信号与系统实验题目及答案

合集下载

信号与系统实验教程(只有答案)

信号与系统实验教程(只有答案)

信 号 与 系 统实 验 教 程(只有答案)(实验报告)这么玩!目录 实验一 信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二 连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三 连续时间LTI 系统的频域分析 (35)三、实验内容及步骤 (35)实验四 通信系统仿真 (41)三、实验内容及步骤 (41)实验五 连续时间LTI 系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。

实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。

并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。

要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。

然后执行该程序,保存所的图形。

修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。

信号与系统matlab实验及答案

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。

n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。

观察并分析a 和0t 的变化对波形的影响。

t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。

抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。

请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。

可能用到的函数为plot, stem, hold on 。

fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。

信号与系统实验答案1

信号与系统实验答案1

实验一 离散时间信号的表示及可视化一、实验目的学会对离散时间信号进行标识和可视化处理。

二、实验源程序 (1)f(n)= )(n δn=-5:1:5; f=dirac(n); plot(n,f,'.'); xlabel('(n)'); ylabel('(f)'); axis([-5 5 -0.5 1.5])(2) f(n)=ε(n)f=Heaviside(n)n=-5:1:5; f=heaviside(n); plot(n,f,'.'); xlabel('(n)'); ylabel('(f)');axis([-5 5 -0.5 1.5]) (3) f(n)= ane (分别取a>0及a<0)a=1时 n=-5:1:5; f=exp(n); plot(n,f,'.');a=-1时 n=-5:1:5; f=exp(-n); plot(n,f,'.');(4) f(n)=R N (n) (分别取不同的N 值)N=10时 n=0:1:9; f=1;plot(n,f,'.');N=15时 n=0:1:14; f=1;plot(n,f,'.') (5) f(n)=Sa(nw)w=0.1时n=-45:1:45;f=sinc(0.1*n);plot(n,f,'.');xlabel('n');ylabel('f');axis([-50 50 -1 1])w=0.2时n=-45:1:45;f=sinc(0.2*n);plot(n,f,'.');xlabel('n');ylabel('f');axis([-50 50 -1 1])(6)f(n)=Sin(nw)(分别取不同的w值)w=100时n=-15:1:15;f=sin(100*n);plot(n,f,'.');xlabel('n');ylabel('f');w=200时n=-15:1:15;f=sin(200*n);plot(n,f,'.');xlabel('n');ylabel('f');三、程序运行结果及波形图(1)(2)(3)-5-4-3-2-1012345(n)(f)-5-4-3-2-1012345(n)(f)(4)0123456789024********(5)(6)-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nf-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nffnf-15-10-5051015n四、实验调试体会实验二 连续时间信号的表示及可视化一、实验目的熟练掌握连续时间信号的表示及可视化处理。

信号与系统练习题(带答案)

信号与系统练习题(带答案)

信号与系统练习题(带答案)1. 信号f(t)的波形如图所示。

分别画出信号(24),(24),(24)f t f t f t '''-+-+-+的波形,并且写出其表达式。

答案:2. 信号f ( t )的图形如下所示,对(a)写出f ' ( t )的表达式,对(b)写出f " ( t )的表达式,并分别画出它们的波形。

解 (a)20,21≤≤tf ' (t)= δ(t -2), t = 2-2δ(t -4), t = 4(b) f " (t ) = 2δ(t ) - 2δ(t -1)-2δ(t -3)+2δ(t -4)3. 已知f(5-2t)的波形如图所示,试画出f(t)的波形。

52:()(2)(2)(52)5252252:(52)(2)(2)()f t f t f t f t t tf t f t f t f t −−−→−−−→-−−−→---=-∴-→-→→ 压缩反转平移左移反转拉伸分析()右移求解过程55[52()]2,22t t t t -+=-∴+ 以代替而求得-2t ,即f(5-2t)左移(52)(2)f t f t -−−−→-时移由(2)反转:f(-2t)中以-t 代替t ,可求得f(2t),表明f(-2t)的波形 以t =0的纵轴为中心线对褶,注意()t δ是偶数,故112()2()22t t δδ--=+(2)(2)f t f t -−−−→反褶由(3)尺度变换:以12t 代替f(2t)中的t ,所得的f(t)波形将是f(2t)波形在时间轴上扩展两倍。

4. 求序列{}12[]1,2,1,0,1,2[][1cos()][]2f n n f n n u n π===+和的卷积和。

解:{}112222[]1,2,1[]2[1][2][]*[][]2[1][2]f n n n n f n f n f n f n f n δδδ==+-+-=+-+-5. 试求下列卷积。

信号与系统实验题目及答案

信号与系统实验题目及答案

第一个信号实验的题目1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =⨯---; (5)0.5()4cos(),010t f t e t t π-=⨯= 2连续信号的基本运算与波形变换已知信号22,21()33t t f t ⎧-+-≤≤⎪=⎨⎪⎩,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1(1)2d f t dt +(5)(2)t f d ττ-∞-⎰3连续信号的卷积运算实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。

4连续系统的时域分析(1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为2()2()t f t e u t -=时,该系统的零状态响应()y t 。

(2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出该系统的冲激响应和阶跃响应的波形。

实验一答案:(1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下:(3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下:(4)()[(1)(2)]f t t u t t u t t =⨯---在MATLAB 软件的输入程序及显示波形如下:(5)0.5()4cos(),010t f t e t t π-=⨯=在MATLAB 软件的输入程序及显示波形如下:(1)()f t -的输入程序及波形如下:(2)(2)f t -+的输入程序及波形如下:(3)(2)f t 的输入程序及波形如下:(2)系统的冲激响应和阶跃响应如下:(4)1(1)2d f t dt +的输入程序及波形如下:(5)(2)t f d ττ-∞-⎰的输入程序及波形如下:(1)()f t -和(2)(2)f t -+组合的卷积运算如下:(2)(2)f t -+和(3)(2)f t 组合的卷积运算如下:(1)()f t 和(3)(2)f t 组合的卷积运算如下:(1)系统的零状态响应()y t 如下:第二个信号实验题目1(1)用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

信号与系统题库答案(完整版)

信号与系统题库答案(完整版)

1 −2( s +1) 1 −2 s e (2) e s +1 s +1 e2 2cos 2 + s sin 2 − s (3) (4) ie s +1 s2 + 4 1 ⎛ 1 1⎞ ⎛ 1 2⎞ (5) 2 [1 − (1 + s )e − s ]e − s (6) ⎜ 2 + ⎟ e − s − ⎜ 2 + ⎟ e −2 s s s⎠ s⎠ ⎝s ⎝s (1)
[3]解 A 点: FA (ω ) =
1 [G1 (ω + ω0 ) + G1 (ω − ω0 )] 2 j B 点: FB (ω ) = [G1 (ω + ω0 ) − G2 (ω − ω0 )] 2 1 C 点: FC (ω ) = [ FA (ω ) + FB (ω )] ⋅ π [δ (ω + ω0 ) + δ (ω − ω0 )] 2π 1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2
1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2

长江大学信号与系统matlab实验答案

长江大学信号与系统matlab实验答案

实验1 信号变换与系统非时变性质的波形绘制●用MA TLAB画出习题1-8的波形。

●用MA TLAB画出习题1-10的波形。

Eg 1.8代码如下:function [y]=zdyt(t) %定义函数zdyty=-2/3*(t-3).*(heaviside(-t+3)-heaviside(-t));endt0=-10;t1=4;dt=0.02;t=t0:dt:t1;f=zdyt(t);y=zdyt(t+3);x=zdyt(2*t-2);g=zdyt(2-2*t);h=zdyt(-0.5*t-1);fe=0.5*(zdyt(t)+zdyt(-t));fo=0.5*(zdyt(t)-zdyt(-t));subplot(7,1,1),plot(t,f);title('信号波形的变化')ylabel('f(t)')grid;line([t0 t1],[0 0]);subplot(7,1,2),plot(t,y);ylabel('y(t)')grid;line([t0 t1],[0 0]);subplot(7,1,3),plot(t,x);ylabel('x(t)')grid;line([t0 t1],[0 0]);subplot(7,1,4),plot(t,g);ylabel('g(t)')grid;line([t0 t1],[0 0]);subplot(7,1,5),plot(t,h);ylabel('h(t)')grid;line([t0 t1],[0 0]);subplot(7,1,6),plot(t,fe);ylabel('fe(t)')grid;line([t0 t1],[0 0]);subplot(7,1,7),plot(t,fo);ylabel('fo(t)')grid;line([t0 t1],[0 0]);xlabel('Time(sec)')结果:Eg1.10代码如下:function [u]=f(t) %定义函数f(t) u= heaviside(t)-heaviside(t-2); endfunction [u] =y(t) %定义函数y(t)u=2*(t.*heaviside(t)-2*(t-1).*heaviside(t-1)+(t-2).*heaviside(t-2)); endt0=-2;t1=5;dt=0.01; t=t0:dt:t1; f1=f(t); y1=y(t); f2=f(t)-f(t-2); y2=y(t)-y(t-2); f3=f(t)-f(t+1); y3=y(t)-y(t+1);subplot(3,2,1),plot(t,f1); title('激励——响应波形图') ylabel('f1(t)')grid;line([t0 t1],[0 0]);-10-8-6-4-2024012信号波形的变化f (t)-10-8-6-4-2024012y (t)-10-8-6-4-2024012x (t)-10-8-6-4-2024012g (t)-10-8-6-4-2024012h (t)-10-8-6-4-202400.51f e (t)-10-8-6-4-2024-101f o (t)Time(sec)subplot(3,2,2),plot(t,y1); ylabel('y1(t)')grid;line([t0 t1],[0 0]); subplot(3,2,3),plot(t,f2); ylabel('f2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,4),plot(t,y2); ylabel('y2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,5),plot(t,f3); ylabel('f3(t)')grid;line([t0 t1],[0 0]); subplot(3,2,6),plot(t,y3); ylabel('y3(t)')grid;line([t0 t1],[0 0]); xlabel('Time(sec)')结果:实验2 微分方程的符号计算和波形绘制上机内容用MA TLAB 计算习题2-1,并画出系统响应的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统实验题目及答案第一个信号实验的题目1实现下列常用信号(1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =⨯---;(5)0.5()4cos(),010tf t et t π-=⨯=:2连续信号的基本运算与波形变换 已知信号22,21()33t t f t ⎧-+-≤≤⎪=⎨⎪⎩,试画出下列各函数对时间t 的波形:(1)()f t -(2)(2)f t -+(3)(2)f t (4)1(1)2d f t dt +(5)(2)tf d ττ-∞-⎰3连续信号的卷积运算实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。

4连续系统的时域分析(1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为2()2()t f t e u t -=时,该系统的零状态响应()y t 。

(2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出该系统的冲激响应和阶跃响应的波形。

实验一答案:(1)(5)u t+在MATLAB软件的输入程序及显示波形如下:(2)(1)δ-在MATLAB软件的输入程t序及显示波形如下:(3)cos(3)sin(2)+在MATLAB软件的输t t入程序及显示波形如下:(4)()[(1)(2)]f t t u t t u t t=⨯---在MATLAB软件的输入程序及显示波形如下:(5)0.5()4cos(),010tf t e t t π-=⨯=:在MATLAB 软件的输入程序及显示波形如下:(1)()f t -的输入程序及波形如下:(2)(2)f t-+的输入程序及波形如下:(3)(2)f t的输入程序及波形如下:(2)系统的冲激响应和阶跃响应如下:(4)1(1)2d f t dt +的输入程序及波形如下:(5)(2)t f d ττ-∞-⎰的输入程序及波形如下:(1)()f t -和(2)(2)f t -+组合的卷积运算如下:(2)(2)f t-+和(3)(2)f t组合的卷积运算如下:(1)()f t-和(3)(2)f t组合的卷积运算如下:(1)系统的零状态响应()y t如下:第二个信号实验题目1(1)用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。

(2)用符号法给出函数5()2()()3t f t e u t -=的傅里叶变换。

(3)已知系统函数为3421()3s s H s s s ++=++,画出该系统的零极点图。

2(1)用数值法给出函数5(2)2()(2)3t f t e u t --=-幅频特性曲线和相频特性曲线。

(2)对函数5(2)2()(2)3t f t e u t --=-进行采样,采样间隔为0.01。

(3)已知输入信号为()sin(100)f t t =,载波频率为1000Hz ,采样频率为5000 Hz ,试产生输入信号的调幅信号。

3(1)用符号法实现函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。

(2)已知系统函数为3421()3s s H s s s ++=++,输入信号为()sin(100)f t t =,求该系统的稳态响应。

(3)已知输入信号为()sin(100)f t t =,载波频率为100Hz ,采样频率为400 Hz ,试产生输入信号的调频信号。

4(1)已知系统函数为231()3s s H s s s ++=++,画出该系统的零极点图。

(2)已知函数5()2()()3t f t e u t -=用数值法给出函数(3)f t 的幅频特性曲线和相频特性曲线。

(3)实现系统函数3421()3s s H s s s ++=++的频率响应。

(4)已知输入信号为()cos(100)f t t =,载波频率为100Hz ,采样频率为400 Hz ,试产生输入信号的调相信号。

5(1)用数值法给出函数5(2)2()(2)3t f t e u t -+=+幅频特性曲线和相频特性曲线。

(2)用符号法实现函数22i ω+的傅里叶逆变换。

(3)已知输入信号为()5sin(200)f t t =,载波频率为1000Hz ,采样频率为5000 Hz ,试产生输入信号的调频信号。

实验二答案:(1) 用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。

t=linspace(-4,4,200); f=0*t;f(t>=-2&t<=2)=1;W=linspace(-4*pi,4*pi,200); F=0*W; for N=1:200 for M=1:200F(N)=F(N)+8/200*f(M).*exp(-j*W(N)*t(M)); end endsubplot(4,4,1); plot(t,f); subplot(4,4,2); plot(W,F); subplot(4,4,3); plot(W,abs(F)); H=freqs(6,9,W); subplot(4,4,4); plot(W,angle(F))(2) 用符号法给出函数5()2()()3t f t e u t -=的傅里叶变换。

syms t f ;f=sym('(2/3)*exp(-5*t)*heaviside(t)'); F=fourier(f); pretty(F)(3) 已知系统函数为3421()3s s H s s s++=++,画出该系统的零极点图。

num=[0 1 0 1 1]; den=[1 0 1 0 3]; G=tf(num,den); subplot(2,2,1); pzmap(G);0.511.5幅频曲线-4-2024相频曲线123456789100.10.20.30.40.50.60.7-1-0.8-0.6-0.4-0.20.20.40.60.81时间(s)幅值第3个信号实验题目1计算序列)(2)(1n u n f n =与序列)5()()(2--=n u n u n f 的卷积和;2已知离散系统的差分方程为()5(1)6(2)()y n y n y n f n --+-=,求系统的频率响应,若()2()n f n u n =,求系统的零状态响应。

3利用SIMULINK 画出(2)的系统框图。

实验三答案:1. 计算序列)(2)(1n u n f n=与序列)5()()(2--=n u n u n f的卷积和;n=0:1:10; x=2.^n stem(n,x) n=0:1:4 x1=ones(1,5) stem(n1,x1) y=conv(x,x1) n2=0:1:14 stem(n2,y)2. 已知离散系统的差分方程为()5(1)6(2)()y n y n y n f n --+-=,求系统的频率响应,若()2()n f n u n =,求系统的零状态响应。

b=[1]; a=[1,-5,6];w=linspace(0,50,200); freqs(b,a,w)n=[0:10]; f=2.^n; a=[1,-5,6]; b=[1]; y=[0];xic=filtic(b,a,y); y1=filter(b,a,f,xic)第4个信号实验题目1求()cos()()f n an u n =的Z 变换和2()()azF z z a =-的Z 反变换。

2已知某离散系统的系统函数为23221()0.50.0050.3z z H z z z z ++=--+,试用MATLAB 求出该系统的零极点,并画出零极点图,求系统的单位冲激响应和幅频响应,并判断系统是否稳定。

3 一系统的微分方程为()5()10()()y t y t y t f t '''++=,试利用MATLAB 求其系统的状态方程。

4 已知某连续时间系统的状态方程和输出方程为.111.222()()()230101()10()()x t x t f t x t f t x t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦111222()()()1110()01()10()y t x t f t y t x t f t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦试用M ATLAB 计算其系统函数矩阵()H s 。

实验四答案:求()cos()()f n an u n =的Z 变换和2()()azF z z a =-的Z 反变换。

1. syms a nf=cos(a*n);F=ztrans(f);pretty(F)syms k zFz=a*z/(z-a)^2; fk=iztrans(Fz,k); pretty(fk);2. 已知某离散系统的系统函数为23221()0.50.0050.3z z H z z z z ++=--+,试用MATLAB 求出该系统的零极点,并画出零极点图,求系统的单位冲激响应和幅频响应,并判断系统是否稳定。

b=[0,1,2,1]a=[1,-0.5,-0.005,0.3] [R,P,K]=tf2zp(b,a) figure(1) zplane(b,a)legend('零点','极点'); grid on ; num=[0 1 2 1]den=[1 -0.5 -0.005 0.3] h=impz(num,den) figure(2) stem(h)[H,w]=freqz(num,den) figure(3) plot(abs(H))3. 一系统的微分方程为()5()10()()y t y t y t f t '''++=,试利用MATLAB 求其系统的状态方程。

a=[1]; a = 1 b=[1 510];b = 1 5 10[ABCD]=tf2ss(a,b);A = -5 -10B = 11 0 0C= 0 1 D = 04. 已知某连续时间系统的状态方程和输出方程为.111.222()()()230101()10()()x t x t f t x t f t x t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦111222()()()1110()01()10()y t x t f t y t x t f t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦试用MATLAB 计算其系统函数矩阵()H s 。

相关文档
最新文档