But this comes at the expense of high temperature operation,so they may not be your best choice for heavy duty use or mountiandriving.In most cases,these linings will wear somewhat faster than metallic compound pads,so you will usually replace them more often.But,when using these pads,rotors tend to last longer.Semi-metallic or metallic compound brake linings will vary in performance based on the metallic contents of the compound.Again,generally speaking,the higher the metallic content,the better the friction material will resist heat.This makes them more appropriate for heavy duty applications,but at the expense of braking performance before the pad reaches operating temperature.The first few applications on a cold morning may not give strong braking.Also,metallics and semi-metallics are more likely to squeal,In most cases,metallic compounds last longer than non-metallic pads,but they tend to cause more wear on the rotors.If you use metallic pads,expect to replace the rotors more often.When deciding what type of brake lining is right for you,keep in mind that today’s modern cars have brake materials which are matched to the expected vehicle’s performance capabilities.Changing the material from OEM specification could adversely addect brake feel or responsiveness.Before changing the brake materials,talk to your deaker or parts supplier to help decide what is most appropriate for your application. Remenber that use applications such as towing,stop and go driving,driving down mountain roads,and racing may require a change to a higher performance material.Some more exotic materials are also used in brake linings,among which are Kevlar and carbon compounds.These materials have the capability of extremely good performance for towing,mountain driving or racing.Wear characteristics can be similar to either applications tend to wear like metallic linings,while many of the streetapplications aremore like the non-metallics.附录B液压制动系统当踩下制动踏板,您希望该车辆停下。

液压系统构成中英文对照外文翻译文献

液压系统构成中英文对照外文翻译文献

(文档含英文原文和中文翻译)中英文资料对照外文翻译The hydraulic system constitutionhydraulic system composition department wind and the function, widely is applying on each kind of mechanical device the hydraulic system, the use has the continual fluid fat liquor now, actuates through the hydraulic pump the hydraulic pump the electric motor or the engine mechanical energy transforms the fat liquor the pressure energy, passes through each kind of control valve, delivers took the actuator in the hydraulic cylinder motor, transforms again while the mechanical power actuates the load. Constitutes such hydraulic system each constituent and the function. The hydraulic system characteristic and the use hydraulic pressure took one transmission technology, has its prominent merit:Can produce the very big power, moreover controls easily; May use the pump to obtain very the high pressure (20-30MPa) hydraulic fluid very easily, sends in this pressure oil the hydraulic cylinder then to produce the very big strength; Can in the very wide scope the limitless speed change; To altogether gives the oil motor or the hydraulic cylinder current capacity with the control valve carries on the stepless adjustment, then at will controls its revolving or the translation speed; Very easy to prevent the overload, the security is big; The size slightly strives in a big way, installs the position to be possible the free choice; Output strength adjustment simple accurate, but long-distance control.Hydraulic system use and service, in order to guarantee the mechanical device non-breakdown the work, must follow the factory the use service request.The hydraulic system is infinitely varied, took the different machinery a constituent, its use matters needing attentionalso differ from naturally.The hydraulic system uses and services the duty including the debugging, the inspection, the service and the repair. How debugs? The debugging is causes the new equipment to put the operation or to cause the original equipment to put the operation a series of activities, including the installment, the oil injection, the flushing, the adjustment, runs gathers. The inspection is examined system active status and function is whether correct, including the observation, the survey and tries to move.The maintenance is refers to the guarantee system the normal function, the few attrition and the replacement wearing parts, including the cleaning up and the replacement components, namely trades the oil, trades ponders the core, trades the seal.The repair is system reply function a series of activities which causes to crash.First must according to the breakdown phenomenon determine expires the spot and verifies the expiration reason, this is the so-called breakdown diagnosis. Then the replacement expiration part, makes the mechanical device to restore the work, this named repair.The expiration part should return the plant to repair.Time use service matters needing attention: When security, use and service hydraulic system, when most important question pays attention to the security, for guarantees the security, has the pressure when the system does not have to loosen the pipe connection, the screw joint or the part.Certainly must put first down the load, causes the pump engine off and releases the accumulator the pressure oil, then opens the thing again, does not have the oil used to work. Although many practical security taboo into general knowledge, but the attention often concentrates in the breakdown phenomenon, but neglects the latent danger.Therefore, in starts to repair the system reason this implementation standardization the engine off procedure, after the repair draws up invests the movement, should implement standardized the again start procedure:Engine off procedure it including following several aspects:1. Puts the low suspension the load or carries on the machinery supports and protections to it.2. Release system3. In release accumulator pressure oil4. Release pressure intensifier both sides pressure oil5. Cut-off electricity control system6.DumpStarts the procedure including following several aspects:1. Elimination expiration root2. If the component failure or the replacement period pollutant enters the system, then according to needs to clean up or the flushing system3. Confirms the part correctly unmistakable4. Confirms the hydraulic pressure connection correctly unmistakable5. Confirms the electrical connection correctly unmistakable6. Adjustable part to secure state7. Fills the oil for the pump and the motor shell8. According to needs to refuel to the system and to deflate9. Relieves the secure interconnection to protect10. Calls the alarm bell and the notice all presents the personnel soon to restart11.Starting systemThe item which this is carries on when service must pay attention, in regarding its sanitary, when service also must pay attention, when service hydraulic system, must do utmost the attention absolutely clean Arab League condition, because the pollutant is the hydraulic system most dangerous enemy.Does not have to carry on the polish and the welding work in the service hydraulic system scene. Loosens in front of the thread must its outside clean first cleanly.With clean returns to protects changes passes over the system the interior to use to open the mouth to seal, guards against the pollutant to enter thesystem.Cleans up when the fuel tank does not permit the use cotton and kapok silk and the rags.Must pass through the filter to the system oil injection.In the tubing, refuels with the flushing is the maintenance clean important link, its matters needing attention are as follows:1. The tubing pipe or the hose damage when must replace immediately.When chooses the pipe, the hose, the screw connector or the flange, must guarantee the pressure rated value (i.e. wall thickness, material quality and so on) satisfy the operation requirements.The hard tube must use the seamless steel pipe.The steel pipe and the metal pipe connection must clean absolutely before the installment, does not have the oil dirt, to scale, the welding, the scrap and so on.May use the steel wire brush, the tube cleaner to clean up or the acid pickling.In front of the acid pickling pipe must carry on degreasing processing, after the acid pickling must clean thoroughly. After cutting in the pipe bank or ridge between fields should the articulation awl hole, remove the burr which possibly has, but cannot ream excessively in order to avoid sells the weak connection.After assembly the pipe does not have again to weld or the gas welding, because is unable to clean up.The hose should the curved several times in order to release any detention the dirty thing.In front of the elbow piece the tubing wants the annealing, prevented when elbow piece the corrugation or changes flat.Wants the accurate elbow piece, enable the pipe then not to arrive after the elastic deformation. The flange must in the fitting surface coordinate smoothly before, and with the length suitable bolt fastening, whether there is the screw connector does install should inspect in the thread the metal burr, in the straight thread does not permit the use seal bandage.If the drive pipe must deposit period of time, should stop up the orifice to prevent the foreign matter enters.But does not have to use the rags or other moves the capital to stop up the orifice, because this only can bring the contamination concern, should use the size appropriate seal cap.2. Refuels the oil drum to want horizontal-type depositing, as far as possible deposits in the room or the awning, opens in front of the oil tung, cleans the barrel to go against and the bung thoroughly, prevented the soil and other outside pollutant enter the fat liquor.Only with the clean vessel, the hose and so on transports the fat liquor from the oil drum to the fuel tank.The recommendation with has at least in the 25um filter feeding pump. Provides 200 goals in the fuel tank oiling tube to ponder the net.The filter is actually specially for the system need oil fluid variety use.Sometimes also discovers the pollutant in the new fat liquor, therefore should for work through the portable purifier the hydraulic system tops up. When portable purifier hose involvement fuel tank, should use cloth attachment cleaning which clean does not shed hair to be clean, prevented the soil and other impurities enter the system.3.Before flushing flushing should take down the precise system part, but installs the pipe nipple in its position or hollow.From the main pipeline which flushes is dismantled the system to ponder the core.The flushing current capacity should for the system anticipated current capacity 2-2.5 times.If possible, use heat flush fluid (85℃).Each time only flushes a leg, from most approaches the wash out pump the return route start, to the downstream advancement, this possibly must additionally build in turn in the system up to the valve, realizes this kind of plan. Cannot use the system pump to take the wash out pump.Generally speaking, the power type pump like centrifugal pump and so on may provide the enough flood peak and the great current capacity, the movement quite is economical, and to flushes the period circulation the pollutant to have the good es the capacity in the flushing system with to use the flushing filter which the current capacity matches, the filtration precision to be as far as possible high, does not have to be lower than the recommendation system filtration precision. If has the possibility, uses the assistance to flush the fuel tank to avoid the pollutant being detained in the system fuel tank.The establishment fat liquor sample plan inspects dustiness, thus determined when finished the flushing procedure.After flushing, takes all measures to prevent when rewiring work part leads the pollutant.4.The replacement part part model must correct unmistakable.When if cannot find the similar model the part to have to use the similar part substitutes, must pay attention to the function, the parameter, the connection size is whether consistent, but also must pay attention installs the position, the ambient temperature, the working voltage and so on.The old seal packing collar must replace, does not permit two uses.The bolt and the screw connector must even screw tight the big stipulation the torque, prevents the part distortion influence work. The adjustable part like delivery valve, the flow valve, the variable displacement pump and so on must establish.5.When accumulator accumulator pressure vessel, Asia locality related safety rule compulsory control.In is loaded with on the accumulator hydraulic system carries on in front of any work, must first download the system pressure.The accumulator shell does not permit the welding and the processing, does not repair when possibly causes the serious accident, therefore must have to repair the accumulator returns delivers the plant to carry on the repair.Hydraulic pump selection: The hydraulic pump is the hydraulic system power supply.Must select can adapt the pressure which the actuator requests to have the return route pump, simultaneously must consider fully the reliability, the life Maintainability one side and so on elect the pump can plant the long-term movement in the system.The hydraulic pump type are extremely many, its characteristic also has the very big difference. Chooses when the hydraulic pump must consider the factor has working pressure, current capacity, rotational speed, quota or variable, variable way, volumetric efficiency, overall effectiveness index, the prime mover type, the noise, the pressure oscillation rate, self-absorption ability and so on, but also must consider and the hydraulic fluid compatibility, the size, the weight, the economy, Maintainability, these factors.The hydraulic pump discharge pressure should be the actuator needs the pressure, the tubing pressure loses, the control valve sum of pressure loss, it does not have to surpass in the sample the rated pressure, when the emphasis security, the reliability.Also should leave leeway the big leeway.In when sample highest working pressure when short-term impact permits pressure.If each circulation plants all has the impact pressure, the pump life can reduce obviously, even the pump can damage.Hydraulic pump life: The hydraulic pump is the hydraulic system power part, its function is transforms the prime mover mechanical energy the liquid the pressure energy, refers to in the hydraulic system the oil pump, it provides the power to the entire hydraulic system.Hydraulic pump structural style common toothed wheel pump, vane pump and ram pump. Affects the hydraulic pump the service life factor to be very many, except outside pump own design, manufacture factor and some with pump use Guanyuan (for example shaft coupling, oil filter and so on) selects, in the test run movement process operation and so on also concerns.1.The air compressorselects the air compressor the basis is the working pressure and the current capacity which the pneumatic system needs.At present, the pneumatic system commonly used working pressure is 0.5~0.8MPa, may select the rated pressure is directly the 0.7~1MPa low-pressure air compressor, the special need fluid may select, high-pressured or the ultrahigh voltage air compressor. When determination air compressor air displacement, should satisfy the biggest gas consumption which each air operated equipment needs (to be supposed to transform into free air gas consumption) the sum.(1) was mad the source refining equipmentgeneral use the air compressor all uses the oil lubrication, the air is compressed in the air compressor, the temperature may elevate 140~170℃, by now were partial the lubricating oil to turn the gas, mixed in the compressed air, in addition in the air water and the dust, formed included mix impurity and so on the water vapor, oil gas, dust compressed air.Ifprovides this kind of compressed air to the air operated equipment use, will be able to have following adverse consequences:Gathers in the compressed air the oil gas to gather in the gas storage fills forms the combustible, even has the detonation danger; Simultaneously the oil vaporizes after the high temperature forms the organic acid, causes the hardware to corrode, affects the equipment the life.(2)The mix impurity deposition in the pipeline and the air operated part, causes to pass flows the area to reduce, circulation drag increment, the overall system work is unstable, when serious, system knock off.(3)In the compressed air water vapor can congeal the waterdrop under certain pressure and the temperature, can cause the pipeline and the assistance part in the cold season because of freezes destroys.(4)In the compressed air dust has the abrasive action to the air operated part movement part, causes it attrition to be serious, affects their life.Thus it can be seen, establishes in the pneumatic system eliminates the water, eliminates the oil, the dust removal and dry and so on was mad the source refining equipment is extremely essential.Second, the air operated assistance partair operated part interior has many relative slippers, somewhat relative slipper depends on the seal packing collar to seal.In order to reduce transports the moving parts relatively the friction force, guaranteed the part movement is normal; In order to reduce the packing material the attrition, prevents divulging; In order to prevent the pipeline and the metal part corrosion, lengthens the part service life, guaranteed the good lubrication is extremely important.The lubrication may not divide into and spurts the mist lubrication for the oil lubrication.Some many air operated application domain does not allow to spurt the mist lubrication.If food and the drugs packing, in the transportation process, the oil granule returns to pollution food and the drugs; The oil granule can affect certain raw material for industry, the chemicals nature; The oil mist can affect the high-level spray coating surface and the electronic component surface quality; The oil mist can affect the measuring instrument true the survey; The oil mist can harm the human body health and so on.Therefore at present uses the mist lubrication to reduce gradually, does not give the oil lubrication already very popularly.Still did not use the rubber material for the oil lubrication to take the glide spot the seal, but sealed has the detention tank special structure, in order to memory lubricant.Other components should use not the easy rusty metal material or the nonmetallic material.For the oil lubrication part also may not to the oil use, once but gives the oil, does not have the midway to stop feed.At the same time, must prevent the condensed water enters in the part, in order to avoid flushes the lubricant.Not only has not saved the lubricating utensils and the lubricating oil for the oil lubrication part, improved the working conditions, moreover reduced the maintenance work load, reduced the cost.Moreover, also improved the lubrication condition.Its lubrication effect with the transit discharge, the pressure height, the tubing condition and so on all has nothing to do with.Also does not exist forgot refuels creates the breakdown the matter.The mist lubrication part has the oil mist and the centralism lubrication part two kinds.In (1) pneumatic system each kind of air valve, the air cylinder, the gas motor and so on, its movable part all needs to lubricate, but take the compressed air all seals the air chamber as the power air operated part, cannot use the general method oil injection, only can mix in by some method the oil in the air current, the belt to the place which needs to lubricate.The oil mist is this kind of kind of special oil injection installment.After it causes the lubrication oilatomization to pour into in the air current, enters the part along with the air which needs to lubricate. Refuels with this method, has the lubrication to be even, to be stable, the oil consumption few and does not need characteristics and so on big oil storage equipment.(2) air strainer is in the pneumatic system important link, is further filters the dust compressed air the impurity.The filter form are very many, the commonly used type includes: The disposable filter and two filter, have been requesting the high special occasion, may use the highly effective filter.99. In the pneumatic actuator system, called generally the filter, the oil mist, the pressure relief valve for air operated three association (or three big-ticket items), are in the pneumatic system the essential auxiliary unit.(3) silencerpneumatic circuit and the hydraulic pressure return route are different, it does not suppose the exhaust pipeline generally, after the compressed air use the direct platoon person atmosphere, because the gas rapidly inflation and forms the turbulent flow phenomenon, will have the intense exhaust noise.The exhaust speed and the power are bigger, the exhaust noise is bigger, may generally big 100~200dB.The noise harms people's physical and moral integrity directly, must eliminate or weaken.For the noise reduction, generally often installs the silencer in the pneumatic system air vent.The air operated functional elementair operated functional element is transforms in the pneumatic system the compressed air pressure energy the mechanical energy the part.It including air cylinder friendly motor.The air cylinder uses in realizing the straight reciprocating motion or swinging, was mad the motor uses in realizing the continual gyroscopic motion.First, The air cylinderair cylinder is in the pneumatic system the most commonly used one kind of functional element, compares with the hydraulic cylinder, it has the structure simply, pollutes, the movement few keen, responded quick, easy to make, easily to service, the cost low status merit, but because the thrust force is small, widely uses in the underloading system.(1) The air cylinder classifiedbasis air cylinder exploitation conditions are different, its structure, the shape, the type are very many, below introduces several kind of classifications.May divide into according to the compressed air function in the piston end surface direction: List function air cylinder and double-acting air cylinder.(2)Different may divide into according to the structure characteristic: Plunger-type air cylinder, plunger air cylinder, film air cylinder, leaf blade type oscillating cylinder, gear strip type oscillating cylinder and so on.(3) May divide into according to the air cylinder function: Ordinary air cylinder and special air cylinder.The ordinary air cylinder refers to the general plunger-type air cylinder, uses in the not special request the situation.The special air cylinder uses in having the special request situation, like was mad - - the fluid damping cylinder, the film air cylinder, flush are mad the air cylinder, the expansion and contraction air cylinder and so on.(4) According to installs the way differently to be possible to divide into: The ear place type, the flange type, sell the shaft type and the flange type and so on.(二)Common air cylinder principle of work and applicationThe ordinary air cylinder principle of work and the use are similar to the hydraulic cylinder, here no longer give unnecessary detail, below only introduces the special air cylinder.1. Is mad - - the fluid damping cylinderbecause the ordinary air cylinder works time, the compressed gas condensibility is big, when the outside work load change is big, the air cylinder appears “crawling” or “self-propelled” the phenomenon, the stability When therefore the equip ment precision is high, the air cylinder work stable request is also high, often uses was mad - - the fluiddamping cylinder is becomes by the air cylinder and the hydraulic cylinder combination, take the compressed air as an energy, by the hydraulic fluid took the control adjustment air cylinder velocity of movement the medium, the use liquid incompressibility control liquid displacement, adjusts the piston the velocity of movement, obtains the piston the steady motion.2. The film air cylinderfilm type air cylinder is replaces the piston by the thin film the air cylinder.It mainly by the cylinder body, the diaphragm, the diaphragm capsule and the connecting rod and so on the major parts is composed.Has the list to affect the type and the double-acting type.液压系统的构成液压系统的组成部风及其作用,如今在各种机械设备上广泛应用着的液压系统,使用具有连续流动性的油液,通过液压泵把驱动液压泵的电动机或发动机的机械能转换成油液的压力能,经过各种控制阀,送到作为执行器的液压缸马达中,再转换乘机械动力去驱动负载.构成这样的液压系统的各个组成部分及其作用.液压系统的特点和用途液压作为一种传动技术,有其突出的优点:能产生很大的动力,而且控制容易;可以用泵很容易地得到很高压力(20-30MPa)的液压油,把此压力油送入液压缸即可产生很大的力;能在很宽范围内无极变速;用控制阀对共给液压马达或液压缸的流量进行无级调整,即可随意控制其旋转或直线运动的速度;很容易防止过载,安全性大;尺寸小出力大,安装位置可自由选择;输出力的调整简单准确,可远程控制.液压系统的使用与维修,为了保证机械设备无故障的工作,必须遵循制造厂的使用维修要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hydraulic SystemThere are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.2.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.3.Actuators which convert hydraulic power to usable mechanical power output at the point required.4.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.5.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marinetechnology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.Simplicity, safety, economy. In general, fluid power systems use fewer movingparts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment. There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:Pumps which convert available power from the prime mover to hydraulic power at the actuator.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.Actuators which convert hydraulic power to usable mechanical power output at the point required.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of controlspace require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.液压系统仅有以下三种基本方法传递动力:电气,机械和流体。

相关文档
最新文档